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Tumour necrosis factor-α, interferon-γ and interleukin-4 are critical cytokines in regulating the immune responses against
infections and tumours. In this study, we investigated the effects of three cytokines on CD40 expression in Myb-transformed
hematological cells and their regulatory roles in promoting these cells into dendritic cells. We observed that both interleukin-4
and interferon-γ increased CD40 expression in these hematological cells in a dose-dependent manner, although the concentration
required for interleukin-4 was significantly higher than that for interferon-γ. We found that tumour necrosis factor-α promoted
CD40 expression induced by interferon-γ, but not by interleukin-4. Our data showed that tumour necrosis factor-α plus interferon-
γ-treated Myb-transformed hematological cells had the greatest ability to take up and process the model antigen DQ-Ovalbumin.
Tumour necrosis factor-α also increased the ability of interferon-γ to produce the mixed lymphocyte reaction to allogenic T cells.
Furthermore, only cotreatment with tumour necrosis factor-α and interferon-γ induced Myb-transformed hematological cells
to express interleukin-6. These results suggest that tumour necrosis factor-α plays a key regulatory role in the development of
dendritic cells from hematological progenitor cells induced by interferon-γ.

1. Introduction

Cytokines are key components of the immune system and
play a crucial role in immune cell developments. An easy
model to study their biological functions is to use hema-
tological progenitor cells. Myb-transformed hematological
cells (MTHCs) were originally derived from fetal mouse liver
and were immortalized by retrovirally vectored Myb gene
transformation [1–3]. Since then, the cell line has been char-
acterized and used as a model of hematological stem cells to
investigate the development of hematological progenitor cells
to dendritic cells (DCs) and macrophages [1–3]. Previous
studies have shown that cytokines play key regulatory roles in
the development of MTHCs into either DCs or macrophages
[1–3]. Particularly, IL-4 and IFN-γ were the critical cytokines
that promote the differentiation of the progenitor cells into
either DC or macrophage lineages. For example, IL-4 plus
TNF-α was shown to promote the MTHCs to develop into

macrophages, while cotreatment of IFN-γ and TNF-α pro-
duced DCs [1, 4–6].

TNF-α was identified as an endotoxin-induced factor
that caused the necrosis of certain murine tumours in vivo
[7]. As a powerful immune modulator, TNF-α is involved
in systemic inflammation and is a member of the cytokines
that stimulate the acute-phase reaction. TNF-α also plays an
important role in the development and maintenance of DCs
[8, 9]. It promotes expression of MHC class II and costimula-
tory molecules (CD80 and CD86) [10]. In addition, TNF-α
is essential for host defenses against mycobacteria and other
granulomatous pathogens [11]. Anti-TNF-α treatment of
DCs has been shown to cause apoptosis, indicating the im-
portant role of TNF-α in DC survival [11]. In DC culture,
addition of TNF-α into the culture medium without plasma
could maintain DC viability, while addition of GM-CSF or
IL-4 to the culture medium had no such an effect [12].
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DCs are professional antigen-presenting cells (APCs) in-
volved in both innate and adaptive immune responses [4,
13]. DCs also play a key role in the induction of immune
tolerance [14, 15]. Upon stimulation, they secrete cytokines
and activate T cells. The functions of DCs are closely related
to their maturation status and expression of cell markers
for immune modulators such as costimulation factors, CD40
and B7-1 on the cell surface [16]. Interaction between CD40
and CD40L is considered to be very important in DC mat-
uration and antigen presentation of DCs to T cells [17, 18].
Other studies showed that CD40 was important for the Th1
response, but not for the Th2 response [19]. Understanding
of the factors that contribute to the differentiation and matu-
ration of DCs and their relationship to the function is neces-
sary for possible manipulations of DCs for future treatments
of immune diseases or cancers [20–22].

Although the role of IL-4 and IFN-γ in the development
of hematological progenitor cells into DCs or macrophages
has been well documented, the biological function of TNF-α
to modulate IL-4 and IFN-γ levels to induce the development
and differentiation of DCs from progenitor cells is less well
studied. This prompted us to evaluate the regulatory role of
TNF-α in the induction of dendritic cells from MTHCs with
these two key cytokines. We found that TNF-α promoted the
IFN-γ-induced development of DCs and the generation of
functional DCs from MTHCs through CD40 expression and
antigen processing. Cotreatment of TNF-α and IFN-γ in-
duced MTHCs to express IL-6 mRNA, and TNF-α reduced
the production of IL-12 induced by IFN-γ. These findings
are valuable for understanding the role of TNF-α in DC cell
development and immunological function.

