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Abstract

Background: The pig is an economically important livestock species and is a widely applied large animal model in
medical research. Enhancers are critical regulatory elements that have fundamental functions in evolution,
development and disease. Genome-wide quantification of functional enhancers in the pig is needed.

Results: We performed self-transcribing active regulatory region sequencing (STARR-seq) in the porcine kidney
epithelial PK15 and testicular ST cell lines, and reliably identified 2576 functional enhancers. Most of these
enhancers were located in repetitive sequences and were enriched within silent and lowly expressed genes.
Enhancers poorly overlapped with chromatin accessibility regions and were highly enriched in chromatin with the
repressive histone modification H3K9me3, which is different from predicted pig enhancers detected using ChIP-seq
for H3K27ac or/and H3K4me1 modified histones. This suggests that most pig enhancers identified with STARR-seq
are endogenously repressed at the chromatin level and may function during cell type-specific development or at
specific developmental stages. Additionally, the PPP3CA gene is associated with the loin muscle area trait and the
QKI gene is associated with alkaline phosphatase activity that may be regulated by distal functional enhancers.

Conclusions: In summary, we generated the first functional enhancer map in PK15 and ST cells for the pig genome
and highlight its potential roles in pig breeding.
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Background
A fundamental goal in modern biology is to identify and
characterize non-coding regulatory elements that control
gene expression in development and disease [1, 2]. En-
hancers, as genomic non-coding sequences, are critical
regulatory elements that control spatial and temporal

gene expression [3]. Variation at enhancers is associated
with complex traits and diseases [4, 5]. Previous studies
found that enhancers have crucial roles in sexual devel-
opment in mammals and that duplication or deletion of
some of these enhancers could result in sex reversal [6,
7]. ZRS is a well-characterized long-range enhancer
directing limb-specific sonic hedgehog (Shh) expression.
Kvon et al. [8] employed a combination of comparative
genomics and genetic engineering to introduce snake-
specific deletions into the orthologous genomic region
of the ZRS enhancer in the mouse that resulted in severe
limb reduction. Thus, it is important to identify en-
hancers and reveal their biological functions.
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The domestic pig (Sus scrofa) is an economically im-
portant livestock species and is widely used as a large
animal model for preclinical studies due to its human-
like size and physiology [9, 10]. A number of studies per-
formed in the pig, based on sequence homology infor-
mation [11] and chromatin marks, including DNA
accessibility, histone modification and transcription fac-
tor or cofactor binding, have been conducted to
characterize regulatory elements such as enhancers [12–
14]. However, these currently used predictive methods
do not provide direct functional evidence or quantify the
enhancer activity. More recently, the development of the
self-transcribing active regulatory region sequencing
(STARR-seq) strategy has allowed direct measurement
of enhancer activity across the whole genome [15]. This
method was first applied in Drosophila [15, 16] and later
in human cells [17–19] and other species [20–23]. How-
ever, to date, no genome-wide studies have been per-
formed to detect functional enhancers in the pig
genome.
Here, we performed STARR-seq in the porcine kidney

epithelial PK15 and testicular ST cell lines to generate
the first whole genome-wide enhancer activity quantifi-
cation map for the pig. We identified 2576 functional
enhancers, most of which are located in repetitive se-
quences and enriched within silent and lowly expressed
genes. We compared our map to ATAC-seq and ChIP-
seq data and found that our enhancers poorly overlap
with accessible chromatin regions and were highly
enriched in chromatin with the repressive histone modi-
fication H3K9me3. Moreover, mapping of enhancers to
complex traits in the pig found that the PPP3CA gene,
which is associated with the loin muscle area trait, and
the QKI gene, which is associated with alkaline phos-
phatase activity, might be regulated by distal enhancers.
In summary, we provide the first functional enhancer
map for the pig that should promote the identification
of causal mutations for complex traits in the pig.

Methods
Cell culture
Pig (Sus scrofa) PK15 cells were maintained in DMEM
media (Gibco, Thermo Fisher Scientific, Shanghai,
China) and ST cells were maintained in MEM media
(Gibco, Thermo Fisher Scientific, Shanghai, China) sup-
plied with 10% FBS (Gibco, Thermo Fisher Scientific,
Shanghai, China) and 1% penicillin/streptomycin
(Thermo Fisher Scientific, Shanghai, China). All cells
were tested for mycoplasma using Myco-Blue Myco-
plasma Detector (Vazyme, Nanjing, China).

