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Abstract: While vaccination is considered the most effective means to prevent influenza infection, its
seasonal effectiveness varies, depending on the circulating influenza strains. Here, we characterized
the circulation of influenza strains in October-2018 and March-2019 around the world. For this,
we used nasopharyngeal samples collected from outpatient and hospitalized patients in Israel and
data reported in ECDC, CDC, and WHO databases. Influenza A(H3N2) was dominant in Israel,
while in Europe, Asia, and USA, A(H1N1)pdm09 virus circulated first, and then the A(H3N2) virus
also appeared. Phylogenetic analysis indicated that A(H3N2) viruses circulating in Israel belonged
to clade-3C.3a, while in Europe, Asia, and USA, A(H3N2) viruses belonged to subclade-3C.2a1,
but were later replaced by clade-3C.3a viruses in USA. The vaccine A(H3N2) components of that
year, A/Singapore/INFIMH-16-0019/2016-(H3N2)-like-viruses, belonged to subclade-3C.2a1. The
circulation of different influenza subtypes and clades of A(H3N2) viruses in a single season highlights
the need for universal influenza vaccines.
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1. Introduction

Influenza viruses cause contagious respiratory disease [1] and are classified as types
A, B, and C, with the first two significantly impacting human health each year [2]. Type
A viruses are divided into subtypes determined by their hemagglutinins (HA) and neu-
raminidases (NA), with A(H3N2) and A(H1N1)pdm09 subtypes currently circulating in
humans [1,3]. While in most years a single subtype predominates, the two type A virus sub-
types can co-circulate [4,5]. Similarly, there are two lineages of type B viruses—B/Yamagata
and B/Victoria—which also co-circulate, but with one lineage predominating [6,7], al-
though in some seasons, circulation of type B viruses is negligible [8]. However, influenza
viruses undergo genetic change in the course of their evolution, markedly so in the genes
encoding HA and NA with resultant amino acid substitutions permitting escape from host
immune responses, a process termed antigenic drift, which results in recurrent seasonal
influenza outbreaks/epidemics [9–11].
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Vaccination is considered the most effective way of preventing influenza infection [12–14].
The composition of the annual vaccines follows recommendations developed by the World
Health Organization (WHO), based on worldwide surveillance conducted by the Global In-
fluenza Surveillance and Response System (GISRS) [13]. Recommendations are announced
each year at the end of February for the northern hemisphere and in September for the southern
hemisphere [15]. For the 2017–18 season, the vaccine virus recommendations for the North-
ern hemisphere were A/Michigan/45/2015 (H1N1) pdm09-like; A/Hong Kong/4801/2014
(H3N2)-like; B/Brisbane/60/2008-like (B/Victoria/2/87 lineage); and B/Phuket/3073/2013-
like (B/Yamagata/16/88 lineage) [16]. For the 2018–19 season, two vaccine component
changes were recommended to an A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus
and a B/Colorado/06/2017-like virus (B/Victoria/2/87 lineage) [17].

Since 2009, A(H3N2) viruses have undergone significant genetic drift (new clades and
subclades), with some associated antigenic drift, that has led to multiple changes in the
recommended A(H3N2) vaccine virus over the past 12 years [15]. In recent winter seasons,
the majority of A(H3N2) viruses had belonged to the HA phylogenetic subclade-3C.2a1b;
however, the number of clade-3C.3a viruses increased substantially from November 2018
in several geographic regions [18].

The aim of this study was to review what influenza strains circulated around the
world in 2018–19 and to investigate whether they resembled those used in the vaccine. We
review influenza circulation in Israel, Europe, Asia, and USA over the 2018–2019 winter,
with focus on the unusual pattern observed in Israel. A(H3N2) viruses of clade-3C.3a
predominated in Israel from the start of the season, while the same season in Europe,
Asia, and USA was biphasic, with A(H1N1) pdm09 viruses dominating for most of the
season, with co-circulation of subclade-3C.2a1 A(H3N2) viruses, followed by a second
phase, which was dominated by clade-3C.3a A(H3N2) viruses. Consequently, most of the
A(H3N2) viruses in circulation differed from the subclade-3C.2a1, A/Singapore/INFIMH-
16-0019/2016-(H3N2)-like, vaccine viruses.