2. Material and Methods

2.1. Cell Lines, Cytokines, and Cell Treatment. The MTHCs
used in this study were prepared from C3H mouse using the
same method as described previously [23]. The MTHCs were
maintained in modified IMEM medium (Invitrogen) con-
taining 50 unit/mL of GM-CSF and 10% fetal calf serum
(FCS). Mouse GM-CSF, IL-4, and IFN-γ were produced in
insect Sf9 cells by infecting the cells with baculovirus express-
ing the corresponding genes. The concentrations were titered
as described previously [23]. Mouse TNF-α was purchased
from Sigma and was stored at −80◦C in small aliquots until
use.

For cytokine treatment, the cells were cultured in 24-
or 96-well plates and the cytokines were diluted in culture
medium and added directly to the cells. For dose-dependent
CD40 expression experiments, the cells were seeded at a den-
sity of 1 × 106 cells/well in a 24-well plate and the three cor-
responding cytokines were added, respectively. The concen-
trations for IL-4 ranged from 25 to 800 units/mL for IFN-γ
they were from 0.5 to 16 units/mL and for TNF-α from 50 to
1600 units/mL in 2-fold serial dilutions. Twenty-four or 48
hours after treatment the cells were collected for CD40 ex-
pression assays using FACS. For co-treatment with TNF-α +
IFN-γ or TNF-α + IL-4, 200 units/mL of TNF-α was used
unless it was specifically indicated.

2.2. FACS Analysis for CD40 Expression. The cells treated
with different cytokines at various doses were harvested by
centrifugation and washed once with 2% fetal calf serum
(FCS)/PBS. The cells were then incubated with 1 : 10 dilut-
ed monoclonal antibody to mouse CD40 produced from
FGK4.5 hybridoma for 1 hour at 37◦C. The cells were washed
twice with 2% FCS/PBS, followed by incubation with the
secondary antibody anti-mouse IgG2 conjugated with FITC
(Santa Cruz Biotechnology) for 1 hour at room temperature.
The cells were washed three times using 2% FCS/PBS, and
fixed in 2% paraffin-formaldehyde (PFA)/PBS for flow cy-
tometry (FACS) analysis.

2.3. Antigen Processing. DQ-ovalbumin (DQ-OVA) (Invitro-
gen) is a self-quenched conjugate of ovalbumin that exhibits
green fluorescence when proteolytic degradation in the cells,
which can be measured by flow cytometry. DQ-OVA was
added into 100 μL of suspension cells at a concentration of
10 μg/mL. The cells were incubated at 37◦C for 1 hour. They
were then washed with 2% FCS/PBS twice, fixed in 2% PFA/
PBS and analyzed using both flow cytometry and confocal
microscopy.

2.4. Mixed Lymphocyte Reaction. The mixed lymphocyte re-
action (MLR) analysis was carried out as previously de-
scribed [23]. Briefly, the responder cells were C57BL/6 mouse
spleen cells passed twice through nylon wool column, and
the stimulators were MTHCs treated with cytokines and irra-
diated by a 137Cs irradiator (IBL437C, Australia). The cells
were plated in 96-well plates at various ratios of responder
verse stimulator cells, and at least 3 repeats for each ratio were
set up in the plates. After 4-5 days, the T-cell proliferation
was measured by the uptake of [3H]-thymidine (1 pCil/well,
6.7CilmM; ICN, Costa Mesa, Calif, USA), which was added
during the final 18 hours of the culture. Cells were harvested
onto glass fiber filter paper with an automated 96-well har-
vester (Wallac, Turku Finland), and [3H]-thymidine incor-
poration was determined using a liquid scintillation counter.