Construction of STARR-seq input plasmid libraries
STARR-seq input plasmid libraries were generated as
described in a previous study [15]. Briefly, genomic

DNA was extracted from an ear tissue sample from one
Diannan small-ear pig. After sonication with a Scientz-II
D ultrasonic generator (NingBo Scientz Biotechnology,
Ningbo, China), 500–800 bp sheared DNA was selected
by cutting from a gel and was recovered using E.Z.N.A.®
Gel Extraction Kit (Omega Bio-Tek, Norcross, GA,
USA). About 6 μg of DNA fragments were end repaired,
5′-phosphorylated, 3'dA-tailed and ligated with Illumina
adaptor using the VAHTS Mate Pair Library Prep Kit
for Illumina® (Vazyme, Nanjing, China) following the
manufacturer’s protocol. Ligated DNA was amplified
with TransStart FastPfu Fly DNA Polymerase (Transgen,
Beijing, China) with homology arms primers (Forward
primer: 5'-ACA CTC TTT CCC TAC ACG ACG-3' and
Reverse primer: 5'-GAC TGG AGT TCA GAC GTG
TGC-3'). The vector backbone was modified from
pGL3-basic (Promega, Beijing, China). The Super Core
Promoter 1 (SCP1) promoter was inserted upstream of
the luciferase site. The luciferase sequence was replaced
with a GFP sequence containing a synthetic intron and
homology arms. The homology arms were used to insert
the genomic DNA fragments. The vector backbone was
linearized using PCR (95 °C for 5 min; then 25 cycles of
95 °C for 20 s, 57 °C for 20 s and 72 °C for 4 min; For-
ward primer: 5'-CGT CGT GTA GGG AAA GAG TGT-
3' and Reverse primer: 5'-GCA CAC GTC TGA ACT
CCA GTC-3'). Further, circular plasmids were removed
using DpnI (New England BioLabs, Ipswich, MA, USA)
at 37 °C for 30 min. Linearized vector was separated
using a 1% agarose gel and purified with E.Z.N.A.® Gel
Extraction Kit. We then recombined the genomic DNA
fragments into the linearized vector using ClonExprress
II One Step Cloning Kit (Vazyme, Nanjing, China). The
10 μL of the recombined plasmids transformed into
Trans1-T1 Phage Resistant Chemically Competent Cell
(Transgen, Beijing, China). A total of 140 transformation
reactions were pooled together in 4 L LB medium with
10 μg/mL Ampicillin, which was grown to an Optical
Density (OD) of 0.8. Plasmids were purified using
E.Z.N.A.® Endo-Free Plasmid Maxi Kit (Omega Bio-Tek,
Norcross, GA, USA).

Transfection of STARR-seq input plasmid libraries into
cells
The STARR-seq input plasmid library was transfected
into pig PK15 and ST cells using TurboFect™ Transfec-
tion Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s protocol. The in-
hibitors BX-795 (MedChemExpress, Shanghai, China)
and C16 (Sigma Aldrich, Shanghai, China) were used to
suppress the expression of immune-reated genes in
transfected PK15 and ST cells. For PK15 cells, 1 μmol/L
of both inibitors was added to the culture medium, while
for ST cells, 0.5 μmol/L of both inhibitors was used. We
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generated two biological replicates of the PK15 and ST
cells.

Construction of cDNA and input plasmid libraries for
Illumina sequencing
Total RNA was extracted from the transfected PK15 and
ST cells using the TransZol™ Up Plus RNA Kit (Trans-
gen, Beijing, China). The poly(A)+ RNA fraction was
enriched using VAHTS mRNA Capture Beads (Trans-
gen, Beijing, China). Genomic DNA was digested with 5
U DNase I (New England BioLabs, Ipswich, MA, USA)
at 37 °C for 20 min. First strand cDNA was synthesized
using TransScript One-Step gDNA Removal and cDNA
synthesis SuperMix kit (Transgen, Beijing, China) at
50 °C for 30 min and 85 °C for 5 s with the library spe-
cific primer (5'-GAC TGG AGT TCA GAC GTG TGC-
3'). We used 10–30 ng cDNA as template in a 50-μL
PCR reaction with TransStart FastPfu Fly DNA Polymer-
ase with the reporter gene specific primers (Forward pri-
mer: 5'-AAC AAG AAT TGG GAC AAC TCC AGT
GAA-3' and Reverse primer: 5'-GAC TGG AGT TCA
GAC GTG TGC-3'). PCR products were purified by
GeneJET PCR Purification Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Purified PCR products were used
as templates for the second round PCR (98 °C for 2 min;
followed by 6–10 cycles of 98 °C for 30 s, 65 °C for 30 s,
72 °C for 30 s; and then 72 °C for 5 min) with TransStart
FastPfu Fly DNA Polymerase and the index primers in
the VAHTS Multiplex Oligos set1/set2 for Illumina Kit
(Vazyme, Nanjing, China). Second round PCR products
were then purified using a GeneJET PCR Purification
Kit.
After capture of poly(A)+ RNA, the remaining aqueous