2. Materials and Methods
2.1. Ethics Approval

Respiratory samples from hospitalized and non-hospitalized patients with clinical
symptoms of influenza-like-illness (ILI) were analyzed for the presence of respiratory
viruses as part of routine testing performed in the Sheba Medical Centre (SMC), Israel. The
SMC institutional review board (IRB) approved this research (Helsinki Number 1967-15-
SMC). Informed consent was not required for this study.

2.2. Sample Collection

Nasopharyngeal samples of patients presenting with ILI were collected into ∑-Virocult
(mwe, Manchester, UK) virus transport medium. Samples (n = 1487) were collected between
October 2018 and March 2019 in outpatient clinics located in different geographic parts of
Israel as part of annul surveillance conducted by the Israel Influenza Surveillance Network
(IISN). In addition, samples were collected from all hospitalized patients at the SMC
(n = 7310) that suffered from ILI in 2018–19.

2.3. Nucleic Acid Extraction and Detection of Influenza Viruses

Viral RNA (vRNA) was extracted from all samples using MagNA PURE 96 (Roche,
Mannheim, Germany), following the manufacturer’s instructions. All samples were then
tested for the presence of influenza viruses (types A and B) and respiratory syncytial
virus (RSV), in a single real-time reverse transcriptase polymerase chain reaction (RT-
PCR) performed using Ambion Ag-Path master mix (Thermo Fisher Scientific, Waltham,
MA, USA) and TaqMan Chemistry (qRT-PCR), on an ABI 7500 platform, as described
previously [19].
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2.4. Phylogenetic Bayesian Evolutionary Analysis by Sampling Trees (BEAST) Analysis

Influenza A(H3N2) HA gene-specific RT-PCR primers were used to amplify 1701
base-pair fragments, as described in WHO protocols [20]. The amplified products were
then sequenced using ABI PRISM Dye Deoxy Terminator cycle sequencing kits (Applied
Biosystems, Foster City, CA, USA) and Applied Biosystems model 3100 DNA automatic
sequencing systems. The Sequencher® 5.0 program (Gencodes Corporation, Ann Arbor,
MI, USA) was used to prepare FASTA files for further analysis.

The evolutionary relationships for the influenza A(H3N2) HA sequences were inferred
using the general time-reversible model, with proportion of invariable sites and gamma
plus invariant sites-distributed rate heterogeneity (GTR+G+I), chosen using JModelTest [21].
A Bayesian Markov chain Monte Carlo (MCMC) method was run for 10 million iterations,
with a relaxed clock and 10% burn-in period, with samples saved every 10,000 iterations,
using BEAST version 1.8 [22]. Phylogenetic trees were visualized in FigTree version 1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 30 March 2020)).

A random selection of 259 influenza A(H3N2) HA gene sequences from Israeli, Euro-
pean, Asian, and USA samples for the years 2009–2019 used in this analysis were down-
loaded from the EpiFluTM database of the Global Initiative on Sharing All Influenza Data
(GISAID) (www.gisaid.org (accessed on 30 March 2020)). GISAID sequences used in this
manuscript are listed in Supplementary Table S1.

2.5. Data Distribution from Europe, Asia, and USA

Data from seasonal surveillance of influenza in Europe, Asia, and USA were col-
lected from open-access databases. Data for 2018–19 weekly surveillance results from Asia
were downloaded from WHO FluNet (https://www.who.int/influenza/gisrs_laboratory/
flunet/en/ (accessed on 30 March 2020)). The data were deposited by National Influenza
Centers (NICs) of the GISRS and other national influenza reference laboratories collaborat-
ing actively with GISRS.Data for 2018–19 weekly surveillance in the WHO European Region
were obtained from The European Surveillance System (TESSy) database which is operaed
by the European Center for Disease Control (ECDC): (https://zfs.ecdc.europa.eu/adfs/ls/
?wa=wsignin1.0&wtrealm=https%3a%2f%2ftessy.ecdc.europa.eu%2fTessyWeb%2f&wctx=
rm%3d0%26id%3dpassive%26ru%3d%252fTessyWeb%252f&wct=2019-07-02T06%3a28%3a4
3Z (accessed on 30 March 2020)).

For USA data were downloaded for2018–19 weekly surveillance from CDC-FluView
(https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html (accessed on 30 March 2020)),
which collects data from both the U.S. WHO Collaborating Laboratories and the National
Respiratory and Enteric Virus Surveillance System (NREVSS).