2.5. Preparation of CD40 Ligand (CD40L) from Insect Cells.
Insect Sf9 cells were cultured in T-75 or T-125 flasks with
IPL-41 medium (Invitrogen) for 3-4 days at 27◦C. When the
cells were 80% confluent, they were infected with baculovirus
that expresses mouse CD40L. After culturing for 4-5 days,
the baculovirus-infected cells were harvested and pelleted by
centrifugation. The cell pellets were resuspended in homog-
enization buffer and sonicated for 20 seconds on ice. A
volume of 6.6 mL homogenizer was transferred into each
10 mL ultracentrifuge tubes and underlayered with 2.6 mL
40% sucrose solution. The tubes were centrifuged 96000 ×g
for 1 hour at 4◦C. The interfaces were recovered and trans-
ferred into a sterilized 50 mL tube and then diluted to 20 mL
with PBS. Ten mL of this preparation was transferred into
a Beckman ultracentrifuge tube, and the tubes were centri-
fuged using Ti-50 rotor at 36000 rpm for 30 minutes. The su-
pernatant was discarded, and the pellet was resuspended in
10 mL PBS. This centrifugation was repeated once more.
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Figure 1: Continued.
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Figure 1: The effect of cytokine treatment on CD40-expression in MTHCs. (a) The FACS results show CD40-positive cells (%) after the 3
cytokine treatments or cotreatments at different doses. The doses for IFN-γ (IFN), TNF-α (TNF), and IL-4 treatment alone were as labeled.
For TNF-α co-treatment with IFN-γ and IL-4, TNF-α dose was 200 units/mL and IFN-γ and IL-4 doses were as labeled. The data were the
mean ± SE from 3 separate experiments after 48 hours of treatment. (b) The diagrams show the dot plot analysis of the results from above
treatments. Negative: the antibody isotype control. GM: GM-CSF alone. (c) shows the FACS histogram analysis of fluorescent intensity for
GM + IL-4 + TNF-α (IL-4 +TNF) and GM + IFN-γ + TNF-α (IFN+TNF) groups in (b). Negative: the antibody isotype control.

The pellet was finally resuspended into 2 mL PBS, and the
solution was stored at −70◦C in small aliquots. The prepa-
ration was analysed by Western blotting to detect the CD40L
protein (data not shown) with goat anti-mouse CD40L IgG
(Santa Cruz Biocenology).

2.6. IL-12p40 Protein Measurement. The purified anti-mouse
IL-12-p40 antibody-coated ELISA kit (ELISA capture, BD
Bioscience, Australia) was purchased and used to measure IL-
12p40 protein in the cultural supernatant of MTHCs treated
with different cytokines and CD40L, according to the man-
ufacturer’s manual.

2.7. RT-PCR. RT-PCR analysis was carried out as previously
described [24]. Briefly, the treated and untreated cells were
harvested for total RNA extraction using TRIzol reagent
(Invitrogen) according to the manufacturer’s instruction.
Reverse transcription reactions were performed with oligo-
dT primer. The primers for IL-6 RT-PCR were as follows:
forward: 5′-TGCTGGTGACAACCACGGCC; reverse: 5′-
GTACTCCAGAAGACCAGAGG. This resulted in an amplifi-
ed product size of 308 nucleotides. Mouse β-actin was used as
internal control (forward: 5′-GCTACAGCTTCACCACCACA;
reverse: 5′-TCTCCAGGGAGGAAGAGGAT). The PCR was
performed in 20 μL volume with 2.5 μL 1 : 10 diluted reverse
transcription product. The PCR program was preheating at
95◦C for 5 min; the cycle consisted of 94◦C for 45 sec, 56◦C
for 1 min, and 72◦C for 2 min for a total of 35 cycles.

3. Results

3.1. TNF-α Increased CD40 Expression Induced by IFN-γ, but
Not by IL-4. We firstly examined the effect of individual
cytokines on CD40 expression in MTHCs. CD40 expression
in MTHCs treated with IL-4 or IFN-γ alone was increased
in a dose-dependent manner (Figure 1(a)). TNF-α alone did
not enhance CD40 expression even though it was used in a
dose up to 1600 units/mL (Figure 1(a)). To examine whether
TNF-α could increase CD40 expression induced by either IL-
4 or IFN-γ in MTHCs, we cotreated the cells with TNF-α
+IL-4 or TNF-α + IFN-γ. Co-treatment of TNF-α and IL-4
did not further increase CD40 expression of MTHCs, while
co-treatment of TNF-α and IFN-γ significantly increased
CD40 expression (Figure 1(a)).