solution was treated with 10 μL RNase A (Transgen,
Beijing, China) at 37 °C for 60 min to remove any RNA
in the solution. Input plasmid templates were purified
with a GeneJET PCR Purification Kit. Purified plasmid
DNA was amplified with the TransStart FastPfu Fly
DNA Polymerase and the index primers from the
VAHTS Multiplex Oligos set1/set2 for Illumina.
Both the cDNA and input plasmid libraries were se-

quenced on the Illumina HiSeq X Ten platform at Berry-
Genomics (Beijing, China).

Reporter assay
To verify the enhancers identified in this study, we used
the input plasmid library backbone and inserted candi-
date regions. Plasmids were co-transfected with lucifer-
ase control vector (pGL3-promoter (Promega, Beijing,
China)) into PK15 cells with TurboFect™ Transfection
Reagent following the manufacturer’s protocol. Primers
of candidate regions are reported in Additional file 1:
Table S1.

RT-qPCR
RNAs were extracted using TransZol™ Up Plus RNA Kit.
Contaminating genomic DNA was digested with 5 U
DNase I and cDNAs was then synthesized using the
HiScript III 1st Strand cDNA Synthesis Kit (Vazyme,
Nanjing, China). RT-qPCR used ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Nanjing, China) with 95 °C
for 5 min, followed by 40 cycles of 95 °C for 15 s, 60 °C
for 30 s with the melting curve program. Primers used
for RT-qPCR are described in Additional file 2: Table
S2.

Computational processing of STARR-seq data
To remove low-quality reads and adaptor sequences, the
STARR-seq data was processed using Trimmomatic
v0.39 with following parameters: TruSeq2-PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36 [24]. Reads were then aligned to the pig ref-
erence genome (Sscrofa11.1) using Bowtie2 v2.3.5.1 with
parameter “--no-discordant -X 2000” [25]. Mapped reads
were filtered using SAMtools v1.3.1 with parameter
“view -bS -f 2 -q 5” to obtain uniquely mapped reads
[26]. PCR duplicates were removed using the Picard
toolkit [27]. Reproducibility of the two independent bio-
logical replicates in PK15 and ST cells were evaluated
using Pearson correlation coefficients, which were calcu-
lated using multiBamSummary and plotCorrelation in
deepTools v3.5.1 [28]. Enhancers were identified using
BasicSTARRseq as described in previous studies [15, 21]
with a strength > 1.0, P value < 0.001 and FDR < 0.1.

RNA-seq library construction and analysis
RNA was extracted from PK15 cells using the TransZol™
Up Plus RNA Kit. Libraries construction and sequencing
were performed at Novogene.
Trimmomatic v0.39 [24] was used to filter low-quality

reads with default parameter. Reads were aligned to the
pig genome (Sscrofa11.1) using HISAT2 v2.2.1 [29]. The
expression values of each gene was calculated using
StringTie v2.1.4 [30].

Potential biological function analysis
To obtain potential biological functions of the enhancers
identified in this study, each enhancer was assigned to a
putative gene based on the closest genomic distance.
Gene Ontology (GO) enrichment analysis of the putative
genes was performed using DAVID [31]. In addition, we
identified potential transcription factor binding sites in
the putative enhancers using the MEME-ChIP web ser-
ver [32].

ATAC-seq library construction and analysis
ATAC-seq library preparation was performed as previ-
ously described [33]. PK15 cell nuclei (~ 100,000) were
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extracted using lysis buffer (10 mmol/L Tris-HCl (pH
7.4), 10 mmol/L NaCl, 3 mmol/L MgCl2, 0.1% IGEPAL
CA-630) and incubated with Tn5 transposase (Vazyme,
Nanjing, China). Next, the transposed DNA was ampli-
fied through 14 PCR cycles with indexed primers ac-
cording to the manufacturer’s protocol for the TruePrep
Index Kit V4 for Illumina (Vazyme, Nanjing, China). We
sequenced two independent libraries using the Hiseq X
ten platform (BerryGenomics, Beijing, China).
Trimmomatic 0.39 [24] with default parameter was

used to filter low-quality reads and adaptor sequences.
Reads were then aligned to the pig reference genome
(Sscrofa11.1) using BWA-MEM v0.7.17 [34]. Mapped
reads were processed with SAMtools v1.3.1 [26] to keep
uniquely mapped reads. PCR duplicates were removed
using the Picard toolkit [27]. Effective reads were gener-
ated by removing mitochondrial reads using BEDTools
v2.25.0 [35]. Peaks were called using MACS v2.1.0 (set-
ting: -f BAMPE -q 0.001 --shift − 75 --extsize 150
--nomodel -B --SPMR -g 2.5e9) [36].

