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Abstract

We present a novel surrogate modeling method that can be used to accelerate the solution

of uncertainty quantification (UQ) problems arising in nonlinear and non-smooth models of

biological systems. In particular, we focus on dynamic flux balance analysis (DFBA) models

that couple intracellular fluxes, found from the solution of a constrained metabolic network

model of the cellular metabolism, to the time-varying nature of the extracellular substrate

and product concentrations. DFBA models are generally computationally expensive and

present unique challenges to UQ, as they entail dynamic simulations with discrete events

that correspond to switches in the active set of the solution of the constrained intracellular

model. The proposed non-smooth polynomial chaos expansion (nsPCE) method is an

extension of traditional PCE that can effectively capture singularities in the DFBA model

response due to the occurrence of these discrete events. The key idea in nsPCE is to use a

model of the singularity time to partition the parameter space into two elements on which the

model response behaves smoothly. Separate PCE models are then fit in both elements

using a basis-adaptive sparse regression approach that is known to scale well with respect

to the number of uncertain parameters. We demonstrate the effectiveness of nsPCE on a

DFBA model of an E. coli monoculture that consists of 1075 reactions and 761 metabolites.

We first illustrate how traditional PCE is unable to handle problems of this level of complex-

ity. We demonstrate that over 800-fold savings in computational cost of uncertainty propa-

gation and Bayesian estimation of parameters in the substrate uptake kinetics can be

achieved by using the nsPCE surrogates in place of the full DFBA model simulations. We

then investigate the scalability of the nsPCE method by utilizing it for global sensitivity analy-

sis and maximum a posteriori estimation in a synthetic metabolic network problem with a

larger number of parameters related to both intracellular and extracellular quantities.

Author summary

Construction and validation of mathematical models in biological systems involving

genome-scale biomolecular networks is a challenging problem. This article presents a
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novel surrogate modeling method that can accelerate parameter inference from experi-

mental data and the quantification of uncertainty in the predictions of complex dynamic

biological models, with a particular emphasis on nonlinear models with non-smooth

behavior. The method is applied to infer extracellular kinetic parameters in a batch fer-

mentation reactor consisting of diauxic growth of E. coli on a glucose/xylose mixed media

as well as a larger synthetic metabolic network problem. The proposed approach enables

rigorous quantification of parameter uncertainty to determine whether or not available

data is sufficient for estimation of all unknown model parameters.

Introduction

The utility of mathematical modeling in biology is on the rise due to computational advance-

ments and the increasing availability of data provided by high-throughput experimental tech-

niques [1]. Flux balance analysis (FBA) is widely used for modeling cellular metabolism in a

large range of metabolic and biochemical engineering problems [2, 3]. Given a constrained

metabolic network, FBA assumes the intracellular fluxes are regulated by the cell to optimize a

predefined cellular objective function (e.g., maximizing the biomass growth rate [4]) subject to

mass balances of the intracellular metabolites and other feasibility constraints (e.g., bounds on

the substrate uptake and product secretion rates). However, FBA only identifies metabolic flux

distributions at steady-state and, thus, provides no information on metabolite concentrations

or the dynamic behavior of the fluxes. A dynamic extension to FBA, commonly referred to as

dynamic FBA (DFBA), was originally developed in [5] and has been subsequently applied in

several applications [6–9]. In DFBA models, the intracellular fluxes are given by the solution of

a FBA model, which is coupled to a set of dynamic equations that describes the time-varying

nature of the extracellular substrate and product concentrations as a function of the extracellu-

lar environment [10]. The key assumption in DFBA is that the intracellular fluxes equilibrate

instantaneously. This “quasi steady-state” assumption is valid as long as the intracellular

dynamics are significantly faster than the extracellular dynamics.

Generally, the prediction of the behavior of biological systems such as those described by

DFBA models can be subject to various sources of uncertainty including unknown model

parameters, unknown model structure, and experimental uncertainty such as measurement

error [11]. Accurate quantification of these uncertainties, as well as their impact on the quality

of model predictions, is vital when applying these models in decision-support or optimization

tasks such as parameter estimation or optimal experiment design. The task of uncertainty

quantification (UQ) can be divided into two major problems: forward uncertainty propagation

and inverse uncertainty estimation. The forward problem focuses on propagating all uncer-

tainties through the model to predict the overall uncertainty in the outputs, whereas the

inverse problem aims to calibrate the model with experimental data [12–14]. However, the

most commonly used UQ methods are intractable for expensive-to-evaluate computational

models [15], which has severely limited their application to DFBA models. An overview of the

various challenges in DFBA simulations can be found in [16].

Surrogate modeling techniques are being increasingly adopted to enable complex UQ anal-

yses that would otherwise be impossible. Of the available surrogate modeling approaches, poly-

nomial chaos expansions (PCEs) are one of the most commonly used methods for UQ, which

have been shown to yield accurate representations of model outputs using limited computa-

tional resources in various engineering systems [17–20] as well as biological systems [21–23].

However, an important underlying assumption in PCE is that the model response is a smooth

Fast uncertainty quantification for dynamic flux balance analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007308 August 30, 2019 2 / 35

https://doi.org/10.1371/journal.pcbi.1007308


function of the uncertain parameters such that the response can be accurately approximated

by a collection of polynomial functions. For non-smooth models, PCE has been shown to

either converge very slowly or even fail to converge altogether depending on the type of non-

smoothness [24, 25]. This is a critical challenge in DFBA models because they are known to

become singular (i.e., lose differentiability) at certain time points due to the underlying quasi

steady-state assumption [10, 26, 27], meaning that even state-of-the-art PCE methods are not

directly applicable to DFBA models.

In this work, we propose an extension to PCE, referred to as non-smooth PCE (nsPCE),

that can adequately capture the non-smooth behavior exhibited by DFBA models. The

underlying concept behind the proposed nsPCE framework is that the time of occurrence of

any singularity in a DFBA model is a smooth function of the parameters, which can be

effectively modeled with a PCE. Thus, for any given time of interest, the PCE model of the

singularity time can be used to partition the parameter space into two non-overlapping

regions (or elements) that represent the collection of parameters for which the singularity has

and has not occurred. Separate PCEs can then be constructed over each of these elements,

leading to a piecewise polynomial approximation of the overall model response. We adopt a

non-intrusive, regression-based approach for PCE construction from a limited number of

expensive DFBA simulations. In particular, we take advantage of state-of-the-art sparse

regression methods to systematically locate the terms that have the greatest impact on the

model response out of a very large candidate set of terms. By exploiting sparsity, we can miti-

gate the curse-of-dimensionality that can plague traditional PCE, allowing the application of

the proposed nsPCE approach to problems with reasonably large number of uncertain

parameters.

To demonstrate the effectiveness of the nsPCE method, it is applied to accelerate Bayesian

estimation of parameters in the substrate uptake kinetic expressions of diauxic growth of a

batch monoculture of Escherichia coli on a glucose and xylose mixed media. The metabolic

network reconstruction used for E. coli is iJ904, which is a genome-scale model that contains

1075 reactions and 761 metabolites [28]. Parameter estimation is performed using measure-

ments of the concentrations of extracellular metabolites and biomass that are taken at certain

time points throughout the batch. We selected this particular system due to the fact that

reported parameter estimates were determined from experimental data using a trial-and-error

procedure [8]. This was likely due to the computational complexity of the genome-scale DFBA

model in conjunction with the limited data set that may not enable unique estimation of

parameters. In addition, we demonstrate how nsPCE can be applied to vastly speedup forward

UQ analyses including global sensitivity analysis and estimation of the probability distribution

of the model response. To demonstrate the scalability of nsPCE, it is used for maximum a pos-

teriori parameter estimation in a synthetic metabolic network problem with twenty unknown

parameters related to quantities in both the intracellular reaction network and the extracellular

environment. The codes that implement the proposed nsPCE method for generic DFBA mod-

els are provided at the repository [29].

Methods

Dynamic flux balance analysis models

We focus on modeling a microbial cultivation process using dynamic flux balance analysis

(DFBA), in which the bioreactor is viewed as a combination of the fluid medium (extracellular

environment) and the microorganisms (intracellular environment). Cell walls act as physical

boundaries between these two phases, through which certain chemical metabolites are
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exchanged. The DFBA model can be mathematically formulated as [26]

_sðtÞ ¼ fðt; sðtÞ; vðsðtÞÞÞ; sðt0Þ ¼ s0; ð1Þ

with v(s(t)) being an element of the solution set of the flux balance model

vðsÞ 2 argmax
v

hðv; sÞ

subject to : Av ¼ 0;

vLBðsÞ � v � vUBðsÞ;

ð2Þ

where s denotes the state variables describing the extracellular environment (e.g., concentra-

tions of substrates, biomass, and products) with time derivative _s and initial conditions s0; v

denotes the metabolic fluxes that include both intracellular fluxes and exchange rates; A is the

stoichiometric matrix of the metabolic network; and vLB(s) and vUB(s) are the lower and upper

bounds on the fluxes, respectively, which are functions of the extracellular concentrations. The

vector function f, specified by the set of mass balances in the extracellular medium, defines the

rate of change of each component of s and must be integrated to determine the time evolution

of extracellular concentrations. The scalar function h is the cellular objective that is maximized

by the cells. Whenever more than one microbial species are present in the culture, then multi-

ple flux balance models of the form (2) must be incorporated into (1) [10].