The weekly influenza-positive results from Europe, Asia and USA were summarized
and analyzed.

2.6. Clade Classification from Israel, Europe, Asia, and USA

All A(H3N2) HA gene sequences that encoded full-length HA glycoprotein for viruses
collected between October 2018 and March 2019, deposited in the EpiFluTM database of
GISAID as of 1 July 2019, were analyzed to determine the HA gene clade and subclade
of each virus. In total, 100 sequences from Israel, 2275 from Europe, 1436 from Asia, and
2447 from the USA were downloaded. Clade designation was as used in the phylogenetic
analyses presented at WHO vaccine composition meetings [23].

2.7. Statistical Analysis

The Pearson chi-squared test was applied to evaluate the differences in positive percent
between the compared groups—influenza infections in hospitalized and non-hospitalized
patients, as described in Figure 1; p < 0.05 was considered statistically significant.

http://tree.bio.ed.ac.uk/software/figtree/
https://www.who.int/influenza/gisrs_laboratory/flunet/en/
https://www.who.int/influenza/gisrs_laboratory/flunet/en/
https://zfs.ecdc.europa.eu/adfs/ls/?wa=wsignin1.0&wtrealm=https%3a%2f%2ftessy.ecdc.europa.eu%2fTessyWeb%2f&wctx=rm%3d0%26id%3dpassive%26ru%3d%252fTessyWeb%252f&wct=2019-07-02T06%3a28%3a43Z
https://zfs.ecdc.europa.eu/adfs/ls/?wa=wsignin1.0&wtrealm=https%3a%2f%2ftessy.ecdc.europa.eu%2fTessyWeb%2f&wctx=rm%3d0%26id%3dpassive%26ru%3d%252fTessyWeb%252f&wct=2019-07-02T06%3a28%3a43Z
https://zfs.ecdc.europa.eu/adfs/ls/?wa=wsignin1.0&wtrealm=https%3a%2f%2ftessy.ecdc.europa.eu%2fTessyWeb%2f&wctx=rm%3d0%26id%3dpassive%26ru%3d%252fTessyWeb%252f&wct=2019-07-02T06%3a28%3a43Z
https://zfs.ecdc.europa.eu/adfs/ls/?wa=wsignin1.0&wtrealm=https%3a%2f%2ftessy.ecdc.europa.eu%2fTessyWeb%2f&wctx=rm%3d0%26id%3dpassive%26ru%3d%252fTessyWeb%252f&wct=2019-07-02T06%3a28%3a43Z
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


Vaccines 2021, 9, 375 4 of 12

Figure 1. Human influenza infection cases in Israel, winter 2018–19. Data are presented as percentages
of reported influenza-positive cases for non-hospitalized and hospitalized patients.

3. Results
3.1. Influenza Type/Subtype Detections in Outpatients and Hospitalized Patients in Israel, Winter
2018–19

Influenza infection among both outpatients (non-hospitalized) and hospitalized pa-
tients in SMC was mainly caused by A(H3N2) viruses (76% of outpatients and 66% of
hospitalized patients). Influenza A(H1N1) pdm09 viruses were also detected in both
patient populations, but at a significantly higher level in hospitalized patients (33% in
hospitalized patients and 23% in outpatients) (p < 0.0001). Influenza type B infection was
infrequent (<1%) (Figure 1).

