
materials

Article

Cancellation of Auxetic Properties in F.C.C. Hard Sphere
Crystals by Hybrid Layer-Channel Nanoinclusions Filled by
Hard Spheres of Another Diameter

Jakub W. Narojczyk 1 , Krzysztof W. Wojciechowski 1,2,* , Jerzy Smardzewski 3 , Attila R. Imre 4,5 ,
Joseph N. Grima 6,7 and Mikołaj Bilski 8

����������
�������

Citation: Narojczyk, J.W.;

Wojciechowski, K.W.; Smardzewski,

J.; Imre, A.R.; Grima, J.N.; Bilski, M.

Cancellation of Auxetic Properties in

F.C.C. Hard Sphere Crystals by

Hybrid Layer-Channel

Nanoinclusions Filled by Hard

Spheres of Another Diameter.

Materials 2021, 14, 3008. https://

doi.org/10.3390/ma14113008

Academic Editor: Pavel Lukáč
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Abstract: The elastic properties of f.c.c. hard sphere crystals with periodic arrays of nanoinclusions
filled by hard spheres of another diameter are the subject of this paper. It has been shown that a
simple modification of the model structure is sufficient to cause very significant changes in its elastic
properties. The use of inclusions in the form of joined (mutually orthogonal) layers and channels
showed that the resulting tetragonal system exhibited a complete lack of auxetic properties when
the inclusion spheres reached sufficiently large diameter. Moreover, it was very surprising that this
hybrid inclusion, which can completely eliminate auxeticity, was composed of components that, alone,
in these conditions, enhanced the auxeticity either slightly (layer) or strongly (channel). The study
was performed with computer simulations using the Monte Carlo method in the isothermal-isobaric
(NpT) ensemble with a variable box shape.

Keywords: auxetics; negative Poisson’s ratio; nanolayers; nanochannels; hard spheres; inclusions;
Monte Carlo simulations

1. Introduction

Auxetic materials [1] play an important role in designing and developing modern
metamaterials. The word “auxetics” refers to materials for which the Poisson’s ratio (PR) [2]
takes negative values [3]. Originating from the first theoretical models exhibiting negative
Poisson’s ratio [4–7], through the construction of model materials with arbitrarily pre-
scribed properties [8], up to ideas more commonly related today to auxetics [9–11], these
relatively recently discovered materials became the subject of intense studies in the last few
decades. Their extraordinary properties were quickly noted by the scientific community,
what has been reflected in the rapidly growing knowledge base [12,13]. Auxetic proper-
ties were found not only in metamaterials [14–16] or model structures [17,18], but also
in crystals, e.g., cubic systems [19], both theoretically [20–23] and experimentally [24,25].
Novel structures [26–34], nanostructures [35,36], and models [37–44], real materials (e.g.,
polymers [45,46], composites [47], or foams [48,49]), and metamaterials [50,51] with auxetic
properties have been designed and reported. These advances in real metamaterials would
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not have been possible without more basic research [52–54], analysis [55–59], and optimiza-
tion [60,61] of auxetic models on various levels. This effort is motivated by the extraordinary,
counterintuitive elastic properties and potential applications of auxetics [62–68].

One of directions in the optimization of the properties of metamaterials is the study of
inclusions in structures [69–72]. Recently, studies on elastic properties of particle model
systems with inclusions of particles with other dimensions have been published. The
inclusions in the form of channel [71] or layer [72] arrays have been introduced into
f.c.c. crystals of hard spheres. The hard sphere (HS) potential constitutes a fundamental
theoretical model, used for more than a half of century, to describe qualitatively the
properties of condensed matter systems, such as solids and liquids [73]. This is due to
the fact that short-range intermolecular correlations are well reproduced by the hard
interactions. Thus, because of the fact that only purely geometrical interactions had been
considered, the studies aimed to answer the question how the change of the size of inclusion
particles influences the model’s elastic properties, with particular emphasis on Poisson’s
ratio. It has been shown that (in the same thermodynamic conditions) both types of
inclusions significantly impact the symmetry of the system. In both cases, this resulted
in systems that belong to the tetragonal 422 symmetry class [74]. However, the influence
of both of these inclusions on the elastic properties were notably different. Namely, the
introduction of an array of channels of hard spheres led to an essential enhancement of
auxetic properties. An increase in the number of crystallographic directions with negative
Poisson’s ratio (i.e., [111][112̄], in which ν decreased from 0.065 down to −0.365) was
accompanied by a decrease of the minimal values of Poisson’s ratio (in some directions,
even down to−0.873) [71]. On the other hand, the use of a periodic stack of layer inclusions
resulted in a small enhancement of the auxetic properties (when compared to a cubic
system). Thus, one might expect that an array of hybrid inclusions, each formed by a layer
and a channel oriented perpendicularly to each other, will strongly enhance the auxeticity
in the system. The present paper is devoted to the verification of this hypothesis.