DFBA models can be classified as ordinary differential equations with embedded optimiza-

tion wherein the lower-level FBA optimization can either be a linear or nonlinear program

[30]. A variety of methods have been developed for integrating DFBA models, which are sum-

marized in S1 Text. We focus on the direct approach for integrating DFBA models in this

work due to its ability to ensure accurate solutions through the use of error-controlled integra-

tion schemes. Another advantage of the direct approach is that a unique solution set to the

FBA (2) can be obtained using lexicographic optimization [10, 27], which may help overcome

numerical challenges that can occur when using alternative DFBA simulators (e.g., see [31,

Chapter 3]). Since the direct approach requires continuous monitoring and identification of

any active set changes in (2), it constitutes a dynamic simulation with discrete events (i.e., a

hybrid system). In the next section, we present the proposed nsPCE method that is capable of

directly accounting for the hybrid nature of DFBA models.

Polynomial chaos expansions

Theoretical background. We consider a DFBA model with a set ofM input parameters

that are denoted by x = (x1, . . ., xM). These parameters can appear in the initial conditions s0,

rate of change function f, cellular objective h, and/or the flux limits vLB, vUB. We look to

develop a computationally cheap-to-evaluate representation of some output of the DFBA

model referred to as themodel response. The model response y ¼MðxÞ can be any chosen

function of the states or fluxes that appear in (1) and (2) including, for example, metabolite

concentrations, growth rate, or time-to-consumption of any metabolite. The model response

function M : RM ! R need not be known analytically, and can be approximated using a finite

number of model evaluations. We focus on the scalar response case y for notational simplicity.

However, the developed procedure can be easily applied separately to each component of a

vector of responses y.

Unless the parameters x are perfectly known, they must be treated as uncertain. Parameter

uncertainty can generally be represented by a random vector X with some known probability

density function (PDF). In this case, the model response also becomes a random variable with
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some unknown PDF that is implicitly defined by

Y ¼MðXÞ; X � fX; ð3Þ

where* denotes “distributed as” and fX denotes the PDF of uncertain parameters. Determin-

ing the distribution fY (or its statistical moments) of the model response represents the forward

UQ problem that can be tackled in various ways, the majority of which require extensive sam-

pling that is not feasible whenever M is a computationally expensive model. The polynomial

chaos expansion (PCE) method addresses this problem by constructing a surrogate model that

accurately approximates M, but is significantly cheaper to evaluate. The PCE surrogate model

can also be straightforwardly applied to other UQ tasks, as discussed later in the Results sec-

tion. Provided that Y has finite variance, it can be represented with a PCE as follows [17]

Y ¼MðXÞ ¼
X

α2NM
aαCαðXÞ; ð4Þ

where aα 2 R are coefficients of the expansion, Cα : RM ! R are multivariate polynomials,

α = (α1, . . ., αM) is a multi-index that identifies the degree of the multivariate polynomials in

each of the input parameters Xi, and N ¼ f1; 2; . . .g is the set of positive integers. The polyno-

mial basis functions are required to be orthonormal with respect to the parameter distribution,

such that they satisfy

EfCαðXÞCβðXÞg ¼
Z

S
CαðxÞCβðxÞfXðxÞdx ¼ dαβ; 8α; β 2 NM; ð5Þ

where S is the support of the distribution of X and δαβ is the Kronecker delta that is 1 whenever

α = β and 0 otherwise. For computational purposes, the series (4) must be truncated after a

finite number of P terms, which yields the following approximation

YPCE ¼MPCE
ðXÞ ¼

X

α2A

aαCαðXÞ ¼ a>ΨðXÞ; ð6Þ

where A is a finite set of multi-indices with cardinality equal to P, a 2 RP is a vector of the

coefficients, and Ψ : RM ! RP is a vector containing all polynomial basis functions. The

expansion coefficients are defined to be those that minimize the mean-square error (MSE)

between the exact representation (4) and the truncated PCE (6)

a ¼ argmin
~a2RP

EfðMðXÞ � ~a>ΨðXÞÞ2g ¼ EfMðXÞΨðXÞg: ð7Þ

The right-hand side of this expression represents the analytic solution to the MSE optimization

problem and directly follows from the Hilbert projection theorem [32].

The expressions in (5) and (7) involve multivariate integration over complicated nonlinear

functions. As such, the construction of the polynomial basis and computation of the expansion

coefficients are usually carried out numerically in practice, which leads to additional sources of

error. The choice of A also plays an important role in PCE performance because A directly

controls the number of coefficients that must be estimated. Larger P values require more

computational effort and are more susceptible to numerical sources of error. An overview of

state-of-the-art methods for addressing these challenges is provided next.

Orthonormal basis construction. The complexity of determining the polynomials

fCαðXÞgα2A depends fully on the structure of the PDF fX. Whenever the uncertain parameters

are statistically independent, then (5) reduces to the tensor product ofM univariate polynomi-

als that are orthonormal with respect to each marginal density fXi . These polynomials have
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been analytically derived for many common PDFs [17], and can be found numerically for

generic PDFs using algorithms in terms of the three-term recurrence relationship for orthogo-

nal polynomials [33]. There are two main approaches for handling the more general case that

X has statistically dependent (or correlated) elements. The first approach involves transform-

ing the generic random vector X into a standard random vector Z for which it is simpler to

build the polynomial basis functions [34]. Any isoprobabilistic transformation that preserves

the PDFs of these random vectors can be utilized, though the most commonly used is the

Rosenblatt transformation [35]. The second approach involves applying a more sophisticated

numerical procedure that is able to impose the conditions in (5) simultaneously inM dimen-

sions. This includes the Gram-Schmidt process [36] as well as the modified Cholesky decom-

position of the Gram moment matrix [37, 38].

Sparse truncation and regression. We denote the approximate PCE with numerically

estimated coefficients â as follows

Ŷ PCE ¼ M̂PCEðXÞ ¼ â>ΨðXÞ: ð8Þ

A variety of methods have been proposed for estimating the coefficients that can be broadly

categorized as intrusive (e.g., Galerkin projection [12]) or non-intrusive (e.g., pseudo-spectral

projection [39] or regression [15]). Here, we focus exclusively on non-intrusive methods. The

phrase “non-intrusive” implies that coefficient estimates are obtained over a finite set of

parameter realizations X ¼ fxð1Þ; . . . ; xðNÞg, referred to as the experimental design (ED).

These samples can be chosen in various ways including Monte Carlo sampling, quasi-random

samples derived from Sobol or Halton sequences, or sparse grids to name a few [40]. The

computational model is then evaluated at every point in the ED, i.e., Y ¼ fyð1Þ; . . . ; yðNÞg with

yðiÞ ¼MðxðiÞÞ for all i = 1, . . ., N. As such, non-intrusive approaches are “black-box” in the

sense that they can be applied to any function, even when this function is not explicitly known,

and do not require any modification to the deterministic solver.

We will focus on regression methods due to their flexibility when it comes to enforcing

sparsity. In the regression approach, coefficients â are defined as those that minimize the least-

square residual of the polynomial approximation over the ED X

â ¼ argmin
~a2RP

1

N

XN

i¼1

ðMðxðiÞÞ � ~a>ΨðxðiÞÞÞ2 ¼ ðA>AÞ� 1A>Y; ð9Þ

where A 2 RN�P is the model matrix that contains the values of all polynomial basis functions

evaluated at all ED points. The solution of (9) requires a minimum number of sample points

N� P to ensure a unique solution exists. Since every sample requires an expensive DFBA sim-

ulation here, the truncation scheme plays a central role in reducing the complexity of surrogate

model construction. The total degree method is the most commonly used approach for speci-

fying A, which looks to keep all polynomials up to a specified order p in the series. For total

degree truncation, the set of multi-indices is defined as A ¼ fα 2 NM : kαk1 � pg, where

kαk1 = α1 + � � � + αM and P ¼ ðMþpÞ!
M!p! . Due to the sharp increase in P as the polynomial order

increases, the total degree truncation scheme can quickly lead to a prohibitive number of

model evaluations, especially in high dimensions. This issue is often termed the curse-of-
dimensionality, which is known to considerably limit standard PCE methods.

We look to take advantage of two approaches for overcoming the curse-of-dimensionality

limitation. The first approach involves replacing the total order truncation with the so-called
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hyperbolic truncation scheme, which is defined as

AM;p;q
¼ fα 2 NM: kαkq � pg; kαkq ¼

XM

i¼1

a
q
i

 !1=q

; ð10Þ

where 0< q� 1. Lower values for q limit the number of high-order interaction terms consid-

ered, which directly lead to sparser solutions. The second approach looks to further sparsify

the solution, without sacrificing potentially important interaction terms, by including a regu-

larization term of the form lk~ak
1

with λ� 0 in the least-squares problem (9). This regulariza-

tion term is known to force the minimization to favor low-rank solutions and ensures the

existence of a unique solution even when N< P.

The key challenge with regularization is a proper choice of λ, which indirectly specifies the

number of non-zero coefficients included in the expansion. In this work, we use the hybrid

least angle regression (LAR) method to solve the regularized version of (9). LAR is an efficient

procedure for variable selection, which aims to select the predictors (i.e., polynomials Cα) that

have the greatest impact on the model response among a potentially large set of candidates

[41]. Hybrid LAR is a variant of the original LAR that uses a modified cross-validation scheme

to estimate the approximation error [19]. This modification relies on only a single call to the

LAR procedure, which provides significant savings in computational cost when compared to

the original method. The relative MSE (RMSE), which is defined as ε = MSE/Var{Y}, is the

natural choice of the approximation error in PCE and can be robustly estimated by the leave-

one-out (LOO) cross-validation error εLOO. Not only can εLOO be calculated analytically for

PCE models [42], but it is known to be much less sensitive to overfitting than the empirical

estimator [43].