When using dotplot to analyze the co-treatment results,
we found that the CD40 positivity was quite different, even
though the final percentages of positive cells were similar
(86% and 84.3%, Figure 1(b)). Co-treatment of TNF-α and
IFN-γ resulted in more dead cells (15.4%) than TNF-α +IL-4
treatment (2.8%, Figure 1(b)). When these dead cells were
excluded, the percentage of positive cells was higher than
86%. This is further supported by the comparison of their
mean fluorescence intensity of CD40 expression (68.95 for
the TNF-α +IFN group versus 34.11 for TNF-α +IL-4 group,
Figure 1(c)). Besides, comparing with IL-4 + TNF-α treat-
ment, we found that the co-treatment of IFN-γ and TNF-α
needed to be at least 48 hours to promote CD40 expression,
as 24-hour treatment was not long enough to increase CD40
expression (Figure 2), suggesting that IFN-γ-induced CD40
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Figure 2: TNF-α promotes CD40 expression induced by IFN-γ after 48 hours of treatment. The histogram analysis of CD40 expression in
MTHCs treated with either IFN-γ (2 units/mL) or IFN-γ + TNF-α (broken line, IFN+T) is the representative results of FACS analysis from
two separate experiments at 24 and 48 hours after treatment (upper panel). IL-4 and IL-4 + TNF-α (IL-4+T) treatments are shown in the
lower panel. Negative and GM controls are the same as in Figure 1.

expression enhanced by TNF-α was also dependent on the
length of the treatment.

3.2. Cotreatment of IFN-γ and TNF-α Promoted Antigen
Process. We next examined the effect of the treatment of
three cytokines on the ability of MTHCs to take up and proc-
ess antigen DQ-OVA. DQ-OVA has been used as a model
for antigen processing and presentation. According to the
FACS analysis of DQ-OVA fluorescence, MTHCs grown in
GM-CSF medium had a very weak ability to take up and
process DQ-OVA (Figure 3(a)). Treatment with IL-4 alone
did not increase the antigen uptake and processing ability of

MTHCs, whereas the treatment with TNF-α or IFN-γ could
significantly increase this ability of the MTHCs (Figure 3(a)).
Co-treatment of IL-4 with either TNF-α or IFN-γ could fur-
ther increase the fluorescence intensity (Figure 3(a)), sug-
gesting that IL-4 itself did not have any effect on antigen up-
take and processing. In contrast, co-treatment with IFN-γ
and TNF-α had the greatest ability to increase the fluores-
cence intensity (Figure 3(a)) and show the additive effects on
promoting MTHCs to take up and process the antigen.

To confirm that the antigen was taken up and processed
by MTHCs cotreated with IFN-γ and TNF-α, we examined
the distribution of DQ-OVA in the cells using confocal mi-
croscopy. The images showed that MTHCs treated with
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Figure 3: The ability of cytokine-treated MTHCs to process DQ-OVA antigen in vitro: (a) the mean fluorescent intensity of FACS analysis
shows that MTHCs treated with different cytokines have the different abilities to process DQ-OVA antigen. Data are expressed as the mean
± SE of three independent experiments. ∗∗∗P < 0.001. (b) The representative images of confocal microscopy show the process of DQ-OVA
by MTHCs treated with IFN-γ + TNF-α: (I) MTHCs cultured with GM-CSF only scarcely show any DQ-OVA fluorescent signal on the cell
surface. (II) MTHCs treated with IFN-γ + TNF-α have strong DQ-OVA signals on the cell surfaces. (III) The Z-stack image of cross-scanning
of the positive cells confirms that the processed DQ-OVA antigen (fluorescent signals) was localized on the cell membranes.

IFN-γ plus TNF-α exhibited strong fluorescent signals on
the cell surfaces (Figure 3(b), II), comparing with GM-CSF
(Figure 3(b), I). The cross-cell images demonstrated that
the fluorescent signals were localized on the cell surfaces
(Figure 3(b), III). These data suggest that DQ-OVA antigen
was processed and presented on the cell membrane.

3.3. TNF-α Increased IFN-γ to Produce Strong Mixed Lym-
phocyte Reaction Response to Allogenic T Cells. To examine
whether TNF-α could increase IL-4 or IFN-γ to stimulate T-
cell response in MLR, we used T cells taken from a spleen cell
population of C3H3 mice as the responder and MTHCs
treated with 50 units/mL TNF-α together with either IL-4 or
IFN-γ as the stimulator. The stimulator was irradiated before
adding in MLR. The results showed that only the cells treated
with TNF-α together with IFN-γ could stimulate a strong
MLR response to allogenic T cells (Figure 4(a)), suggesting
again that TNF-α could promote IFN-γ but not IL-4 in
stimulating T cells. Furthermore, the cell ratio of responder/

stimulator played a key role in MLR response to allogenic
T cells, with a ratio of 15 producing the maximum reaction
(Figure 4(a)).