3.2. Genetic Changes in A(H3N2) Viruses in the 2018–19 and Preceding Influenza Seasons

To examine the compatibility of circulating strains and vaccine strains, a BEAST phy-
logenic analysis of representative Israeli, European, Asian, and USA samples from the
2018–19 winter, together with samples from the preceding 10 years, and the correspond-
ing vaccine strains was performed (Figure 2). The analysis showed that the circulating
viruses in Israel in 2018–19 belonged to clade-3C.3a, while the A/Singapore/INFIMH-16-
0019/2016-like vaccine virus belonged to clade-3C.2a, subclade-3C.2a1. The dominant
Israeli 2018–19 viruses were genetically closer to the A/Switzerland/9715293/2013-like
clade-3C.3a vaccine virus used in the 2015–16 influenza season. A negligible number of
2018–19 winter samples belonged to clade-3C.2a. Two samples collected at the end of the
2017–18 season contained A(H3N2) clade-3C.3a viruses. As seen with the Israeli sequences,
the USA sequences from the end of the 2018–19 winter season (February–March) belonged
to clade-3C.3a. The other non-Israeli sequences from the previous decade were distributed
among different clades.
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Figure 2. Influenza A(H3N2) hemagglutinin (HA) phylogenetic analysis using BEAST. A Bayesian maximum-clade-
credibility time-scaled phylogenetic tree (BEAST) of seasonal influenza A(H3N2), generated by comparing 1701 nucleotides
encoding the HA protein on a timeline of influenza samples from Israel, Europe, Asia, and USA over a 10 year period (2009
to 2019). Red indicates Israeli virus sequences from the 2018–19 season, light green indicates Israeli virus sequences from
previous seasons (2009–2018), dark green indicates reference strains, light blue indicates relevant reference strains, dark
blue indicates other country viruses from previous seasons (2009–2018), and purple indicates other country virus sequences
from the 2018–19 season. Genetic distance is indicated by the scale bar above the year time bar. The numerals at the end of
virus names (01–12) indicate the month of sample (virus) collection.

3.3. Variability of Influenza Circulation in Israel, Europe, Asia, and USA, Winter 2018–19

In Israel, analysis of influenza A-positive samples (n = 597) revealed co-circulation of
A(H1N1) pdm09 and A(H3N2) virus subtypes each week, with a clear A(H3N2) dominance
in almost every week (Figure 3A). In contrast, analysis of influenza A-positive samples in
Europe (n = 15,956) and Asia (n = 99,234) found A(H1N1)pdm09 dominance for most of
the season. However, in some weeks, there was no clear dominance, and towards the end
of the season, A(H3N2) dominated (Figure 3B—Europe, Figure 3C—Asia).
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Figure 3. Influenza A subtype distribution in Israel, Europe, Asia, and USA, winter 2018–19. Weekly distributions (%) of
influenza A(H3N2) (black bars) and A(H1N1) pdm09 (white bars) in Israel (A), Europe (B), Asia (C), and USA (D) for the
2018–2019 winter.

The pattern of influenza type A detections (n = 37,806) in the USA differed significantly
from those seen in both Israel and Europe, with a clear A(H1N1)pdm09 dominance early
in the season and a gradual increase in A(H3N2) virus circulation from week 2/2019
(Figure 3D). From week 9/2019 until the end of the season, A(H3N2) viruses predominated
in the USA.

3.4. Comparison of Influenza A(H3N2) Clade Circulation in Israel, Europe, Asia, and USA,
Winter 2018–19

Figure 4 presents the clade distribution of influenza A(H3N2) viruses in Israel, Europe,
Asia and USA in the 2018–19 season. In Israel, the dominant strains throughout the winter
season belonged to clade-3C.3a, with very few samples belonging to subclade-3C.2a1b
and none to subclade-3C.2a2 (Figure 4A). In contrast, circulation in Europe (Figure 4B)
included A(H3N2) viruses from three different genetic groups, with subclade-3C.2a.1b
being dominant (>90% of cases) at the beginning of the winter and declining to less than 80%
by the end of the season. The decreased circulation of subclade-3C.2a1b was accompanied
by an increased incidence of clade-3C.3a viruses, which were absent at the beginning
of the winter and rose to >20% by its end, with subclade-3C.2a2 viruses representing a
low proportion of the A(H3N2) viruses which decreased over the course of the season.
A(H3N2) clade distribution in Asia was similar to the distribution in Europe, but with
different dynamics (Figure 4C). Subclade-3C.2a.1b was the dominant group throughout the
winter season. The incidence of clade 3C.3a gradually increased from 0% at the beginning
of winter to 24% by the end, accompanied by a decrease in subclade-3C.2a.1b, while
subclade-3C.2a2 viruses presented low percentages throughout the season (Figure 4C).
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Figure 4. A(H3N2) clade/subclade distribution throughout the 2018–19 season in Israel, Europe, Asia, and USA. Clade
distribution of the A(H3N2) viruses in Israel (A), Europe (B), Asia (C), and USA (D), in winter 2018–2019. All sequences
were downloaded from the EpiFluTM database of the Global Initiative on Sharing All Influenza Data (GISAID) and classified
by clade/subclade according to HA gene mutations encoding specific amino acid substitutions, based on the HA sequences
of WHO vaccine viruses and reference viruses.