Provided a sensible sampling strategy has been chosen, the remaining parameters that must

be selected are related to truncation p and q and the ED size N. We use a systematic procedure

for selecting these parameters to achieve a target error level εtarget. As discussed in [19], a basis-
adaptive strategy can help overcome potential limitations of an a priori fixed truncation set A
by letting the maximum degree be driven directly from the data. The basic idea is to start with

small values for p and q, estimate the coefficients using hybrid LAR, and calculate εLOO. These

steps are repeated for incremented values of p and q, and the algorithm returns the PCE model

with the lowest error. Early stop criteria can easily be introduced to avoid an excessive number

of iterations. However, when dealing with computationally expensive models, the number of

model evaluations N dominates the cost of construction of the surrogate model. We therefore

propose an iterative “greedy” approach for constructing the ED to ensure that N can be kept as

small as possible. This sequential ED strategy can be summarized as

1. Initialize the current ED with a relatively small number of samples Ninit.

2. Train a sparse basis-adaptive PCE using the current ED and calculate εLOO.

3. If εLOO< εtarget, stop the algorithm and return current PCE. Otherwise, enrich the current

ED with Nadd more samples and return to Step 2.

Note that any method can be used in the training step of this algorithm. Thus, in the proposed

nsPCE method, the desired accuracy level is the key parameter that must chosen by the user.

The nsPCE surrogate modeling method

The PCE method is guaranteed to converge as both the number of model evaluations N and

number of terms in the expansion P increase; however, the rate of convergence can be very

slow whenever M exhibits any singularities [24]. This is a primary challenge in DFBA models
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since they can lose differentiability when a switch in the active set of the FBA problem (2)

occurs. Inspired by [25], we look to take advantage of the followingmulti-element representa-

tion of PCE as it is capable of capturing non-smooth behavior

Y ¼MðXÞ ¼
XNe

k¼1

X

α2NM
ak;αCk;αðXÞISkðXÞ; ð11Þ

where Ne denotes the number of elements; Sk, ak,α, and Ck,α denote the local support, coeffi-

cient, and orthogonal polynomials in element k, respectively; S ¼
SNe
k¼1
Sk; and ISkðXÞ are indi-

cator random variables defined by

ISkðXÞ ¼
1 if X 2 Sk

0 otherwise:

(

k ¼ 1; . . . ;Ne ð12Þ

The indicator random variables can be used to define the following conditional random vari-

ables Xk ¼ XjðISkðXÞ ¼ 1Þ with PDF

fXkðxkÞ ¼
fXðxkÞ

PrðISkðXÞ ¼ 1Þ
¼

fXðxkÞR

Sk
fXðxÞdx

: ð13Þ

The local polynomials in (11) are orthogonal with respect to Xk while the coefficients are simi-

larly defined as in (7) but now in terms of Xk. This implies that the same strategies discussed

above for building the polynomials, estimating the coefficients using regularized least squares,

truncating the expansion, and sequentially populating the ED can be utilized locally within

each element.

The remaining unanswered question is how to design the elements fSkg
Ne
k¼1

to limit the

growth in the number of model evaluations since N will scale approximately linearly with Ne.
The best decomposition should ensure that the model response behaves smoothly in every ele-

ment. The proposed nsPCE method decomposes the support into two elements S1 and S2 that

denote, respectively, the set of parameters for which the singularity has not and has occurred.

This idea is best illustrated through a simple example. Consider the following non-smooth

ODE system _y ¼ � x if y> 0 and _y ¼ 0 otherwise with initial condition y0 > 0, whose solution

is given by

yðt; xÞ ¼
y0 � tx; if y0 > tx;

0; otherwise:

(

ð14Þ

This function is not differentiable at the time point ts(x) = y0/x, which can be thought of as the

“singularity manifold” in the parameter support space, i.e., ts is the boundary function that sep-

arates S1 and S2. At any given time of interest t, the two elements can be defined in terms of

ts(x) as follows

S1ðtÞ ¼ fx 2 S : tsðxÞ > tg; S2ðtÞ ¼ fx 2 S : tsðxÞ � tg: ð15Þ

Let us briefly analyze the behavior of these elements. The elements are continuous functions of

time, meaning that every time of interest t requires a different decomposition. Whenever t is

outside of the support of ts(X), then one of these sets is empty and we revert back to traditional

PCE that covers the full support S. In light of this, we can easily generalize the idea to the case

of multiple ns> 1 sequential singularities as long as the random variables ftsiðXÞg
ns
i¼1

do not

have overlapping supports. When multiple non-overlapping singularities are present, we must
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simply find the support in which t lies and define the two elements using that corresponding

boundary function. The case of overlapping supports is more challenging due to the fact that

more elements would need to be created based on the intersection of S1 and S2 for all active

singularities.

For the simple scalar example in (14), we can analytically derive the boundary function;

however, this is not generally possible in DFBA models. Based on the observation that

the singularity boundary depends smoothly on the parameters, we instead propose to con-

struct a sparse PCE model to approximate the boundary in multiple dimensions, i.e.,

ts � t̂ PCEs . The nsPCE method thus creates a surrogate model with the following structure for

any x 2 S

M̂nsPCEðxÞ ¼
X2

k¼1

â>kΨkðxÞISkðxÞ ¼
â>

1
Ψ1ðxÞ; if x 2 S1;

â>
2
Ψ2ðxÞ; if x 2 S2;

(

ð16Þ

where the coefficients âk are estimated from the sparse regression problem

âk ¼ argmin
~ak

1

Nk
kYk � Ak~akk

2

2
þ lkk~akk1; k 2 f1; 2g ð17Þ

based on the local ED X k ¼ fx
ð1Þ

k ; . . . ; xðNkÞk g and Yk ¼ fy
ð1Þ

k ; . . . ; yðNkÞk g in terms of Nk sam-

ples. Notice that the full DFBA model must be integrated when constructing t̂ PCEs . Instead of

discarding this information, it can be reused by storing the list of state and time points gen-

erated when integrating the DFBA model and then interpolating these points when calculat-

ing the model response function. Thus, we can use this approach to initialize the ED X ,

model response data Y, and singularity time data T s. Using T s along with the set definitions

in (15), we can easily partition X and Y into the required local EDs. The sequential ED strat-

egy is then applied in each element to ensure that the target error is achieved.

A flowchart that summarizes the main steps of the nsPCE method is shown in Fig 1. By

evaluating the nsPCE surrogate in (16), which is much cheaper to evaluate than the full

model M, on a collection of Monte Carlo samples of the parameters, we can directly approxi-

mate statistical properties of Y including moments, parametric sensitivities, or even its full

distribution.

Numerical implementation

The complete set of Matlab scripts that implement the nsPCE method is available at [29]. All

of the modifiable parameters in the algorithm are defined in the “User inputs” section of the

main_pce.m script, which automatically executes the steps summarized in Fig 1. It is impor-

tant to note that the scripts require the installation of two additional packages that integrate

the DFBA model and construct sparse PCE models. The nsPCE scripts are written to be com-

patible with readily available DFBA and PCE toolboxes to provide flexibility. The simulation

of DFBA models can be done with any non-smooth integration code including COBRA [44],

ORCA [45], and DFBAlab [10]. All files needed by the DFBA integrator should be placed in

the dfba_model folder. We opt for DFBAlab in this work due to certain numerical advan-

tages that it exhibits over the available alternatives (see [27, 31] for more details). The sparse

PCE operations are carried out using UQLab [43], which implements the hybrid LAR method

as well as the required calculations to determine the cross-validation error εLOO. The syntax in

main_pce.m is heavily based on UQLab. Hence, some modifications to the source code may

be needed to perform the same operations with other toolboxes.
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Results

We present two separate case studies in this section. The first case study explores Bayesian esti-

mation of six parameters related to the substrate uptake kinetics in a computationally expen-

sive DFBA model of E. coli with a genome-scale metabolic network. The goal of the first case

study is to demonstrate advantages of the proposed nsPCE method over alternatives as well as

its application to a realistic problem that has been previously studied in the literature. The sec-

ond case study focuses on maximum a posteriori estimation in a synthetic DFBA problem

with a relatively large number of parameters, i.e., twenty uncertain parameters appearing in a

variety of intracellular and extracellular quantities. The goal of the second case study is to pro-

vide preliminary evidence of the scalability of nsPCE as well as the fact that the method is

applicable to a wide-variety of UQ applications.

Case study 1: Batch fermentation of E. coli monoculture

This case study is based on a DFBA model of a batch fermentation reactor consisting of an E.
colimonoculture, which has been investigated for the production of valuable chemicals such

as ethanol. Here, we focus on the initial phase of batch operation of the E. coli fermentation

reactor under aerobic growth in a glucose and xylose mixed media [8]. No ethanol production

is observed under aerobic conditions (i.e., this phase is mainly used to increase the biomass),

such that the concentration of ethanol can be omitted from the dynamics. This case study is

Fig 1. Flowchart for the proposed nsPCE surrogate modeling method. The model response function can be freely

chosen by the user. The singularity time function should be specified implicitly as a function of the DFBA model states.

This function can be identified by simulating the DFBA model with nominal parameters and locating at which time

points a switch in the active set of the FBA solution occurs. The PCE coefficients are fit using the basis-adaptive version

of the hybrid LAR method, while the ED is sequentially enriched to ensure that the target accuracy level is achieved.

https://doi.org/10.1371/journal.pcbi.1007308.g001
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commonly used as a benchmark for comparing DFBA solvers (see, e.g., [16, 27, 31]), as it

exhibits stiff dynamics and multiple singularities.