ChIP-seq library construction and analysis
ChIP-Seq libraries were prepared following the EN-
CODE guidelines [37]. ChIP-seq data was mapped to the
pig genome (Sscrofa11.1) using Bowtie2 v2.3.5.1 [25].
MACS v2.1.0 [36] was used to identify peaks (default
settings for CTCF, H3K9me3; broad peaks model for
H3K4me1, H3K4me3, H3K27ac and H3K27me3) with P
values less than 0.001.

Hi-C analysis
We identified TADs and Hi-C contacts from the Hi-C
data, which was download from the SRA database (ac-
cessions number: PRJEB40576 [38] and PRJNA482496
[39]). We then aligned the reads to the pig genome
(Sscrofa11.1) using BWA-MEM v0.7.17 [34] and applied
HiCExplorer v3.4.2 [40] to build Hi-C contact matrixes
with 40 Kb resolution. We identified TADs using
HiCExplorer v3.4.2 [40].

Results
Quantifying genome-wide enhancer activity in the pig
using STARR-seq
To comprehensively identify putative enhancers with ac-
tivity in the pig genome, we constructed libraries of ran-
domly fragmented genomic DNA from one Diannan
small-ear pig. Furthermore, we used porcine PK15 and
ST cells to perform STARR-seq to quantify the activity
of the enhancers. Since transfection of most mammalian
cells with a plasmid DNA causes a striking increase in
the expression of immune-related genes, through the ac-
tivation of their enhancers, leading to false positive sig-
nals with STARR-seq methods [18], thus, we first
assessed the immunoreaction of PK15 and ST cells after

plasmid transfection. As expected, we found that
immune-related genes were highly expressed after trans-
fection with plasmids (Fig. 1A and Additional file 3: Figs.
S1 and S2). Therefore, we treated these cell lines with
the TBK1/IKKe inhibitor BX-79521 and the PKR inhibi-
tor C1622 during plasmid transfection to decrease ex-
pression of immune system-related genes (Fig. 1A and
Additional file 3: Figs. S1 and S2). We found that
1 μmol/L of both BX-7951 and C1662 inhibitors in PK15
cells and 0.5 μmol/L of both BX-7951 and C1662 in ST
cells reduced the expression of immune system-related
genes (Fig. 1A and Additional file 3: Figs. S1 and S2).
The STARR-seq libraries generated from these two

cell lines contained between 43.7 and 46.0 million
unique fragments in the input plasmid libraries and from
11.9 to 21.0 million unique fragments in their cDNA li-
braries (Additional file 4: Table S3). The median frag-
ment length of the input plasmid and cDNA libraries
were about 600 bp (Additional file 3: Fig. S3). cDNA and
input plasmid libraries covered between 78.2% and
92.5% of the non-repetitive sequence of the pig genome
(Additional file 3: Fig. S4). The GC-content for each li-
brary showed that the sequencing libraries were un-
biased (Additional file 3: Fig. S5). Correlation analysis of
the two biological replicates of the plasmid and cDNA li-
braries showed high correlation for both PK15 and ST
cells (Additional file 3: Fig. S6A and B). From the above,
these results indicated that STARR-seq could be used to
quantify pig enhancers activity at a genome-wide scale.
We calculated the enrichment of cDNA reads nor-

malized by input plasmid for 600 bp bins across the
whole genome. Potential enhancers were identified as
described [15, 21] using BasicSTARRseq with a bino-
mial test P < 0.001, enrichment > 1.0, FDR < 0.1. Be-
tween 1015 to 2217 enhancers were detected in the
pig genome in the PK15 and ST replicates (Fig. 1B
and Additional file 5: Table S4). Moreover, we found
that 601 of the enhancers (> 50% reciprocal overlap)
were shared between the two cell lines (Additional
file 5: Table S4). An enhancer located on chromo-
some 10 is shown in Fig. 1C as an example. The
identified enhancers showed a wide range of strengths
(Additional file 3: Fig. S6C and D). The Pearson cor-
relation coefficient of the strengths for the two repli-
cates was 0.620 and 0.707 in the PK15 and ST cells,
respectively (Fig. 1D and Additional file 3: Fig. S7),
demonstrating that the STARR-seq libraries were re-
producible in the pig genome. Combining the en-
hancers found in the PK15 and ST cells resulted in
the identification of 2576 non-redundant enhancers in
the pig genome (Fig. 1B and Additional file 5: Table
S4), which display low overlap with the enhancers
identified by ChIP-seq for the H3K27ac or/and
H3K4me1 chromatin modifications (Additional file 3:
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Fig. S8) [12, 14]. To verify the strength of the en-
hancers identified using STARR-seq, 40 enhancers
were selected (Additional file 1: Table S1), with a
wide range of strengths, and measured using RT-