In the USA, all three virus clades were detected at the beginning of the season, with
significant dominance of subclade-3C.2a1b. From November, the prevalence of 3c.2a1b and
3C.2a2 subclades decreased significantly and dropped to below 10% from January until
the end of the season, while the proportion of clade-3C.3a viruses increased dramatically,
reaching over 90% by the end of the season (Figure 4D).

4. Discussion

Here, we report on atypical influenza circulation during the 2018–19 season. This sea-
son was considered unusual due to the co-circulation of both seasonal influenza subtypes,
A(H3N2) and A(H1N1) pdm09, with no clear dominance in many countries (e.g., France,
Germany and Spain) [24]. In addition, A(H3N2) viruses in Israel, Europe, Asia, and USA
showed quite different patterns of dominance.

In recent years, differences in influenza virus circulation patterns have been reported,
including summer outbreaks [25,26] and co-infection with two influenza viruses in a single
patient [27]. These reports align with the fact that the patterns of annual circulation of
influenza viruses have been difficult to predict in recent years.

In Israel, a comparison of outpatient (non-hospitalized) versus hospitalized patient
influenza infections revealed that while subtype A(H3N2) was dominant in both pa-
tient populations, a higher percentage of hospitalized patient samples carried subtype
A(H1N1)pdm09. Previous reports showed that influenza A(H1N1)pdm09 infection is asso-
ciated with more severe clinical features and higher intensive care unit admission rate, as
compared to subtype A(H3N2) infection [28,29], which might explain the higher A(H1N1)
pdm09-infection rate in hospitalized patients.

As it is located in the northern hemisphere, Israeli influenza detections during winter
seasons usually align with those seen in Europe, Asia and USA [30] However, analysis
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of the 2018–19 winter data demonstrated that while A(H3N2) clade-3C.3a viruses were
dominant throughout Israel, viruses in this clade were detected in increasing proportions
as the season progressed in Europe, Asia, and USA, becoming dominant in USA by
the end of the season. However, since influenza circulation in Europe is complex, with
different patterns reported for individual regions and countries, it is important to study
each country’s data individually. Segaloff et al. recently reported that in several European
countries (e.g., Belarus, Belgium and Turkey) A(H3N2) viruses were, as in Israel, dominant
throughout the winter season (but mainly subclade-3C.2a1b viruses were detected), while
in other European countries, A(H1N1)pdm09 dominance or A(H1N1)pdm09-A(H3N2)
co-dominance was reported [24].

BEAST phylogenetic analysis of Israeli samples from 2009-2019 showed that the
majority of 2018–19 A(H3N2) detections belonged to clade-3C.3a, while the 2018–19
A/Singapore/INFIMH-16-0019/2016-like vaccine virus belonged to subclade-3C.2a1; few
subclade-3C.2a1 viruses were detected among Israeli patients with ILI symptoms in
2018–19. Such disparity between circulating viruses and the vaccine strain could have
resulted in low immunity of populations against clade-3C.3a viruses, allowing significant
spread of clade-3C.3a viruses in Israel, Asia, USA, and some countries in Europe, leading
to reduced vaccine effectiveness (VE). Indeed, in Israel, we found a very low VE against
A(H3N2) influenza virus in the winter of 2018–19 among infants, children, and young
adults though, among adults aged ≥45 years, we found higher VE which could be due to
previous exposure to clade-3C.3a viruses a few years earlier [31]. Similar findings were
also found in Europe and in the USA, where clade-3C.3a viruses had circulated at high
levels in recent years [32,33]. In an attempt to understand the dominance of clade-3C.3a
viruses in Israel, we examined the genetic group dominance of circulating A(H3N2) viruses
in European countries reporting A(H3N2) dominance and in countries neighboring Israel
(e.g., Algeria, Egypt and Tunisia). In all countries, dominance of subclade-3C.2a1 viruses
was reported (data not shown). Our hypothesis is that A(H3N2) clade-3C.3a viruses have
been circulating at low levels since they were identified in 2014. In support of this, at
the end of the 2017–18 season (March 2018), two viruses (A/Israel/SK-1451/2018 and
A/Israel/SK-1453/2018) belonging to clade-3C.3a were detected. Such clade-3C.3a viruses
may have circulated at a low level in Israel during the 2018 summer, allowing their resur-
gence and increased circulation in the 2018–19 winter. Factors that may have contributed to
this resurgence include (i) the time that elapsed since the general population was exposed
to clade-3C.3a viruses, resulting in an increase in susceptible host numbers and (ii) genetic
drift of clade-3C.3a viruses in the course of their low-level circulation in recent years. In
the context of the first factor, prevalence of clade-3C.3a viruses varied greatly since 2014,
and the patterns have been significantly different between Europe, Asia, and North Amer-
ica but with low-level circulation occurring between ‘outbreaks’ of clade-3C.3a viruses
(Table 1).