The paper is organized as follows: The most important aspects of the studied model
are described in the following section. In Section 3, the derivation of the elastic properties
in the NpT ensemble is briefly described, and the details of computer simulations are
provided. The results of the study and their discussion are given in Section 4, whereas the
last section (Section 5) contains a summary and conclusions.

2. The Model

We considered the model of N spheres interacting with a pair potential of the form:

βuij =

{
∞, rij < σij,
0 , rij ≥ σij.

(1)

where rij is the distance between the centers of the interacting spheres i and j,
σij = (σi + σj)/2, β = 1/(kBT), with σi, σj being the sphere diameters, kB the Boltzmann
constant, and T the temperature in Kelvins. Initially, all spheres in the system had a diam-
eter equal to σ (which constitutes the unit of length) and formed an f.c.c. lattice. Such a
system was then modified by the selection of Ninc = (5+ 2Nx)Ny− 1 spheres and replacing
them with spheres with different diameters σ′ 6= σ. Amongst the Ninc spheres, 2NxNy lied
in the selected crystallographic layer, orthogonal to the [001]-direction (as in [72]), whereas
the remaining 5Ny spheres formed a channel with the axis parallel to the [001]-direction (as
in [71]). Values Nx and Ny are the number of f.c.c. unit cells in the respective directions.
The other N − Ninc spheres formed the so-called matrix for the inclusion spheres. Thus,
after this modification, the considered system can be seen as periodic repetitions of a single
supercell (Figure 1a,b), which form a stack of nanolayers (infinite in the xy-plane) joined
with an array of nanochannels (Figure 1c). In the remaining part of the article, we refer to
this modification simply as the inclusion.
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The model was studied under periodic boundary conditions. The obtained results
for the periodic box containing the single supercell were compared with simulations of
periodic box containing systems: doubled in one selected x-, y-, or z-direction (doubled
supercell), doubled in two selected directions (quadrupled supercell), and doubled in
all three directions (octupled supercell) [72]. As the results agreed within the limit of
experimental error, it was meaningful to simulate single supercells.

(a) (b) (c)

Figure 1. The unit supercell (f.c.c.) with the matrix and inclusion particles marked, respectively, in
green and in red color (a). The inclusion’s structure (b) and the repeated supercell (c). The diameters
of the matrix spheres in (b,c) were scaled down to show the underlying structure.

When gradually changing the value of σ′/σ (decreasing or increasing) from unity, one
obtains a system with tetragonal symmetry (which will be discussed in the Results Section).
It should be stressed that in this work, we limited our research to systems exhibiting
tetragonal symmetry.

3. Method

The elastic properties of the studied systems were determined by computer simulations
using the idea of Parrinello–Rahman [73,75,76]. Shape fluctuations of the periodic box
were applied to the Monte Carlo method in the isobaric–isothermal ensemble (NpT). The
following subsection describes how to calculate the elastic properties for crystals of arbitrary
symmetry. The details regarding the simulation parameters are given in Section 3.2.