A previous study has shown that DCs cultured with
CD40L increased capacity to stimulate allogeneic T cells [25].
To investigate if stimulation of MLR by TNF-α + IFN-γ-
treated MTHCs was associated with CD40 expression or
activation, we also used CD40L in MLR. We observed that
CD40L significantly increased the ability of MTHCs treated
with TNF-α and IFN-γ to stimulate MLR response in a dose-
dependent manner (Figure 4(b)).

3.4. Cotreatment of TNF-α and IFN-γ Induced IL-6 mRNA
Expression in MTHCs. To investigate whether co-treatment
of TNF-α and IFN-γ could induce expression of cytokines
that have been shown to be involved in the CD40 expression
and antigen processing, we used RT-PCR analysis to examine
expression of six cytokines including IL-1α and β, IL-3, IL-5,
IL-6, and IL-7 in the MTHCs. The MTHCs were treated with
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Figure 4: The ability of cytokine-treated MTHCs to stimulate
mixed lymphocyte reaction (MLR). (a) The MLR results with
MTHCs cotreated with 200 unit/mL TNF-α and IL-4 or IFN-γ as
stimulator (S) and enriched T cells from C57BL/6 mouse spleen as
responders (R). Stimulators and responders were set up at different
ratios as indicated. (b) The effect of CD40L treatment on MLR:
different doses of CD40L were added to MLR with IFN-γ + TNF-α-
treated MHTCs as stimulators and enriched C57BL/6 spleen T cells
as responders (at the ratio of 3.75). The data were the mean ± SE of
three separate experiments.

the three cytokines individually (IL-4; IFN-γ and TNF-α) or
with a combination of two out of the three cytokines for 24 or
48 h. Except for IL-6, the MTHCs did not express any mRNAs
of the other five cytokines examined (data not shown). IL-6
mRNA was detected in the cells treated with a combination
of TNF-α and IFN-γ at 48 hours after treatment but not at
24 hours (Figure 5). The data suggests that TNF-α plus IFN-
γ treatment to MTHCs can induce IL-6 mRNA expression in
these cells, which is similar to CD40 expression.

3.5. Cotreatment with TNF-α and IFN-γ Did Not Promote
IL-12 Production in MTHCs. IL-12 is naturally produced

Table 1: Il-12 p40 protein in the cell culture medium measured by
ELISA (pg/mL).

Treatment 0 1 : 1000 CD40L 1 : 500 CD40L

Control <16 <16 43± 7

IFN <16 34± 8 97± 6∗∗

TNF+IFN <16 30± 11 48± 6

Notes. ∗∗ P < 0.01 against both control and TNF-IFN. The values were mean
± SE of 3 experiments. The readings same as blank were regarded as no
protein production and expressed as <16, the limit of the test.

by DCs and facilitate antigen presentation [26]. To further
investigate the possibility of IL-12 involvement in increased
antigen process by the treatment of TNF-α and IFN-γ, we
examined IL-12 protein in the MTHC culture medium using
ELISA (Table 1). CD40L was added to stimulate the produc-
tion. As shown in Table 1, without presence of CD40L, IL-12
was scarcely detected in the medium. IL-12 was detected in
the presence of CD40L, with a high level detected in the
medium from the IFN-γ-treated MTHC culture (Table 1).
But the level was reduced when treated with a combination of
IFN-γ and TNF-α (Table 1), indicating that TNF-α decreased
IFN-γ-induced IL-12 secretion in MTHCs.

4. Discussion

The process of progenitor cells differentiating into macro-
phages and DCs is critical for both innate and adaptive im-
munity. CD40 expression is an essential marker for the pro-
genitor cells to develop into mature antigen-presenting cells
[27–29]. CD40 is also a co-stimulatory molecule, and its
ligation with the ligand on T cells can induce the T-cell acti-
vation and production of different proinflammatory cytok-
ines. Therefore, in this study, we investigated the effects of
treatments with the three important cytokines on CD40 ex-
pression and antigen process in MTHCs, a model of hema-
tological progenitor cells. Both IL-4 and IFN-γ can induce
CD40 expression in a dose-dependent manner, and TNF-α
can promote IFN-γ-induced CD40 expression in MTHCs. In
addition, only MTHCs cotreated with TNF-α and IFN-γ
showed the profound ability to process the model antigen
DQ-OVA. These data suggest that although both IL-4 and
IFN-γ can play a role in progenitor cell development such as
CD40 expression, IFN-γ has extra ability to cooperate with
TNF-α to promote progenitor cells to differentiate into more
biologically functional antigen-processing and antigen-pre-
senting cells. These results have more clearly defined the bi-
ofunctional role of TNF-α and IFN-γ in APC development
and maturation.