qPCR. STARR-seq enhancer strength and RT-qPCR
of reporter gene expression levels were highly corre-
lated (r = 0.8029, ***P < 0.0001, Fig. 1E). These results
demonstrate that the enhancers identified in this

Fig. 1 Genome-wide quantification of pig enhancer activity using STARR-seq. A Assessment of the immunoreaction and treatment of TBK1/IKK/
PKR inhibitors after DNA was transfected into PK15 cells. Expression levels were assessed by RT-qPCR and normalized to non-transfected cells. Bars
represent mean fold change across three independent replicates (grey dots). P-values were calculated from a t-test. B Statistics of functional
enhancers identified in PK15 and ST cells. Venn diagram shows that enhancers overlap in the two biological replicates. C STARR-seq cDNA (red)
and input plasmid (gray) fragment densities at representative pig genomic loci. Blue boxes denoted the identified enhancers in the PK15 and ST
cells. D Correlation analysis of enhancer strength in the two biological replicates of PK15 cells. The correlation was evaluated using the Pearson’s
correlation coefficient (PCC). Enhancer strength was calculated based on fold change (FC, cDNA read counts divided by input plasmid read
numbers) using 600 bp windows along each chromosome. E STARR-seq enhancer enrichment and RT-qPCR quantification of GFP gene
expression was linearly correlated. r, Pearson correlation coefficient; Error bars indicate two independent biological replicates
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study are reliable and that pig enhancers identified
using histone modifications need to be verified using
methods such as STARR-seq.

Pig enhancers are enriched in repetitive sequences
To reveal the distribution pattern of enhancers in the pig
genome, we annotated and calculated the percentage of
enhancers in different functional genomic regions. The
majority (2272/2576 = 88.19%) of the enhancers were lo-
cated in repetitive sequences (Sscrofa11.1), and secondly
in intergenic regions (222/2576 = 8.61%) (Fig. 2A and
Additional file 5: Table S4). Previous studies indicated that
transposable elements (TEs) are a widespread class of re-
petitive sequences in genomes [41, 42]. Thus, we analyzed
the percentage of enhancers located in TE regions and
found a high proportion of the enhancers were located in
TEs (907/2576 = 35.20%), including short interspersed

nuclear elements (SINEs) (29/2576 = 1.13%), long inter-
spersed nuclear elements (LINEs) (863/2576 = 33.50%),
long terminal repeats (LTRs) (11/2576 = 0.43%) and DNA
transposons (4/2576 = 0.15%) (Fig. 2A). There is also a
relative enrichment of the enhancers in LINEs compared
to other TE classes, which was not due to LINEs abun-
dance in the pig genome (Fig. 2B). Our observations are in
line with previous reports of STARR-seq in human ESCs
(Embryonic Stem Cells) [19], human HeLa-S3 cells [18],
mouse ESCs [23] and rice [21]. These results indicate that
certain families of TEs contribute to enhancer function
[19].
Additionally, enhancers were overrepresented in the

proximity of transcription start sites (TSSs) (Fig. 2B),
emphasizing the importance of these regions for tran-
scriptional regulation. This observation is consistent
with the enhancers identified in Drosophila [15]. We

Fig. 2 Distribution of functional enhancers in the pig genome. A-B Distribution (A) and relative enrichment (B) of functional enhancers in pig
genomic regions. FC, fold change. C Number of genes expressed at different levels. Genes were classified with or without enhancers, which is
based on whether an enhancer was in its proximity. Genes are classified into four groups according to their expression level. Silent, FPKM = 0;
low, 0 < FPKM ≤1; medium, 1 < FPKM ≤10; high, FPKM > 10
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also found that the pig enhancers were underrepresented
in 1st intron, 5'UTR and 3'UTR (Fig. 2B), which is strik-
ingly different with previous studies [15, 17, 21], al-
though this could be a species-specific difference in
enhancer distribution.