3.1. Theory

The Parrinello–Rahman method allows one to perform calculations of the elastic
compliance tensor elements Sαβγδ of the considered model. During the simulation, the
periodic box containing the system was allowed to change its parallelepiped shape [73,75,76].
The mentioned elements were obtained directly from these shape fluctuations. If one
considers the periodic box to be described by a symmetric matrix h (formed by vectors
defining the edges of the box or, more formally, a periodic parallelepiped), the strain tensor
ε can be obtained from the fluctuations of h elements as [73,76]:

ε =
1
2

(
h−1

p .h.h.h−1
p − I

)
, (2)

where I is a unit matrix and hp is the reference matrix, i.e., the average value of the h
matrix at equilibrium under the dimensionless pressure p∗ = pβσ3, hp ≡< h >. To relate
the elastic compliance tensor elements with the strain tensor components, the following
formula was used [73]:

Sαβγδ = βVp
〈
∆εαβ∆εγδ

〉
, (3)

where Vp = |det(hp)| is the volume of the system at the dimensionless pressure p∗,
∆εαβ = εαβ − 〈εαβ〉, 〈εαβ〉 is the average in the NpT ensemble, and α, β, γ, δ = x, y, or z.

An expression for Poisson’s ratio in relation to the elastic compliance tensor can be
given in a general from [77]:

νnm = −mαmβSαβγδnγnδ

nζ nηSζηκλnκnλ
. (4)
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It follows from Equation (4) that Poisson’s ratio depends on the choice of two mutually
orthogonal directions: the direction of the applied external stress (represented by the ~n
vector) and the direction in which Poisson’s ratio is measured (~m). Both are unit vectors.
The graphical example of these directions and their relations is presented in Figure 2 in [72].
In Equation (4), the n, m indices correspond to the respective vectors with nα, mβ being
their respective components. One should also note that the Einstein summation convention
was used on Greek indices. For the sake of clarity, we replaced the Sαβγδ tensor with the
elastic compliance matrix S (a symmetric square matrix of dimension six) using the Voigt
representation [74]. The Latin indices for Sij elements took the values i, j = 1, ..., 6.

It should also be stressed that all calculations in this work were for infinitesimally
small strains. To study a case of large deformations, one would require the method
described in [4]. Such a case was outside the scope of this research and will be the subject
of future studies.
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Figure 2. Box matrix elements for all studied values of dimensionless pressure (indicated in different colors). Diagonal
components are presented in (a) and their ratios in (b), whereas the off-diagonal components (with relation to h11) are
presented in (c), which shows that in all cases, one obtains a cuboid box.

3.2. Simulations

The research was performed by the computer simulations using the Monte Carlo (MC)
method in the NpT ensemble. The size of the considered supercell matched 6× 6× 6 f.c.c.
cells, thus containing N = 864 spheres, Ninc = 101 of which formed the inclusion. The
systems where subjected to the dimensionless pressure p∗ = 100, 250, and 1250, as well
as the σ′/σ values from the range between 0.95 and (depending on the pressure) 1.055.
Ten independent simulation runs were performed for each value of σ′/σ and p∗. Each
simulation took at least 107 MC cycles, from which the first 106 were rejected as the period
in which the system reached thermodynamic equilibrium. The remaining details of the
computer simulations can be found in [71,72].

4. Results and Discussion

The research results obtained in our previous studies for systems with channels [71]
and layers [72], studied at dimensionless pressure p∗ = 100, constitute a reference point
for the present discussion. This enables one to assess the impact of hybrid inclusion on
elastic properties of the crystal, compared to the effects exerted by each of the individual
components alone. In the current work, apart from the comparison to previous models,
an analysis of different pressure values, as a second parameter impacting the elastic
properties of the sphere system with hybrid inclusions, has been also provided. As one
might expect, the introduction of the inclusions forced the change of the systems’ symmetry
from cubic (σ′/σ = 1) to tetragonal (σ′/σ 6= 1). In Figure 2a–c, the changes of the system’s
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periodic box are shown. The figures present elements of box matrix h with respect to σ′/σ
for all studied pressures. In all cases, at equilibrium, the matrix hp took the form [71,72,74]:

hp ≡ 〈h〉 =
〈h11〉 0 0

0 〈h11〉 0
0 0 〈h33〉

 , (5)

In Figure 3, which presents the elements of elastic compliance matrix S, one can also
observe that within the studied range of σ′/σ 6= 1 for all pressures, the symmetry was
always tetragonal. In all cases, the relations among the Sij elements, characteristic of the
tetragonal, 422 symmetry class [74], were preserved, namely: S11 = S22, S44 = S55, and
S13 = S23, as well as Sij = 0 for: i = 1, ..., 5, j = 4, 5, 6, i 6= j. Thus, compliance matrix took
the form:

S =



S11 S12 S13 0 0 0
· S11 S13 0 0 0
· · S33 0 0 0
· · · S44 0 0
· · · · S44 0
· · · · · S66

 . (6)

In this article, we restricted our discussion only to these values of σ′/σ (different at
different pressures), for which the system maintained tetragonal symmetry, i.e., up to the
values for which the elements of the elastic compliance matrix Sij with indices 3 < i, j ≤ 6
and i < j remained zero (see Figure 3).
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Figure 3. The dimensionless elastic compliance matrix elements (S∗ij = kBTSij/σ3) for different dimensionless pressure
values studied in this work: p∗ = (a) 100, (b) 250, and (c) 1250.

The matrix S is in direct relation with the matrix of elastic constants B by the following
tensor equality [73,78]:

SiklmBlmpq =
1
2
(δipδkq + δiqδkp) (7)

Thus, it is also a symmetric matrix of the form:

B =



B11 B12 B13 0 0 0
· B11 B13 0 0 0
· · B33 0 0 0
· · · B44 0 0
· · · · B44 0
· · · · · B66

 , (8)

which is clearly reflected in the data shown in Figure 4.
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Figure 4. The dimensionless elastic moduli matrix elements (B∗ij = βBijσ
3) for different dimensionless pressure values

studied in this work: p∗ = (a) 100, (b) 250, and (c) 1250.

Using Equation (4), νnm = −Snnmm/Snnnn, and the knowledge of the S matrix, one can
derive the values of Poisson’s ratio for any pair of mutually orthogonal directions~n i ~m.
The equation holds for any crystalline symmetry, but, as mentioned before, in this work,
we restricted our study to the range of tetragonal symmetry only. The reason was to show
the influence of the metamaterial’s structure on its elastic properties, rather than study the
influence of the crystalline symmetry on the latter. The visualization of such a large amount
of data may by difficult; thus, let us start the examination of the influence of the inclusion
by plotting the averaged values of Poisson’s ratio in the main crystallographic directions:
[100], [110], and [111]. As can be seen in Figure 5a–c, any change of σ′/σ caused the
average value of Poisson’s ratio to increase. This increase was particularly significant when
σ′/σ > 1. A similar behavior was observed in systems with channels [71] and layers [72]
separately. The study of Poisson’s ratio in the selected directions did not provide, however,
a complete insight into the changes that occurred in the elastic properties of the system. All
cubic systems of spheres (σ′/σ = 1), for which Poisson’s ratio was averaged with respect to
all transverse directions 〈ν[110]〉 > 0, had specific directions for which ν[110]m < 0 (a typical
example is ν[110][11̄0] < 0). To better illustrate the changes in the auxetic properties induced
by the change in σ′/σ, one can calculate a parameter [79]:

A =

2π∫
0

dϕ

π∫
0

sin θdθ

R(θ,ϕ)∫
0

r2dr , (9)

which may be understood as a volume of a certain space (in the spherical coordinate
system) confined by the averaged negative part of the Poisson’s ratio R(θ, ϕ) calculated in
all possible~n-directions. The latter can be expressed as [79]:

R(θ, ϕ) =
1

2π

π∫
0

(∣∣∣νn(θ,ϕ)(α)
∣∣∣− νn(θ,ϕ)(α)

)
dα . (10)