The supposed clade-3C.3a summer circulation in Israel is supported by its observed
circulation in the northern hemisphere during March–September 2018. Analysis of GISAID
EpifluTM data for northern hemisphere influenza circulation during this period revealed
that about 8% of the positive influenza A(H3N2) viruses belonged to clade-3C.3a. The long
“post-military service” journeys, mainly to South America, Australia, and New Zealand,
taken by many Israeli veterans, can reasonably explain a bulk importation of clade-3C.3a
viruses into Israel during the summer season of 2018.
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Table 1. Circulation of A(H3N2) clade-3C.3a viruses over periods considered at the times of each WHO Vaccine Consultation Meeting (VCM) a.

Vaccines Used Leading up to WHO VCM b WHO VCM c Europe d North Americad Asia d

NH Vaccine SH Vaccine No H3 HA Seq No 3C.3a % 3C.3a No H3 HA Seq No 3C.3a % 3C.3a No H3 HA Seq No 3C.3a % 3C.3a

A/Victoria/361/2011
(3C.1)

A/Texas/50/2012
(3C.1) Sep-2014 430 12 2.8 403 62 15.4 553 269 48

A/Texas/50/2012
(3C.1)

A/Texas/50/2012
(3C.1) Feb-2015 383 37 9.7 738 34 4.6 874 333 38.1

A/Texas/50/2012
(3C.1)

A/Switzerland/
9715293/2013 (3C.3a) Sep-2015 525 48 9.1 568 1 0.2 635 75 11.8

A/Switzerland/
9715293/2013 (3C.3a)

A/Switzerland/
9715293/2013 (3C.3a) Feb-2016 123 41 33.3 475 12 2.5 752 60 8

A/Switzerland/
9715293/2013 (3C.3a)

A/Hong Kong/
4801/2014 (3C.2a) Sep-2016 294 19 6.5 585 332 57.0 564 37 6.6

A/Hong Kong/
4801/2014 (3C.2a)

A/Hong Kong/
4801/2014 (3C.2a) Feb-2017 818 4 0.5 690 55 8.0 1330 10 0.8

A/Hong Kong/
4801/2014 (3C.2a)

A/Hong Kong/
4801/2014 (3C.2a) Sep-2017 760 6 0.8 1521 137 9.0 1180 6 0.5

A/Hong Kong/
4801/2014 (3C.2a)

A/Hong Kong/
4801/2014 (3C.2a) Feb-2018 379 1 0.3 1047 9 0.9 1054 8 0.8

A/Hong Kong/
4801/2014 (3C.2a)

A/Singapore/
INFIMH-16-0019/2016

(3C.2a1)
Sep-2018 821 22 2.7 1032 198 19.2 630 5 0.8

A/Singapore/
INFIMH-16-0019/2016

(3C.2a1)

A/Singapore/
INFIMH-16-0019/2016

(3C.2a1)
Feb-2019 673 122 18.1 388 125 32.2 1285 56 4.4

A/Singapore/
INFIMH-16-0019/2016

(3C.2a1)

A/Switzerland/
8060/2017 (3C.2a2) Sep-2019 2206 540 24.5 1838 1342 73.0 1188 608 51.2

a For northern hemisphere (NH) recommendation meetings, viruses with collection dates from 1 September to 31 January of a given winter season are considered, while those collected between 1 February and
31 August in a single year are considered for southern hemisphere (SH) recommendation meetings. b Vaccines used in both hemispheres leading up to each VCM are indicated, with countries in tropical regions
deciding which of the recommendations to use in their influenza vaccination campaigns. c Meetings held in September give recommendations for the following southern hemisphere season (e.g., September 2014
for the 2015 season), and those in February for the following NH season (e.g., February 2015 for the 2015–16 season). d For Europe, North America, and Asia, numbers of A(H3N2) HA sequences available in
sequence databases, from viruses with collection dates in the periods indicated (c), at the time of each VCM, are shown with the number and % referring to clade-3C.3a viruses. Values ≥10% are shown in bold.