The dynamic mass balance equations of the form (1) for the extracelluar environment can

be summarized as follows

_bðtÞ ¼ mðtÞbðtÞ;

_gðtÞ ¼ � ugðtÞbðtÞ;

_zðtÞ ¼ � uzðtÞbðtÞ;

ð18Þ

where b(t), g(t), and z(t) denote the biomass, glucose, and xlyose concentrations at time t,
respectively. The uptake kinetics for glucose, xylose, and oxygen are given by Michaelis-Men-

ten kinetics

ugðtÞ ¼ ug;max
gðtÞ

Kg þ gðtÞ
;

uzðtÞ ¼ uz;max
zðtÞ

Kz þ zðtÞ
1

1þ
gðtÞ
Kig

;

uoðtÞ ¼ uo;max
oðtÞ

Ko þ oðtÞ
;

ð19Þ

where parameters ug,max, uz,max, uo,max, Kg, Kz, Ko, and Kig correspond to the maximum sub-

strate uptake rates, saturation constants, and inhibition constants. It is assumed that the reac-

tor oxygen concentration, o(t), is controlled and is therefore constant. The growth rate μ(t), on

the other hand, is determined from the metabolic network model of wild-type E. coli. The cho-

sen metabolic network reconstruction was iJR904 [28], which contains 1075 reactions and 761

metabolites. The cells are assumed to maximize growth, implying (2) is an LP of the form

mðtÞ ¼ min
v

c>v;

s:t: Av ¼ 0;

vgext ¼ ugðtÞ;

vzext ¼ uzðtÞ;

voext ¼ uoðtÞ;

vLB � v � vUB;

ð20Þ

where c is a vector of weights that represent the contribution of each flux to biomass formation

while vgext , vzext , and voext are, respectively, the exchange fluxes for glucose, xylose, and oxygen

(i.e., elements of the flux vector v). Thus, the metabolic network interacts with the extracellular

environment through the exchange fluxes in (19).

The initial conditions of the batch are assumed to be fixed at 0.03 g/L of inoculum, 15.5 g/L

of glucose, and 8 g/L of xylose; the oxygen concentration is kept constant at 0.24 mmol/L; and

A, c, vLB, and vUB are specified by the iJR904 model. However, the parameters in the substrate

uptake rates (19) should be fit to experimental data since they cannot be easily predicted from

first principles. This problem of identifying the model parameters was partially tackled in [8],

where most of the parameters were fixed according to estimates provided in the literature
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while uz,max and Kig were adjusted by trial-and-error to match transient measurements of bio-

mass, glucose, and xylose. The reported parameter estimates are given in S1 Table. Since o(t) is

fixed, uo,max and Ko can be lumped into a single parameter uo. These six parameters are

unknown and here are modeled as a random vector whose elements are independent and uni-

formly distributed around ±10% of the nominal values. We selected this range to reflect a rea-

sonable level of confidence in the reported literature values. In the following, we demonstrate

how the proposed nsPCE surrogate modeling method can facilitate UQ tasks that are other-

wise computationally intractable with respect to the full DFBA model.

All reported computations are performed in MATLAB R2016a on a MacBook Pro with 8

GB of RAM and a 2.6 GHz Intel i5 processor. The DFBA model is simulated using DFBAlab

with default options for integration and LP optimization tolerances. CPLEX was used as the

LP solver and MATLAB ode15s was used as the integrator.

Decomposition of parameter space. Before selecting the element decomposition, we

must first simulate the DFBA model to locate any significant singularities. The extracellular

glucose, xylose, and biomass concentration profiles are plotted in Fig 2 for one hundred ran-

domly sampled parameter values. For a given realization of the parameter, the full simulation

requires approximately 1.5 seconds of CPU time.

At the start of the batch, glucose is consumed preferentially over xylose. Once glucose has

been depleted, the LP solution switches and xylose becomes the main carbon source. The final

batch time is then specified as the time that both glucose and xylose have been fully depleted,

at which point the LP becomes infeasible and the solution ceases to exist. The E. coli cells stop

growing at this point due to the lack of a carbon source. Although physically the cells would

begin to die in this situation, DFBA models cannot directly predict the cell death phase and

thus we assume the biomass remains constant for simplicity. The time-to-consumption of

Fig 2. Monte Carlo simulation of E. coli DFBA model. The genome-scale model is integrated from 0 to 8.5 hours for

100 different parameter realizations that are independently drawn from the uniform prior density. The consumption

of xylose only occurs after glucose is fully exhausted, which is a strong function of the parameters.

https://doi.org/10.1371/journal.pcbi.1007308.g002
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glucose tg and xylose tz represent the two singularities in this problem, and clearly depend on

the value of the model parameters. Since the singularity time functions cannot be derived ana-

lytically, we look to construct PCE approximations for both tg and tz. We investigate two differ-

ent fitting methods: classical full PCE with coefficients estimated using ordinary least squares

(OLS) and sparse basis-adaptive PCE with coefficients estimated using hybrid LAR. The degree

of the polynomials is varied from 1 to 6 in the full PCE method, where N = 2Pmodel evalua-

tions are used for regression with P denoting the size of the basis. In the sparse PCE method,

the maximum degree is allowed to vary from 1 to 20, and a hyperbolic truncation scheme (10)

is used with q = 0.75. The experimental designs (EDs) are generated using Monte Carlo (MC)

sampling with a fixed random seed to ensure repeatable results. Fig 3a and 3b show the RMSE

as a function of the number of model evaluations used to fit surrogate models for tg and tz,
respectively. The sparse PCE method consistently outperforms full PCE, achieving approxi-

mately an order-of-magnitude lower RMSE for all ED sizes.

The sparse PCE surrogate models for tg and tz are used in the nsPCE method to build surro-

gates for the extracellular concentrations. Additionally, these surrogate models contain useful

information on which parameters influence the consumption of different substrates. The

Sobol’ indices of tg(X) and tz(X) are shown in Fig 4, which are a commonly used tool in global

sensitivity analysis for ranking the parameters according to their contribution to the variance

of the model response. The Sobol’ indices can be computed analytically from the PCE coeffi-

cients [43], which requires less than one second of CPU time here. It is interesting to note that

ug,max and uo mainly contribute to the variance of tg(X), while ug,max, uz,max, and uo are the sig-

nificant contributors to the variance of tz(X).

The surrogate models can also be used to estimate the PDF of tg(X) and tz(X), as shown in

Fig 4. From the estimated PDFs, we find that tg(X) ranges from approximately 6.31 to 7.87 hr,

whereas tz(X) ranges from approximately 7.33 to 9.12 hr. This suggests that the model response

is a non-smooth function of X 2 S for any t 2 [6.31, 9.12] hr, so that we must split S into two

disjoint regions according to 15. Since the supports of tg(X) and tz(X) partially overlap for any

t 2 [7.33, 7.87] hr, additional elements should be introduced to ensure the model response is

smooth. However, for times outside of this window, we can exclusively define the elements of

the parameter space in terms of tg for times before 7.33 hr and tz for times after 7.87 hr. Plots

of these two regions at times 6.5, 7.0, and 7.25 hr projected onto the two most sensitive

Fig 3. Accuracy of singularity time surrogate models. RMSE versus the number of model evaluations (i.e., size of the

experimental design) used to train the PCE model for (a) the glucose singularity tg and (b) the xylose singularity tz. The

RMSE was estimated empirically from a validation set of 10,000 full DFBA simulations.

https://doi.org/10.1371/journal.pcbi.1007308.g003
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parameters are shown in Fig 5. The blue region represents S1 while the red region represents

S2. For comparison purposes, we also show the decision boundary in green (along with 95%

confidence limits with dashed green lines) learned from a support vector machine (SVM)

binary classifier [46] that was trained using the same 500 data points. The SVM model is

unable to capture the significant nonlinear behavior of the boundary as it evolves over time.

Thus, SVM results in relatively large misclassification errors due to the limited training data.

The sparse PCE model, however, is able to accurately represent the tg function over the full

support (see the parity plot in Fig 5d), which leads to a much more accurate representation of

these two elements using limited data.

The “true” RMSE values reported in Fig 3 were estimated using a large validation set that

consisted of 10,000 evaluations of the full DFBA model, which required over 3 hours of CPU

time. Ideally, these additional model evaluations could be avoided by directly estimating the

RMSE from the ED either empirically or using cross-validation techniques. The empirical esti-

mate of the RMSE is based on sample-based approximations to the integral expressions for

mean and variance. Cross-validation obtains a more robust RMSE estimate by splitting the ED

into various training and validation sets, fitting different models with each training set, and

averaging the prediction error of each model. We focus exclusively on εLOO in this work.

Table 1 gives the estimated RMSE values for the sparse PCE surrogate models fit using differ-

ent ED sizes. We observe that the empirical estimator greatly underpredicts the “true” RMSE

found from the large validation set. In fact, for the smallest size N = 10, the empirical estimate

Fig 4. Uncertainty propagation with singularity time surrogate models. The estimated global sensitivity indices of

(a) tg and (b) tz with respect to the uncertain parameters. The estimated PDF of (c) tg and (d) tz based on 1e+6

surrogate model evaluations, which only requires approximately 1 second of CPU time.

https://doi.org/10.1371/journal.pcbi.1007308.g004
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is a factor of 104 smaller than the true RMSE. The cross-validated RMSE, on the other hand,

predicts the correct order in all considered cases except N = 10 where it is off merely by a factor

of 10 instead of 104. Note that εLOO is used within the hybrid LAR algorithm to select the best

surrogate out of all potential candidates.