Indeed, IFN-γ itself has been previously showed to be
a strong CD40 inducer. Nguyen and Benveniste [30] and
Nguyen et al. [31] have shown that IFN-γ strongly induces
gene expression of CD40 and that IL-4 inhibits IFN-γ-in-
duced CD40 expression through activation of STAT6 [30,
31]. Using a similar cell line MTHC-D2, Banyer et al. [23]
showed that IFN-γ could induce the progenitor cells to ex-
press several genes important in DC development such as
CD40 expression [23]. Our results, together with the above

http://en.wikipedia.org/wiki/Dendritic_cells
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studies, suggest that IFN-γ itself has the ability to promote
the development of APCs. In contrast, TNF-α alone or in
combination with CD40 agonist is highly deficient, both
physiologically and functionally in promoting DC matura-
tion [32]. In the current study, we also showed that TNF-α
alone could not increase CD40 expression of the progenitor
cells. However, we demonstrate here that IFN-γ with an addi-
tional help of TNF-α can further promote CD40 expression
and the development of the progenitor cells into functional
APCs that can process an antigen and present a part of the
antigen to the cell surface. A previous study showed that
co-treatment of TNF-α and IFN-γ results in strong syner-
gistic effects on the CD40 expression in activated HK-2 cells
[33]. Although the cell type is different from ours, it supports
our conclusion.

The data in the current study provide a clear context for
MTHCs to take up and process the model antigen DQ-Oval-
bumin regulated by the cytokines. Antigen process is an im-
portant immunological step for antigen presentation to T
lymphocytes and the subsequent immune response. The
MTHCs had a weak capacity to process DQ-Ovalbumin in
the presence of either GM-CSF or IL-4, but showed strong
capacity in the presence of TNF-α and IFN-γ. TNF-α in-
creased the ability of MTHCs treated with IFN-γ, but not
with IL-4, to take up and process the antigen. In our study
we showed that IL-4 plus INF-γ treatment was not better
than INF-γ alone in DQ-OVA uptake and processing. This
result is different from previous study by Banyer et al. [23]
using MHTC-D2 cells where they showed that co-treatment
with IL-4 and IFN-γ induced the greatest phagocytosis. This
difference may be caused by different cell types used in the
two studies or the difference in methodologies used in meas-
uring cells to uptake and process antigens as DQ-OVA must
be taken and processed by the cells to exhibit fluorescence
signals.

TNF-α and IFN-γ may simultaneously stimulate respon-
sive genes in many cases [34, 35]. The increase may also be
a result of crosstalk between the TNF-α and IFN-γ signalling

pathways. It has been shown that TNF-α stimulation is able
to induce transcription of IRF-1 and promotes IFN-γ-in-
duced STAT1 activation [36, 37]. The synergistic effect of
TNF-α and IFN-γ has been also shown to be mediated by
NF-κB pathway [38].

The MLRs can produce high levels of type-1 cytokines
including IL-1, IL-6, IFN-γ, and TNF-α, but low or unde-
tectable levels of type-2 cytokines such as IL-4 and IL-10
[39]. In our MLR experiments, the combined treatment with
TNF-α and IFN-γ of the irradiated MTHCs showed a strong
MLR response to allogenic T cells. This is consistent with
a previous study on expression of class II antigens in human
vascular smooth muscle cells (SMCs) [40]. IFN-γ is the only
lymphokine secreted and capable of de novo induction of
MHC class II antigen, HLA-DR expression in SMCs. TNF-α
substantially enhanced IFN-γ-induced expression of HLA-
DQ in MLR [40]. In macrophage, the ability of IFN-γ to
synergize the effects of cytokines such as TNF-α and IL-4 is
particularly important, as macrophages constantly receive
multiple signals and need to integrate them to give a response
appropriate to the extracellular milieu [38, 41]. Synergistic
activation of the intercellular molecule 1 (ICAM-1) by TNF-α
and IFN-γ is mediated by p65/p50 and p65/c-Rel and inter-
feron-responsive factor Stat1 alpha (p91) that can be acti-
vated by both IFN-γ and IFN-α [42]. Both p50 and p65
proteins contribute to induction of complement factor B (Bf)
gene by TNF-α and IFN-γ in macrophages [38].