Vaccines 2021, 9, 375 10 of 12

Regarding genetic drift, from 2014 until the winter of 2018–19, a single clade-3C.3a
A/Switzerland/9715293/2013-like vaccine virus had been used in 2015–16 (Table 1). Over
subsequent years, there was significant HA genetic drift, with associated HA amino acid
substitutions (L3I, S91N, N144K resulting in the loss of a glycosylation sequon, F193S,
R261Q, I478M and D489N) compared to the vaccine virus (Table S1). Substitutions N144K
(antigenic site A) and F193S (antigenic site B) were likely associated with the observed
antigenic drift which allowed the resurgence of clade-3C.3a viruses in Israel, Europe, and
North America. Host immune selection, on a global scale, is considered to be a major cause
of influenza virus antigenic drift [34].

In the 2018–2019 season in Europe, Asia, and USA, A(H1N1) pdm09 viruses dominated
early in the season but were displaced by A(H3N2) viruses later. Around week 8/2019 there
was a peak in A(H3N2) clade-3C.3a infections in Europe, Asia, and USA, suggesting that
A(H3N2) clade-3C.3a viruses effectively out-competed A(H1N1) pdm09 viruses. Specific
clades/subclades of the four seasonal influenza viruses, i.e., two type A subtypes and
two type B lineages, commonly co-circulate in winter outbreaks/epidemics but with one
(or more) subtype/lineage predominating in different hemispheres or sometimes in both
hemispheres [35]. The relative predominance of clade/subclade in each subtype/lineage is
determined by the WHO and is a major factor considered when making influenza vaccine
recommendations [13]. In the 2018–19 winter, ECDC and CDC reported on significant
shifts in the relative proportions of three A(H3N2) clades/subclades during the course of
the influenza seasons, in Europe, Asia, and USA [22,36]. Consequently, for the first time in
many years, WHO postponed the announcement of the recommendation for the A(H3N2)
component of influenza vaccines for the 2019–20 northern hemisphere influenza season
by four weeks. The increasing prevalence of clade-3C.3a viruses in several parts of the
world, including Israel, where such viruses dominated throughout the season, was taken
into consideration, and A/Kansas/14/2017-like clade-3C.3a viruses were recommended
for use in influenza vaccines [37].

It is well known that vaccination against influenza is currently the most effective way
to prevent influenza infection and spread. Despite differences in influenza virus circulation
patterns between Israel, Europe, Asia, and USA, there remain common global public health
challenges crossing boundaries and affecting each continent individually and together. The
unusual 2018–19 winter season with co-circulation of viruses in different A(H3N2) genetic
clades/subclades, one of which (clade-3C.3a) contained viruses that were antigenically
different from the vaccine virus [36], reinforces the need for universal vaccines that are
effective against seasonal influenza variants within a particular subtype/lineage, regardless
of genetic differences and associated antigenic differences over time.

5. Conclusions

In conclusion we show in this manuscript that in during the 2018–19 influenza season
the circulating influenza A(H3N2) viruses be-longed to clade-3C.3a, while in Europe, Asia
and USA they belonged to subclade-3C.2a1, but were later replaced by clade-3C.3a viruses in
USA. In contrast, the vaccine A(H3N2) components for that season, A/Singapore/INFIMH-
16-0019/2016-(H3N2)-like-viruses, belonged to subclade-3C.2a1. The circulation of different
influenza subtypes and clades of A(H3N2) viruses in a single season highlights the need for
universal influenza vaccines.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9040375/s1, Table S1: Influenza A(H3N2) HA phylogenetic analysis using RaxML.
Maximum likelihood phylogenetic trees were estimated using RaxML v8.2X (https://cme.h-its.
org/exelixis/software.html), followed by annotation with amino acid substitutions defining nodes
and individual virus gene products (indicated in parenthesis after virus names) using treesub
(https://github.com/tamuri/treesub/blob/master/README.md). Trees were visualized using
FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and highlighted using Adobe Illustrator CC
2015.3 (https://helpx.adobe.com/uk/illustrator/using/whats-new.html). Phylogenies relate to a
1650-nucleotide alignment of coding sequences for HA gene products (from the same viruses used
to generate Figure 2), with signal-peptide encoding and stop codons removed to give mature HA
glycoprotein amino acid numbering.
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