Fig 5. Parameter space decomposition over time. The decomposition of the parameter support into two non-

overlapping elements at (a) 6.5 hr, (b) 7.0 hr, and (c) 7.25 hr using a sparse PCE model of the glucose singularity time

tg. The blue and red regions represent parameters for which tg(x) > t and tg(x)� t, respectively, projected onto the two

most sensitive parameters. The green line represents the decision boundary learned using an SVM classifier trained

with the same set of data as the sparse PCE model, while the dashed green lines represent the corresponding 95%

confidence limits. (d) Parity plot for the sparse PCE model of tg for 1e4 validation points.

https://doi.org/10.1371/journal.pcbi.1007308.g005

Table 1. Relative mean square error estimates for glucose singularity time surrogate models under multiple exper-

imental design sizes.

N Validation Cross-validation Empirical

10 1.014e-02 1.268e-03 2.601e-06

50 2.230e-04 3.718e-04 2.130e-04

100 1.616e-04 1.347e-04 5.333e-05

150 7.864e-05 6.468e-05 2.820e-05

200 5.787e-05 3.898e-05 2.416e-05

500 1.817e-05 1.273e-05 7.679e-06

The validation error is computed using a large set of samples not used in the fitting procedure. Cross-validation and

empirical error, however, are computed using only points in the original experimental design. Cross-validation

partitions the experimental design into various training and validation sets such that multiple models can be fit and

their prediction errors averaged in order to compute more robust error estimates than its empirical counterpart.

Here, a leave-one-out cross-validation procedure is utilized.

https://doi.org/10.1371/journal.pcbi.1007308.t001
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Validation of nsPCE surrogate models. We have verified that the PCE surrogate mod-

els are able to accurately represent the singularity manifold that leads to non-smooth behav-

ior in the states of the DFBA model. Thus, they can be used to build nsPCE surrogates for

the extracellular concentrations based on the algorithm summarized in Fig 1. We choose

three quantities of interest for illustrative purposes: glucose at time 7.0 hr, xylose at time 8.0

hr, and biomass at time 8.0 hr. We look to compare so-called global PCE to the proposed

nsPCE method for these three quantities of interest. In global PCE, a single surrogate

model is constructed over the full parameter support, while nsPCE systematically breaks

down the support into two disjoint elements using the singularity time function as a divid-

ing boundary. To ensure a fair comparison, the expansion coefficients of both global PCE

and nsPCE are estimated using the basis-adaptive hybrid LAR strategy with maximum

degree varying from 1 to 20 and q = 0.75 in the hyperbolic truncation scheme (10). In addi-

tion, the ED in both approaches are sequentially enriched using MC sampling with a fixed

random seed. To simplify the construction of the polynomial basis functions when training

the nsPCE surrogate models, the elements S1 and S2 were outerbounded with hyper-rectan-

gles. However, only parameter values that explicitly fall within these sets are incorporated

into the local ED. This simple approach for dealing with elements of any shape is currently

used in the provided scripts [29], but other ways of dealing with generic elements can also

be explored.

The convergence properties of the nsPCE surrogate models for the three quantities of inter-

est are compared to that of global PCE in Fig 6. The nsPCE surrogates achieve significantly

lower RMSE than the global PCE surrogates in virtually all cases considered, while requiring

many fewer samples to converge to the target error level. In addition, global PCE saturates at

the maximum number of ED samples for all three quantities of interest. This implies that

global PCE is unable to achieve the desired accuracy levels, whereas nsPCE only saturates for

the lowest target error of xylose. This behavior is expected since the convergence rate of global

PCE is known to be substantially lowered whenever singularities are present in the model

response function. Thus, nsPCE is able to significantly improve the rate of convergence based

on a properly chosen elemental decomposition of the parameter support. To show that lower

target error levels translate to improved predictions, parity plots for the three quantities of

interest are shown in Fig 7. Note that global PCE has large prediction errors for particular val-

ues of the parameters (see the blue dots that largely deviate from the y = x line), which is likely

due to the fact that an inherently non-smooth function is being represented by smooth polyno-

mials. This is highly undesirable when using the PCE to predict specific response values, as

opposed to predicting statistical quantities that average over the response values where individ-

ual points are not as important. The nsPCE surrogate models clearly mitigate this limitation of

global PCE in a significant way since there are no outlier predictions in the set of 10,000 valida-

tion points.

Bayesian parameter inference. Here, we focus on the inverse UQ problem of estimating

parameters from data, which can be greatly accelerated using nsPCE. The same data set used

in [8] is utilized, which includes measurements of the extracellular biomass, glucose, and

xylose concentrations at t 2 {5.5, 6.0, 6.5, 7.0, 7.25, 8.0, 8.25, 8.5} hr. The measurements are

corrupted with noise

Db
i ¼ bðti;XÞ þ E

b
i ; i ¼ 1; . . . ; 8;

Dg
i ¼ gðti;XÞ þ E

g
i ; i ¼ 1; . . . ; 8;

Dz
i ¼ zðti;XÞ þ E

x
i ; i ¼ 1; . . . ; 8;

ð21Þ

where Di ¼ ðDb
i ;D

g
i ;Dz

i Þ and Ei ¼ ðEbi ;E
g
i ;Ezi Þ are, respectively, vectors of the measured data
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and noise at the ith time point. The concatenated data (respectively noise) vector is denoted by

D = (D1, . . ., D8) (respectively E = (E1, . . ., E8)). The measurement noise variables are modeled

as independent zero-mean Gaussian random variables with state-dependent variance that

equals 5% of the measured signal, i.e.,

Evi � N ð0; s2
v;iðXÞÞ; sv;iðXÞ ¼ 0:05jvðti;XÞj; v 2 fb; g; zg: ð22Þ

Fig 6. Convergence properties of nsPCE surrogate models. (a,b) Glucose concentration at time 7 hours. (c,d) Xylose

concentration at time 8 hours. (e,f) Biomass concentration at time 8 hours. Left plots show the validation RMSE versus

the specified error tolerance. Right plots show the total number of model evaluations based on a sequential ED

construction, with a maximum of 1000 samples allowed. The global sparse basis-adaptive PCE results are also shown

for comparison purposes.

https://doi.org/10.1371/journal.pcbi.1007308.g006
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Given a set of measurements, the change in the state of information about the parameters is

given by Bayes’ rule [11]

fXjDðxjdÞ ¼
fDjXðdjxÞfXðxÞ

fDðdÞ
; ð23Þ

where fX|D is the posterior density; fD|X is the likelihood function; fX is the prior density; and fD
is the evidence. As Bayesian inference looks to characterize the full posterior density, it directly

provides an explicit representation of the uncertainty in the parameter estimates.

The prior and likelihood function must be specified before solving (23). We assume the

same uniform priors as those used to construct the nsPCE surrogate models, though these can

differ in general. The likelihood function describes the discrepancy between the observed data

and the model predictions in a probabilistic way. The likelihood function is specified by the

data and noise models in (21) and (22), and is given by

fDjXðdjxÞ ¼
Y8

i¼1

Y

v2fb;g;zg

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

v;iðxÞ
q exp �

ðdvi � vðti; xÞÞ
2

2s2
v;iðxÞ

 !

: ð24Þ

Fig 7. Parity plots for nsPCE surrogate models. (a,b,c) Target RMSE level εtarget = 10−2. (d,e,f) Target RMSE level

εtarget = 10−3. (g,h,i) Target RMSE level εtarget = 10−4. The left, middle, and right columns correspond to glucose

concentration at 7 hours, xylose concentration at 8 hours, and biomass concentration at 8 hours, respectively. The

parity plots for global sparse basis-adaptive PCE are overlaid for comparison purposes. The global PCE has

considerably larger error than nsPCE.

https://doi.org/10.1371/journal.pcbi.1007308.g007
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Although we use a Gaussian likelihood here, the same Bayesian estimation approach can be

applied to any choice of likelihood function and thus can be easily modified to incorporate

other potentially important factors including sensor bias or asymmetric noise.

Since (23) cannot be solved analytically, we must resort to sample-based approximations

that rely on generating samples from the target posterior distribution. A variety of methods

have been developed for sampling from the unknown posterior fX|D, including Markov

Chain Monte Carlo (MCMC) [47–49] and sequential Monte Carlo (SMC) [50–52] algo-

rithms. The proposed surrogate models can be used to accelerate any sampling-based

method; however, we focus on SMC since this is a class of algorithms that can be made

fully parallelized. SMC is based on the concept of importance sampling, which can be imple-

mented in an iterative fashion such that the posterior is updated every time a new measure-

ment becomes available. For a given number of particles Np, the SMC approximation to (23)

can be summarized as follows:

1. Initialization: set k = 1 and generate samples and weights fxi;wig
Np
i¼1 from prior.

2. Reweighting: update the weights wi wi × wk(xi) where wk(xi)/ fDk|X(dk|xi).

3. Resampling: resample fxi;wig
Np
i¼1 for particles with equal weights fxri ;

1

Np
g
Np
i¼1.

4. Loop: set k k + 1 and fxi;wig
Np
i¼1  fxri ;

1

Np
g
Np
i¼1. Return to Step 2 if k< kf.

When the algorithm stops at time kf, the set of Np particles targets the posterior distribution of

interest. We use systematic resampling in Step 3 due to its computational simplicity and good

empirical performance, though a variety of other methods are available [50]. Step 2 is usually

the computational bottleneck because the model must be repeatedly solved in order to evaluate

the likelihood weight factors using (24). Therefore, we propose to replace the evaluation of v(ti;
x) with a nsPCE surrogate model vnsPCE(ti; x) for every v 2 {b, g, z} and i = 1, . . ., 8. We must

then construct a total of 24 surrogates before running the SMC algorithm.