Enhancers are enriched with silent and lowly expressed
genes
To investigate whether enhancers are preferentially
enriched in active or silent genes, we separated genes
into four groups based on gene expression levels (silent:
FPKM = 0; low: 0 < FPKM ≤1; medium: 1 < FPKM ≤10;
and high: FPKM > 10) detected by RNA-seq (Additional
file 4: Table S3) and assigned each enhancer to a puta-
tive gene based on closest genomic distance. A total of
2214 genes were assigned as targets for these enhancers
(Fig. 2C). Enhancers were preferentially enriched in si-
lent and lowly expressed genes (Fig. 2C), in line with a
previous report in rice [21] and indicating that STARR-
seq enhancers are not necessarily enriched within ac-
tively transcribed genes in vivo [15, 21].

The potential biological function of enhancers
Assigning an enhancer to its target gene is challenging.
For genes that were located close to enhancers, we fur-
ther examined if these genes were enriched with specific
biological functions. GO analysis for the closest genes of
enhancers found that they were strikingly enriched in
the cell projection morphogenesis, gene transcription
and positive regulation of developmental biological pro-
cesses (Additional file 3: Fig. S9). Furthermore, the en-
hancers were enriched in motifs of transcription factor
(TF) binding sites, including Myod1, Tcfap2c and Zbtb3
(Additional file 6: Table S5). Myod1 is required for myo-
genin activation and affects the terminal differentiation
of muscle cells [43], which indicated that the enhancers
may participate in muscle development in the pig.

Pig enhancers poorly overlap with accessible chromatin
regions
To examine the enhancers with endogenous chromatin
accessibility, we performed ATAC-seq in the PK15 cells
(Additional file 4: Table S3) and found that 19.41% (500/
2576) of the enhancers were accessible (Additional file 3:
Fig. S10A and Additional file 7: Table S6). The low chro-
matin accessibility of the STARR-seq enhancers is also
reported in previous studies [17, 21, 23]. Additionally,
the enrichment of accessible chromatin regions was
poorly correlated with STARR-seq enhancer strength
(Additional file 3: Fig. S10B), indicating that pig enhan-
cer strength cannot easily be predicted from chromatin
accessibility features. From the above, this indicates that
enhancers predicted based on chromatin accessibility
may not be reliable in the pig genome.

Enhancers correlate with active and repressive chromatin
states
We divided the pig enhancers into open enhancers,
which overlap with ATAC-seq accessible chromatin re-
gions, and closed enhancers, which did not locate in ac-
cessible chromatin regions, as defined in previous
studies (Additional file 3: Fig. S10A and Additional file
7: Table S6) [15, 17, 21]. To compare the epigenetic
marks between the open and closed enhancers, we per-
formed ChIP-seq in PK15 cells (Additional file 4: Table
S3) and integrated an analysis between the enhancer and
ChIP-seq data (Fig. 3A-C and Additional file 7: Table
S6).
Both the open and closed enhancers correlated with

active and repressive chromatin states (Fig. 3A-C and
Additional file 7: Table S6). Moreover, the open en-
hancers showed a higher fold enrichment compared with
closed enhancers in active histone modification
H3K4me3 (*P = 0.076, Wilcoxon rank-sum test) and
H3K27ac (**P = 0.047, Wilcoxon rank-sum test) (Fig.
3A). In contrast, closed enhancers showed a significantly
higher fold enrichment compared with open enhancers
in repressive chromatin marks H3K9me3 (*P = 0.056,
Wilcoxon rank-sum test) and H3K27me3 (***P = 3.8e-
14, Wilcoxon rank-sum test) (Fig. 3A). Both closed and
open enhancers displayed similar enrichment in
H3K4me1 and insulator protein CTCF (Fig. 3A).
We found a subset of enhancers (133/2576 = 5.16%)

that were enriched in active modifications and not in re-
pressive modifications (Additional file 3: Fig. S11A and
Additional file 7: Table S6). In addition, we also found a
subset of enhancers (743/2576 = 28.84%) that were con-
trarily enriched in repressive modifications and not ac-
tive modifications (Additional file 3: Fig. S11B and
Additional file 7: Table S6). Interesting, a subset of en-
hancers (520/2576 = 20.19%) that correlated with active
chromatin modifications was also enriched with repres-
sive chromatin modifications (Additional file 3: Fig.
S11C and Additional file 7: Table S6). These results indi-
cate that enhancers correlated with both active and re-
pressive chromatin modifications (Additional file 3: Fig.
S11A-C). The apparently conflicting combination (Add-
itional file 3: Fig. S11C) was also reported in rice [21]
and it is assumed that enhancers were modified differen-
tially in different subpopulations of the cells. Further
studies are needed to test this hypothesis in different cell
subpopulations.