IL-6, a proinflammatory cytokine, can increase adaptive
immune response. It has also been shown to increase the
maturation of DC [43]. We show that co-treatment of TNF-α
and IFN-γ can increase the expression of IL-6 in MTHCs.
IL-6 and TNF-α have been found to control N-glycosylation
patterns of acute-phase plasma proteins [44]. Thus, there is
a possible feed-forward regulation after IL-6 is stimulated
by IFN-γ and TNF-α. Our data are consistent with a recent
study that TNF-α induced mRNA and protein expression
of IL-6 and MCP-1 in both fibroblasts from colorectal
liver metastases and normal liver fibroblasts [45]. TNF-α
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synergized IFN-γ to upregulate expression of Bf gene in
macrophages [38]. Huang et al. [38] identified that a region
between −556 and −282 bp in the 5′ Bf promoter mediated
TNF-α responsiveness and the synergistic effect of TNF-α
and IFN-γ on Bf expression. Site-directed mutagenesis of an
NF-kB-binding element in this region (−433 to −423 bp)
abrogated TNF-α responsiveness and decreased the syner-
gistic effect of TNF-α and IFN-γ on Bf expression [38]. It
has been demonstrated that the interferon-stimulated re-
sponse element and NF-kB mediate synergistic induction of
murine IP-10 gene transcription by IFN-γ and TNF-α [46]
to control IL-6 production [47]. This forward regulation can
promote the rapid maturation of DCs. Btk-deficient DCs dis-
play a profound impairment of IL-6 and TNF-α production
in response to stimulation by Toll-like receptor-8 (TLR-8)
cognate agonist, ssRNA. Impaired TLR-8-mediated IL-6 and
TNF-α production in antigen-presenting cells from pa-
tients with X-linked agammaglobulinemia was observed
[48]. Here, we have not investigated the mechanisms that
regulate the synergistic effects of TNF-α and IFN-γ on the
upregulated expression of IL-6 in MTHCs, which warrants
further study.

As a T-cell stimulating factor, IL-12 is involved in the
differentiation of naı̈ve T cells into Th0 cells which will fur-
ther develop into either Th1 cells or Th2 cells. IL-12 can stim-
ulate the growth and function of T cells and plays an impor-
tant role in the activities of natural killer (NK) cells and T
lymphocytes. IL-12 also mediates the enhancement of the
cytotoxic activity of NK cells and CD8+ cytotoxic T lym-
phocytes [26]. It is well known that DCs express and secrete
IL-12 [49]. CD1d-restricted T cells induced myeloid DCs to
secrete IL-12 in the presence of a strong antigenic signal, and
these DCs in turn activated naı̈ve T cells to secrete Th1
cytokines [49]. T cells that produce IL-12 have a coreceptor,
CD30, which is associated with IL-12 activity [26]. IL-1β
alone significantly induced IL-12 production in DCs al-
though TNF-α or IFN-γ induced modest levels of IL-12
production [50]. It appears that CD40 expression is nega-
tively related to the IL-12 production in DCs. Murine bone-
marrow-derived DCs incubated with live parasites or parasite
extracts displayed enhanced levels of CD40, but no IL-
10 or IL-12 could be detected in these DCs though small
amounts of IL-6 and TNF-α were secreted by these DCs
[51]. Similarly, we observed here that TNF-α reduced IFN-γ-
induced production of IL-12 in MTHCs. But the mechanism
of how this happens remains unclear though it is speculated
that it could be related to TNF-α increased CD40 expression.
However, further investigation is needed to confirm this.

In summary, we show here that both IL-4 and IFN-γ
can induce CD40 expression in MTHCs. TNF-α significantly
increased CD40 expression induced by IFN-γ, but not by IL-
4 in MTHCs. TNF-α synergized IFN-γ to take up and proc-
ess antigen on cell surface and promoted IFN-γ to produce
strong MLR response to allogenic T cells. TNF-α enhanced
IFN-γ-induced expression of IL-6 mRNA and reduced the
secretion of IL-12 induced by IFN-γ. The results indicate
the key regulatory role of TNF-α in the development and
differentiation of functional DCs from the MTHCs, which
facilitate our understanding on DC development from hema-
tological stem or progenitor cells.
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