The same basic strategy described in the previous section is used for constructing all 24 of

the nsPCE surrogate models. Similarly to how the samples for the singularity time are used to

initialize the ED in each element, we can store the list of state and time points generated when

integrating the DFBA model and interpolate these points to calculate the extracellular concen-

trations at every time point of interest. By keeping a working ED that is used to initialize each

element at every time point, we can greatly limit the number of expensive DFBA simulations

that represent the computational bottleneck in SMC. The proposed algorithm in Fig 1 is run

with a target error of εtarget = 10−3, 250 initial ED samples, 10 ED samples added at each itera-

tion, 2500 maximum ED samples, maximum degree varying from 1 to 20, and hyperbolic

truncation with q = 0.75. The algorithm converged with cross-validated errors εLOO below the

desired tolerance using only a total of 1200 DFBA simulations to train all 24 nsPCE surrogate

models. The basis-adaptive hybrid LAR method consistently estimated coefficients in less than

30 seconds, verifying that the DFBA simulations are the dominant cost in this case study. The

validation RMSE values are summarized in S2 Table, which are all below the target error

threshold.

Fig 8 shows the posterior density estimated using SMC with Np = 1 × 106 particles for a syn-

thetic data set, where the likelihood weights are evaluated using the inexpensive nsPCE surro-

gate models. The synthetic data (‘x’ marks in S1 Fig) was obtained by simulating the genome-

scale E. coliDFBA model with fixed parameters (red lines in Fig 8) and adding random noise

realizations (22) to the resulting model outputs. The 1200 DFBA simulations used to construct
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the surrogates require* 30 minutes of CPU time while the surrogate-based SMC algorithm,

which takes advantage of vectorization, finishes in * 2 minutes of CPU time. Hence, over

800-fold savings in computational cost is achieved when compared to SMC without surrogates

that would require approximately 17 days of CPU time under the same settings (1 × 106 DFBA

simulations at a cost of 1.5 seconds per evaluation). The DFBA model predictions under the

MAP estimates (i.e., parameters that maximize the posterior) are shown in S1 Fig, which

closely match the observed data. To verify that the SMC algorithm approximately converged

with this many particles, we performed 10 separate bootstrap runs that produced a set of very

similar posterior densities. Note that a discussion on challenges and open issues in Bayesian

estimation is provided in the Discussion section. The SMC code is provided in the

main_smc.m script in [29].

The estimated posterior density in Fig 8 provides interesting physical insights. Three of the

parameters (Kg, Kz, Kig) are unobservable with the current data set since their posterior (blue)

and prior (green) densities are equivalent. This observation could not be easily made before

running the estimation procedure due to the nonlinear and indirect relationship between D
and X. A change in the experimental conditions such as the initial conditions, controlled oxy-

gen concentration, or substrate feed profiles can enhance the sensitivity of the data to parame-

ters (Kg, Kz, Kig). For example, running the batch at low glucose concentrations g(t)� Kg
results in a glucose uptake rate ugðtÞ � ug;max

gðtÞ
Kg

that is a strong function of Kg, whereas run-

ning the batch at high glucose concentrations (as done in this case study) produces a nearly

constant uptake rate ug(t)� ug,max that is independent of Kg. Although the data is sensitive to

(ug,max, uz,max, uo), these parameters are highly correlated as seen in the off-diagonal plots of

their joint densities in Fig 8. Thus, the currently available data from one single batch is insuffi-

cient for accurately estimating all the parameters of interest. The evolution of the marginal

posterior densities of the observable parameters over time is shown in Fig 9. Since glucose is

mostly consumed by 7.25 hr, the densities of ug,max and uo remain constant for the remaining

batch time. The density of uz,max, however, is constant before 7.25 hr because xylose remains

mostly at its initial condition.

Fig 8. Posterior distribution of the estimated model parameters. The diagonal subplots represent marginal densities

while the off-diagonal subplots represent two-dimensional projections of samples from the joint density. Blue denotes

the posterior density while green denotes the prior density. The red line represents the true parameter values used to

generate synthetic data for estimation purposes.

https://doi.org/10.1371/journal.pcbi.1007308.g008
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Forward uncertainty propagation. Let Y ¼MðXÞ denote the vector of all model

responses. The forward UQ problem looks to characterize the uncertainty in the model pre-

dictions by propagating uncertainty in the parameters through M. This can involve estimat-

ing either the prior predictive distribution fY (before any data has been collected), or the

posterior predictive distribution fY|D (after data has been obtained). The only difference

between these two problems is that M is evaluated at i.i.d. samples drawn from the prior in

the former and the posterior in the latter. The densities of the model predictions estimated

using 1 × 106 samples are shown in Fig 10. By replacing the full DFBA model with the nsPCE

surrogate model, these histograms were obtained in less than 1 minute of CPU time. As

expected, the prior predictive distributions are much wider than the posterior predictive dis-

tributions, indicating there is significant uncertainty in the predictions before incorporating

data. In addition, we see that many of these distributions have sharp changes and long tails

due to the non-smooth behavior of the model responses, which can be accurately captured

with the proposed nsPCE framework. It is also interesting to note that the posterior predic-

tive distributions have low variance, even though the parameters are not perfectly estimated.

This highlights the impact that nonlinearity can have on both estimation and uncertainty

propagation.

Case study 2: Synthetic metabolic network

This case study is based on a synthetic metabolic network originally introduced in [31,

Chapter 8]. The goal of this case study is to show that the proposed nsPCE method can be

applied to problems with a larger number of parameters as well as alternative UQ

approaches. The synthetic metabolic network consumes a carbon source C, a nitrogen

Fig 9. Evolution of the posterior marginal densities for the observable model parameters over time. Each subplot

shows the histogram of parameter posterior samples estimated using the sequential Monte Carlo method. The x-axis

represents the range of values of the parameters and the y-axis represents frequencies. The red line represents the true

parameter values.

https://doi.org/10.1371/journal.pcbi.1007308.g009
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source N, and an oxygen source O to produce lipids L, ethanol E, biomass X, ATP, and some

oxidation product COX. Although used for illustrative purposes, this network is meant to

mimic the behavior of living organisms in the sense that: (i) E can only be produced in the

absence of O, (ii) L can only be accumulated in the absence of N, (iii) there is a minimum

ATP requirement, and (iv) the aerobic oxidation of C produces more energy than

Fig 10. Predicted probability distributions of extracellular concentrations. (a) Model predictions using parameter

samples from the prior. (b) Model predictions using parameter samples from the posterior. Each subplot shows the

histogram of samples of the model output obtained by substituting i.i.d. samples from the parameter distribution into

the corresponding ME-PCE surrogate model. The x-axis represents the range of values of the model outputs and the y-
axis represents frequencies.

https://doi.org/10.1371/journal.pcbi.1007308.g010
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fermentation of C. The set of reactions can be summarized as

vC : Cex ! C;

vN : Nex ! N;

vO : Oex ! O;

vOX : C þ O! SATP;OXATP þ SOX;OXCOXex;

vFerm : 4C! SATP;FermATP þ Eex þ SOX;FermCOXex;

vL : 4C þ SATP;LATP! L;

vX : SC;XC þ SN;XN þ SATP;XATP! X;

vATP : ATP! ATPmaintenance;

ð25Þ

where the subscript ex denotes extracellular metabolites and all of the reactions are assumed

to be unidirectional. The unknown stoichiometric coefficients are denoted by Si,j, where i
represents the metabolite name and j represents the reaction name. The dynamic mass bal-

ance equations for the extracellular environment are given by

_XðtÞ ¼ vXðtÞXðtÞ; Xð0Þ ¼ X0;

_CðtÞ ¼ � vCðtÞXðtÞ; Cð0Þ ¼ C0;

_NðtÞ ¼ � vNðtÞXðtÞ; Nð0Þ ¼ N0;

_OðtÞ ¼ � vOðtÞXðtÞ; Oð0Þ ¼ O0;

_LðtÞ ¼ vLðtÞXðtÞ; Lð0Þ ¼ 0;

_EðtÞ ¼ vFermðtÞXðtÞ; Eð0Þ ¼ 0;

_COXðtÞ ¼ ðSOX;OXvOXðtÞ þ SOX;FermvFermðtÞÞXðtÞ; COXð0Þ ¼ 0;

_aðtÞ ¼ gðtÞ; að0Þ ¼ 0;

ð26Þ

where α is a penalty state that remains equal to zero until the state trajectories become infea-

sible (e.g., when all of the metabolites are depleted). A detailed discussion on how to deter-

mine the instantaneous penalty value γ is provided in [10], which is automatically computed

in DFBAlab. We assume that the uptake kinetics are given by the following expressions

vUBC ðsÞ ¼ max 0; vmax;C
C

KC þ C
1

1þ E
KiE

 !

;

vUBN ðsÞ ¼ max 0; vmax;N
N

KN þ N

� �

;

vUBO ðsÞ ¼ max 0; vmax;O
O

KO þ O

� �

;

ð27Þ

where s = (X, C, N, O, L, E, COX, α) is the vector of extracellular species. A hierarchical set

of objectives is used in the FBA problem (2) to ensure that unique reaction fluxes are

obtained (see S3 Table). A total of twenty parameters in this DFBA model, appearing in both

Fast uncertainty quantification for dynamic flux balance analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007308 August 30, 2019 23 / 35

https://doi.org/10.1371/journal.pcbi.1007308


intracellular and extracellular quantities, are assumed to be uniformly distributed between

upper and lower bounds summarized in S4 Table.