Most pig enhancers are endogenously repressed at the
chromatin level
Additional, 43.83% (1129/2576) of the enhancers were
enriched with the repressive histone signal H3K9me3
(Additional file 7: Table S6). Profiles along ±5-kb regions
flanking the enhancers exhibited significantly higher
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signals for repressive modifications such as H3K9me3,
CTCF and H3K27me3 than for active histone modifica-
tions including H3K4me1, H3K4me3 and H3K27ac in
both open and closed enhancers (Fig. 3B and C). This
result is consistent with majority of pig enhancers being
located in repetitive sequences (2272/2576 = 88.19%)
(Fig. 2A and Additional file 5: Table S4) and with repeti-
tive sequences subjected to repressive epigenetic modifi-
cations [44–46]. From the above, we assume that most
pig enhancers are endogenously repressed at the chro-
matin level and may function during cell type-specific
development or at different developmental stages.

Map enhancers to pig complex traits
Quantitative trait locus (QTL) and genome wide associ-
ation study (GWAS) mapping for important economical
traits have been widely applied in pigs [47–49]. Due to a
large proportion of causal mutations being located in

non-coding regions and a lack of annotation for non-
coding regulatory elements in the pig, it is difficult to
identify causal mutations for QTL and GWAS regions.
In this study, we first annotated 2576 functional en-
hancers in the pig genome (Additional file 5: Table S4).
We then integrated Hi-C data [38, 39] and QTL datasets
[47] to identify enhancers that have biological associa-
tions with complex traits in the pig.
We deleted QTLs regions [47] that are longer than

half a chromosome. And we analyzed filtered QTL re-
gions that overlap with functional enhancer regions and
found that 1508 non-redundant QTL regions associate
with 440 traits enriched with enhancers (Additional file 8:
Table S7). Among the identified regions, Lee et al. [50]
reported a 1Mb QTL region on Sus scrofa chromosome
8 that may impact the loin muscle area trait and con-
tained the candidate gene PPP3CA. The QTL region
overlaps with a functional pig enhancer (Sscrofa11.1, 8:

Fig. 3 Enhancers correlate with both active and repressive chromatin states. A Comparison of the fold enrichment of epigenetic mark signals
between open (red) and closed enhancers (blue). The open and closed enhancers were divided by ATAC-seq. (***P ≤ 0.001, ** P ≤ 0.05, * P ≤ 0.1,
Wilcoxon rank-sum test). B-C Profiles of the enrichment signals of chromatin marks at open (B) and closed enhancers regions (C). Normalized
mean signal was calculated as the fold enrichment of the ChIP signal to the INPUT signal across 100 bp bins
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119,324,324-119,325,095) (Additional file 8: Table S7).
Previous studies reported that PPP3CA (also called cal-
cineurin Aα) is actively involved in regulating the muscle
fiber phenotype in pig [51, 52]. By reanalyzing the Hi-C
data performed in pig fetal muscle tissues at 90 and 110

days of gestation [38], we found that the enhancer and
PPP3CA gene were encompassed by a topologically asso-
ciating domain (TAD) and linked by significant Hi-C
contact, which indicates that the PPP3CA gene is associ-
ated with the loin muscle area trait in the pig and is

Fig. 4 3D structure of an enhancer that possibly regulate protein-coding genes related to complex traits in the pig. A Hi-C contact heatmap of
the chromosome 8 region shows than an observed functional enhancer (red box) and the PPP3CA gene (blue box) are in a same TAD (black
triangles). Hi-C contact matrixes were built at 40 Kb resolution and used normalized reads from muscle tissue. B Hi-C contact heatmap of
chromosome 1 region shows an observed a functional enhancer (red box) and the QKI gene (blue box) within a TAD (black triangles). Hi-C
contact matrixes were built at 40 Kb resolution and used normalized reads from liver tissue
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potentially regulated by a distal functional enhancer
(Sscrofa11.1, 8:119,324,324-119,325,095) (Fig. 4A and
Additional file 3: Fig. S12). Further experimental investi-
gations are required to validate the regulatory relation-
ship between PPP3CA and the functional enhancer in
pig muscle tissue.
Additionally, Bovo et al. [53] reported a 0.42Mb QTL

region on Sus scrofa chromosome 1 that showed effects
on alkaline phosphatase (ALP) levels in the pig. The
QTL region contains a functional enhancer (Sscrofa11.1,
1:4,548,557-4,549,774), which is 182 Kb upstream of the
KH domain containing RNA binding (QKI) gene (Fig.
4B). A previous study showed that QKI regulates the ex-
pression of ALP and functions as critical regulator for
colon epithelial differentiation [54]. Moreover, ALP iso-
enzymes are derived from the bones and liver, which are
of particular interest for the evaluation of disease state
[53, 55]. By reanalyzing the Hi-C data of female pig adult
and fetus liver tissue [39], we found that the enhancer
and QKI gene are connected by chromatin interaction
within a TAD (Fig. 4B and Additional file 3: Fig. S13).
From the above, we assume that a distal functional en-
hancer (Sscrofa11.1, 1:4,548,557-4,549,774) regulates the
expression level of QKI and thus, influences ALP activity
levels. The influence of the causal mutations in the en-
hancer region for ALP activity needs further functional
validation.