Global sensitivity analysis. To locate any possible singularities, we first simulate the

DFBA model with randomly sampled parameter values. The results are shown in Fig 11

wherein we see that the penalty state becomes positive α(t)> 0 once all substrates are depleted,

which introduces a strong discontinuity into the state profiles. Even though this is a consider-

ably smaller metabolic network than the one considered in the E. coli case study, it still takes

approximately 0.5 seconds of CPU time per realization of the parameter. Thus, it is still advan-

tageous to construct a surrogate model to speedup both forward and inverse UQ problems.

We look to run the proposed nsPCE method (see Fig 1) using the time that the penalty state

switches from zero to positive as the singularity time. As suggested in [31, Chapter 8], we con-

sider the seven substrate and product concentrations (X, C,N,O, L, E, COX) at four time points

t 2 {10, 20, 30, 40} hr as our main quantities of interest. The nsPCE method was applied in the

same manner as described in the previous case study. Here, we specified a target error of εtarget =

10−3, 100 initial ED samples, 100 ED samples added at each iteration, 1500 maximum ED sam-

ples, the maximum polynomial degree could vary from 1 to 30, and a hyperbolic truncation

scheme with q = 0.6. The algorithm converged using a total of 2800 DFBA simulations. The

resulting parity plots are shown in S2 Fig, which all have empirical RMSE values significantly

below the target error. To further assess the accuracy of these models, we calculated the RMSE

using 1000 additional samples that were not used during the training process. The validation

Fig 11. Monte Carlo simulation of the synthetic metabolic network. The synthetic DFBA model with twenty

uncertain parameters is integrated from time 0 to 40 hours for 100 different parameter realizations drawn

independently from the uniform prior density. The time profiles are shown for (a) biomass and lipids, (b) the

substrates and products, and (c) the penalty state.

https://doi.org/10.1371/journal.pcbi.1007308.g011
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RMSE averaged over the 28 models was found to be 8.1 × 10−4. Only 6 of the 28 surrogates had

RMSE values slightly above the target, with the largest overall RMSE being 3.5 × 10−3, indicating

that the surrogates are reasonably accurate representations of the original model. Note that these

errors can be refined by specifying a lower εtarget at the cost of more DFBA simulations.

Once the nsPCE surrogate models are constructed, they can be used to efficiently perform

global sensitivity analysis in order to quantify the respective effects of each individual parame-

ter on the variance of the model response. Although many sensitivity measures exist, we use

Sobol’ indices since they make no assumption on the underlying linearity or monotonicity of

the model. The global sensitivity results for the various quantities of interest over time are

shown in Fig 12. A variety of interesting conclusions can be drawn from these results. For

example, the model appears to be insensitive to KC and KiE, which is likely due to the fact that

the batch was run at high carbon and low ethanol concentrations. In addition, the measure-

ments of carbon, nitrogen, and oxygen are highly sensitive to their respective initial conditions

C0, N0, and O0 at the first measurement time of 10 hr; however, this sensitivity drops consider-

ably as time evolves. We emphasize that obtaining such insights using random sampling on

the full model can be prohibitively expensive, but requires negligible cost using the nsPCE sur-

rogate models.

Optimization-based parameter estimation. We now utilize maximum a posteriori

(MAP) estimation to estimate the unknown model parameters from synthetically-generated

experimental data (see S5 Table). The MAP estimate is defined as the mode of the posterior

distribution, and can be stated directly as an optimization problem of the form [53]

x̂MAPðdÞ ¼ argmax
x2S

fXjDðxjdÞ ¼ argmax
x2S

fDjXðdjxÞfXðxÞ; ð28Þ

where the prior acts as a regularization term that can stabilize the solution whenever the

parameters cannot be uniquely inferred from the available data [54]. We consider a Gaussian

likelihood, with noise standard deviations reported in S5 Table, and a Gaussian prior whose

mean is equal to the midpoint of the bounds in S4 Table and standard deviations equal to 10%

of the mean values. Under the Gaussian restrictions, we can convert the MAP problem to the

minimization of a regularized weighted least squares objective by applying a negative log trans-

formation. We solved the optimization (28) using both the full DFBA and nsPCE surrogate

models in order to assess the computational gains afforded by the nsPCE method. To ensure a

fair comparison, we solved both of these MAP problems in Matlab using the non-smooth opti-

mizer SolvOpt [55] with default parameter settings and the mean of the prior as the initial

guess. The algorithm took approximately 2.5 hr to converge when using the full DFBA model,

which was substantially reduced to less than 2 minutes (i.e., a factor of 60) when the full model

was replaced with the nsPCE surrogates.

Not only did the use of the nsPCE surrogate models accelerate the optimization, it also pro-

duced a solution with a lower overall objective function value. The objective improved from

471.73 to 1.56 when using the surrogate models as compared to 63.57 when using the full

DFBA model. Convergence to a suboptimal solution is likely a consequence of numerical

issues related to the stability of derivative approximation using finite difference in DFBA mod-

els, which were also observed in [31, Chapter 8]. On the other hand, since the nsPCE surrogate

models are defined in terms of simple polynomial functions, the finite difference derivative

approximation seems to produce more stable iterations towards the solution of the MAP prob-

lem, at least in this particular case study. The predictions of the DFBA model under the MAP

estimates found using the nsPCE surrogates are shown in Fig 13. We see that the predictions

using the posterior parameter estimates very closely match the observed data, which is a large

improvement when compared to the predictions based on the prior parameter estimates.
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Fig 12. Global sensitivity indices for the quantities of interest in the synthetic metabolic network. (a)-(g) Global

sensitivity indices for extracellular substrate and product concentrations at various time points with respect to the

twenty uncertain parameters.

https://doi.org/10.1371/journal.pcbi.1007308.g012
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Posterior distribution analysis. The MAP estimation (28) determines the parameters

that maximize the posterior density. However, we need a characterization of the entire poste-

rior to assess uncertainty in these estimates. Here, we use a Laplace approximation of the pos-

terior density, which is based on a second-order Taylor series of −log(fX|D(x|d)) around the

MAP estimate [56]. As shown in [57], this leads to a Gaussian approximation of the posterior

whose mean is equal to the MAP estimate and whose covariance is defined in terms of the

model response sensitives. The approximated posterior marginal densities and 95% confidence

regions for the twenty MAP parameter estimates are shown in Fig 14. As can be seen, the true

(unknown) parameter values are contained within the reported confidence regions. We also

see that the parameters with the highest global sensitivity indices (see Fig 12) are accurately

Fig 13. Comparison of model predictions and data for the synthetic metabolic network. The model predictions for

(a) biomass and lipids and (b) the substrates and products, shown with solid lines, were obtained by integrating the

DFBA model with the MAP estimates of the parameters. The ‘□’ marks represent the data that was obtained by

corrupting the model predictions using the true (unknown) parameters with randomly generated noise. The dotted

lines represent the model predictions based on the initial parameter guess that was used to initialization the optimizer.

https://doi.org/10.1371/journal.pcbi.1007308.g013

Fig 14. Estimated posterior distribution for the parameters of the synthetic metabolic network. The diagonal

subplots represent the estimated marginal densities, while the off-diagonal subplots represent the two-dimensional

projections of the 95% confidence regions. Black ‘x’ marks represent the true parameter values, while the modes of the

marginal densities signify the MAP estimates.

https://doi.org/10.1371/journal.pcbi.1007308.g014
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estimated, whereas the parameters that have little-to-no sensitivity to the data have much

wider variances that are similar to that of the prior. Lastly, we observe that physically-related

parameters exhibit a significant degree of correlation including, for example, nitrogen uptake

parameters vmax,N and KN. It is worth noting that the surrogate models can also enable the use

of more advanced methods for posterior characterization such as randomized MAP [58],

which would require the repeated solution of (28) with randomly perturbed data.

Discussion

In this work, we develop a novel surrogate modeling method for handling the non-smooth

nature of computationally expensive dynamic flux balance analysis (DFBA) models. It is

shown that surrogate models can vastly accelerate uncertainty quantification (UQ) tasks, such

as calibrating the model with experimental data (inverse problem) and quantifying confidence

in the model predictions (forward problem). The proposed surrogate modeling method is

based on an extension of polynomial chaos expansion (PCE), which we refer to as non-smooth

PCE (nsPCE). The main idea behind nsPCE is to systematically partition the parameter space

into two non-overlapping regions (or elements) on which the model response behaves

smoothly. The nsPCE uses a model of the time that the singularity occurs in order to define

the boundary between these two elements. State-of-the-art (i.e., sparse basis-adaptive) regres-

sion methods are used to estimate the coefficients of the expansions, such that the overall

model response is approximated by a sparse piecewise polynomial function.

We demonstrate the advantages of the nsPCE surrogate modeling method on two separate

case studies. The first case study is based on a DFBA model of an E. coli fermentation reactor

under aerobic growth in a glucose and xylose mixed media. A genome-scale metabolic net-

work reconstruction with 1075 reactions and 761 metabolites is used to represent the intracel-

lular behavior, which results in an expensive-to-simulate DFBA model that is prohibitive for

use in most UQ tasks. Thus, we illustrate how both inverse and forward UQ can be signifi-

cantly accelerated using nsPCE surrogate models on this problem. In particular, we use a

Bayesian estimation method to infer six uncertain parameters related to the substrate uptake

kinetics from data. The posterior parameter distribution is estimated using sequential Monte

Carlo with 1 × 106 samples, which would have required *17 days of CPU time to compute

using the full DFBA model, but takes less than one hour when using the nsPCE surrogate mod-

els including the cost of training the models. The resulting posterior distribution yields signifi-

cant physical insights including that the available data set is insufficient to reliably estimate all

six parameters, with three of the parameters being non-identifiable under the current experi-

mental conditions. We then demonstrate the scalability of the proposed nsPCE method on a

synthetic metabolic network problem with twenty unknown parameters that are related to

both intracellular and extracellular quantities. We estimate these parameters using maximum

a posteriori (MAP) estimation, and observe that the cost of the optimization algorithm can be

reduced by a factor of 60 when using the nsPCE surrogates in place of the full DFBA model.

Note that the observed speedups are expected to be even greater for more complex DFBA

models, such as those with nonlinear cellular objectives, multiple cultures, or even larger meta-

bolic networks due to the increased cost of the simulations.

Scalability properties of nsPCE

The nsPCE method is specifically constructed to take advantage of the hybrid LAR method

for sparse regression, which was originally developed in [19]. As such, nsPCE directly inherits

the beneficial scalability properties of hybrid LAR that introduces two sources of sparsity into

the expansions: (i) low-rank truncation that discards basis terms that lead to high-order
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interaction of the parameters that are irrelevant in most engineering problems and (ii) regular-

ized least squares is used to systematically add basis terms that are strongly correlated to the

model response. Additionally, the risk of over-fitting the surrogate model to the available data

set can be reduced even further by making the approach basis-adaptive, i.e., separate PCE

models are fit for varying maximum degrees and the one with the lowest error is selected.

The basis-adaptive hybrid LAR approach has been successfully applied to a wide-variety of

problems and has consistently shown the ability to greatly mitigate the curse-of-dimensionality

that is inherent in traditional PCE methods (see, for example, [19, 59, 60]). To the best of our

knowledge, [60] tackled the largest problem to-date, which is a hydrogeological model with 78

parameters (68 identified to be sensitive) that can be accurately represented using a sparse

PCE trained using only 2000 model evaluations. Although uncertainty in high-dimensional

DFBA models has not been explored in the literature, these promising results and those shown

in the synthetic case study give some confidence that nsPCE may be able to scale to the sizes

needed to solve these challenging problems. Note that very recent work has shown that sparse

PCEs can be applied to ultrahigh-dimensional problems (on the order of 104 parameters) by

incorporating a dimensionality reduction step before training the surrogate model [61]. It may

be possible to use similar approaches to incorporate uncertainty in the complete set of intracel-

lular model parameters into the nsPCE surrogate models. These are interesting and important

challenges that deserve further investigation.

Further reducing the number of model evaluations

In this work, the surrogate models are trained using experimental designs (EDs) populated

with random samples of the parameters. Recent work has demonstrated that the number of

ED points needed to achieve a desired accuracy level can be further reduced by maximizing

the information content of the sample locations. Multiple approaches have been developed to

tackle this challenging problem, including coherence-optimal sampling [62] and numerical

“moment-matching” optimization [34, 37]. The optimal placement of samples in arbitrary

domain shapes in a sequential fashion remains largely unexplored in the literature.

Additionally, the current implementation of nsPCE involves only two elements; however, it

is unclear if the convergence rate can be improved even more by further decomposing these

elements. An adaptive approach for decomposing the random parameter space that uses sensi-

tivity information to decide which elements to split was proposed in [25]. A similar concept

could be potentially utilized within nsPCE, though the method would likely benefit from the

incorporation of more advanced geometries than simple boxes.

Considerations and challenges in parameter estimation

Many of the difficulties encountered during parameter estimation are related to poor iden-

tifiability of model parameters. Performing parameter identifiability tests can help mitigate

these difficulties by ensuring the parameter estimation problem is well-posed, which is espe-

cially important when dealing with limited experimental data and/or considering a large

number of model parameters. It is common to distinguish between structural and practical

identifiability. Structural identifiability is a theoretical property of the model structure that

depends only on the observation function and the manipulated input function. Since a struc-

turally non-identifiable parameter is independent of the accuracy of available experimental

data, it cannot be resolved by a refinement of existing measurements. The only remedy is a

qualitatively new measurement or experiment that alters the structure of the mapping

between the parameters and the data. In contrast, practical identifiability also takes into

account the amount and quality of the measured data, meaning that it can in principle be
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resolved by improving the quality of the measurements or increasing the number of measured

time points. A thorough treatment of these issues in the context of biological models can be

found in, e.g., [63–65]. To the best of our knowledge, structural and practical identifiability

analysis has not been demonstrated on DFBA models, which is an interesting area for future

work. It is important to note that, although many methods exist for detecting non-identifiable

parameters, they often have restrictions on the class of functions so that they are not directly

applicable to DFBA models.

Although not observed here, sequential Monte Carlo (SMC) can suffer from degeneracy
wherein fewer and fewer particles retain significant weight. This is especially prevalent in

high-dimensional problems including those with a large number of parameters or a large time

horizon [66]. In [67], it is shown that the degeneracy phenomenon occurs unless the sample

size is chosen to be exponential in the dimension, which indicates some type of curse-of-

dimensionality. This sample degeneracy can be protected against by adding a rejuvenation step

that “moves” the resampled particles according to a Markov chain Monte Carlo (MCMC)

transition kernel [51]. This operation does not change the target distribution, but does reduce

impoverishment since identical replicates of a single particle are replaced with new values. The

most challenging part of the MCMC step is ensuring that the samples obtained realistically

represent the desired distribution. It is known that convergence of the Markov chain fails for

posteriors that are not proper, which can happen whenever the prior is improper (e.g., uni-

form density with infinite bounds) or non-identifiable parameters exist in the model [68]. In

these situations, neither the prior assumptions nor the likelihood that represents the experi-

mental data sufficiently constrain the posterior distribution. As such, the convergence proper-

ties of SMC and MCMC methods may improve considerably by resolving parameter

identifiability issues before running the algorithm [69].

Extensions to optimal experiment design

The selection of optimal conditions for conducting experiments (e.g., measurement times,

initial conditions, and time-varying input profiles) is important for ensuring maximum

information is extracted from the observations, especially when the experiments are

expensive and time-consuming to perform. For example, it may be useful to change the feed

rate or the measurement times in the considered case study so that the data ensures tight

parameter estimates are obtained. Optimal experiment design (OED) has been extensively

studied in the classical framework wherein the design criteria are defined as some scalar func-

tion of the Fisher information matrix (FIM) [70, 71]. More recently, OED has been tackled

from a fully Bayesian perspective that replaces the approximated classical design criteria with

an expected utility function that is rigorously chosen from a decision-theoretic point of view

[72–74].

The nsPCE surrogate models could be used to efficiently evaluate classical or Bayesian

design criteria at any fixed experimental condition. However, the parameter space decompo-

sition depends strongly on the experiment, such that separate surrogates need to be con-

structed for all experiments of interest. This is not a major challenge when only a small

number of experiments are considered, but may become intractable for continuous design

spaces. Developing efficient procedures for both classical and Bayesian OED in genome-scale

DFBA models is an important area for future research. One possible direction is to treat the

experiment design variables as parameters when constructing the surrogate model, as sug-

gested in [75] for global PCE. It would be interesting to see how well nsPCE can handle these

additional dimensions, since the model responses would likely be highly sensitive to the

design variables.
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Supporting information

S1 Fig. Comparison of model predictions and synthetic data for the E. coli case study. The

model predictions, shown with solid lines, were obtained by integrating the DFBA model with

the maximum a posteriori (MAP) estimates of the parameters, which correspond to the mode

of the posterior density. The ‘x’ marks represent synthetic data generated by corrupting model

predictions for the true (unknown) parameters with randomly generated noise.

(PDF)

S2 Fig. Parity plots for nsPCE surrogate models for synthetic metabolic network. The rows

correspond to the extracellular substrate and product concentrations while the columns corre-

spond to the various time points of interest. The x-axis represents the exact value of the model

while the y-axis represents the surrogate model predictions. The blank plots represent quanti-

ties of interest with variance significantly lower than the tolerance.

(PDF)

S1 Table. Nominal substrate uptake parameters for E. coli DFBA model. Parameter values

taken from [8]. Uncertainty in the parameter estimates was not quantified. We assume the

uncertainty in these estimates is uniformly distributed around ±10% of the nominal parameter

values, which leads to fairly large variability in the predicted extracellular behavior.

(PDF)

S2 Table. Relative mean square error estimates for nsPCE surrogate models for E. coli case

study. A total of 1200 DFBA simulations were sequentially generated to train all nsPCE surro-

gate models to meet the specification εtarget = 10−3. The RMSE values were computed using a

validation set of 10,000 DFBA simulations. An entry of 0.0 corresponds to quantities of interest

with variance below εtarget.
(PDF)

S3 Table. Hierarchy of objectives for synthetic metabolic network. The FBA problem was

formulated as a linear program with multiple objectives that are optimized based on the prior-

ity list specified in this table. This approach is able to ensure that the FBA problem is feasible

for all simulation times and that the exchange fluxes are unique. More information on this

strategy can be found in [10].

(PDF)

S4 Table. Uncertain parameter bounds for synthetic metabolic network. The uncertainty

ranges are based on the nominal values presented in [31, Chapter 8]. The parameters are either

related to the substrate uptake kinetics, the initial conditions, or the stoichiometric coefficients

of the reactions. For the latter, we selected coefficients that are likely to be inferred from exper-

imental data in real applications.

(PDF)

S5 Table. Simulated experimental data for synthetic metabolic network. This data was used

to estimate the parameters in the synthetic case study, which was obtained by simulating the

DFBA model with true (unknown) parameters and then adding randomly generated noise.

The noise was assumed to be Gaussian with standard deviation shown in row labeled

‘STDEV’.

(PDF)

S1 Text. Summary of methods for simulating DFBA models.

(PDF)
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