Discussion
This study is the first genome-wide identification of
functional enhancers in the pig. We identified 2576
functional enhancers in the pig genome and revealed
several different features of these functional enhancers
compared with other species (Figs. 2 and 3 and Add-
itional file 5: Table S4). Specifically, the number of pig
functional enhancers detected in this study was less than
seen in the human genome [17]. This might be due to
our highly stringent selection criteria that included re-
moving PCR replicates and a q-value cutoff to identify
functional enhancers with greater confidence. Moreover,
applying STARR-seq to the pig genome is still very chal-
lenging, due to the large size and complexity of this gen-
ome. Thus, new methods are needed for future studies
on the detection of functional enhancers from highly
complex mammalian genomes.
Previous studies used sequence homology information

[11] and chromatin features, including DNA accessibility
and active histone modifications, to identify potential en-
hancers [12–14]. Enhancer function in cell type-specific
and developmental-stage-specific stage [56–58]. For this
reason, methods based on DNA sequences or chromatin
states can lead to many false positive predictions of en-
hancers that might not play functional roles in cells [15,
59]. Furthermore, these methods can only identify

putative enhancers based on chromatin features or se-
quences and therefore do not exhaustively detect func-
tional enhancers genome-wide. Thus, enhancers
identified by chromatin features or sequences should be
confirmed using approaches such as STARR-seq or by a
RT-qPCR method. In our study, we found that most
functional enhancers poorly overlap with chromatin ac-
cessible regions (Additional file 3: Fig. S10A) and are
highly enriched with the repressive histone modification
H3K9me3 (Fig. 3B and C). These results were consistent
with previous studies showing that STARR-seq can iden-
tify some closed chromatin functional enhancers [15, 17,
23] and those functional enhancers can be silent or ac-
tive, depending on the cell type and the developmental
stage. As such, identification and characterization of pig
functional enhancers under various cell types, including
embryonic stem cells and primary cell cultures, in the
future will be important for understanding the genetic
basis of development. Moreover, a previous study
assessed the effects of cis and trans for regulatory ele-
ments in human and mouse [60]. Future studies are
needed to analyze and compare the cis and trans effects
of regulatory elements such as enhancers and promoters
between pigs and other mammalian species.
Previous studies have indicated that strong selection

signals and regions associated with complex traits in the
pig genome are located in non-coding regions [9, 61–
63]. Here, we analyzed the functional enhancers that
have the potential to regulate complex traits by integrat-
ing Hi-C and QTL data. This analysis identified two ex-
amples of enhancers that likely have distal regulatory
function: (1) one enhancer may regulate the expression
of the PPP3CA gene and thus, influence the loin muscle
area trait, and (2) a second enhancer may regulate the
QKI gene associated with ALP activity levels. PPP3CA is
regarded as a candidate gene that plays an important
role in muscle fiber differentiation and affects meat qual-
ity of livestock [64]. The QKI gene has been identified as
the culprit gene for a patient with intellectual disabilities
and has important roles in broader biological systems,
such as cardiovascular development, bone metabolism
and cancer progression [65, 66]. Additional studies are
needed to refine the causal mutations in the enhancers
and clarify the role of PPP3CA and QKI genes in muscle
development and physiological processes in the pigs, re-
spectively. The comprehensively identified pig functional
enhancers found in this study provide insights into the
functional complexity of enhancers in the pig.

Conclusions
In all, we performed STARR-seq in pig PK15 and ST
cells and identified 2576 functional enhancers in the pig
genome. These enhancers poorly overlap with chromatin
accessible regions and are highly enriched with the
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repressive histone modification H3K9me3. By integrat-
ing functional enhancers with pig complex traits, we
found that the PPP3CA gene is associated with the loin
muscle area trait and the QKI gene is associated with
ALP activity levels, with both genes regulated by distal
functional enhancers. Our first map of functional en-
hancers in the pig genome provide an important re-
source for enhancer studies and supply the new
regulatory elements for pig breeding and construction of
human disease models.
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