Figure 6 presents the numerically determined value of A for the studied systems,
sampled in 106 different~n directions. The decreasing value A along with the increase of
σ′/σ indicated an increase of the minimal values of Poisson’s ratio and, thus, a decreasing
number of directions for which Poisson’s ratio was negative. One can observe a systematic
decay of auxetic properties. The curves stopped at σ′/σ values for which there was no
direction with νnm < 0. It was also interesting that auxeticity did not return with further
increase of σ′/σ (up to the limit of the stability of the tetragonal structure). This means that
the use of the inclusion completely eliminated auxeticity in the system. Thus, one obtains
a model metamaterial, for which only a small modification of particle diameters was
sufficient to eliminate one of the characteristic features of cubic systems [19], namely the
negative value of Poisson’s ratio in [110][11̄0]-direction. This effect was surprising because
the hybrid inclusion was made up of components that separately had the opposite effect.
The first one (nanolayer) only slightly raised the minimal Poisson’s ratio values (and only in
a certain σ′/σ > 1 range [72]). For σ′/σ = 1.045, where auxetic properties were eliminated
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from the current model, the nanolayer alone exhibited small enhancement of auxeticity
over the cubic system. The second (nanochannel) significantly enhanced auxeticity for
σ′/σ > 1.045 [71]. However, by combining both types of inclusions, one achieves a strong
increase of Poisson’s ratio, virtually in all directions. Changes of Poisson’s ratio in the
system can be also observed in the plots of its global extreme values (i.e., the minimal and
the maximal values observed for any of the 106 sampled~n-directions) shown in Figure 7.
One can see there a systematic increase of the minimum value of ν along with the increase
of σ′/σ for all studied pressures.
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Figure 5. Poisson’s ratio averaged over all ~m directions, with external stress applied in selected ~n directions: (a) [100],
(b) [110], and (c) [111].
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Figure 6. The parameter A (see Equation (9)), which may be understood as a volume of a certain
space (in the spherical coordinate system) confined by the averaged negative part of the Poisson’s
ratio in all possible~n-directions.
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Figure 7. Global extreme values of Poisson’s ratio for all studied pressures plotted with respect to σ′/σ. Global extremes are understood
as the (a) minimal and (b) maximal Poisson’s ratio found for the system under the given pressure with given σ′/σ, in any~n-direction.
The positive sign of νmin implies that the system is non-auxetic, i.e., there is no direction~n for which the system exhibits an auxetic
response in any direction ~m transverse to it.

To better illustrate the changes in the elastic properties of the system, one can plot
not only the global extreme values, but also entire planes of minimal and maximal values
of Poisson’s ratio for all ~n-directions. Figure 8 presents (for selected values of σ′/σ and
dimensionless pressure p∗ = 250) the surfaces of the maximal (top row), average (middle
row), and minimal (bottom row) Poisson’s ratio in the range θ, ϕ = (0, π〉. Although every
σ′/σ 6= 1 resulted in a tetragonal system, one can see that the properties differed between
the cases of σ′/σ < 1 and σ′/σ > 1. The former were effectively very close to the cubic
systems. This was due to the fact that the matrix of particles outside the inclusion to
certain extent compensated for the decreasing sizes of inclusion particles. However, in the
latter case (σ′/σ > 0), increasing sizes of hard particles forming the inclusion significantly
modified the elastic properties of the system.

The chart presented in Figure 9 shows the analogous surfaces, but for two selected
cases at dimensionless pressure p∗ = 100: the cubic and tetragonal structure with σ′/σ
equal to 1.025. In Figure 9b, the plotted surfaces were trimmed to show the internal
topology. Typical crystallographic directions are marked for their corresponding values of
θ and ϕ. Moreover, the selected directions for which Poisson’s ratio became isotropic (i.e.,
it did not depend on the ~m-direction)—when both surfaces touched at a single point—are
marked as points A. Particular directions that showed the strong dependence of Poisson’s
ratio on the ~m-direction are marked as points B′ and B′′, respectively, corresponding to
the minimal and maximal PR value, along with the dependence of νn on the ~m-direction
(as a function of (α)), are shown in Figure 9c. Another way to visualize this data is to plot
these surfaces in the spherical coordinates (Figure 9g–f). In such a case, the surface of the
maximal Poisson’s ratio enclosed within itself all the remaining ones. Due to this fact and
because the part ν < 0 was relatively small compared to other parts, it was convenient to
separate the negative part of the minimal Poisson’s ratio surface (Figure 9f,g). The shapes
of the plotted surfaces and volumes that they enclosed constituted a very convenient way
of showing both the symmetry of the system and its auxetic properties (see Figure 9f), or
the lack of auxeticity.
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Figure 8. Plots of surfaces of extreme (minimal, bottom row; maximal, top row) and the average (middle row) Poisson’s
ratio for given~n-direction, as a function of θ, ϕ, for p∗ = 250 and selected σ′/σ organized in columns from the left (I) 0.95,
(II) 1, (III) 1.025, (IV) 1.055. Solid lines on the θ − ϕ plane are isolines for ν = 0 (for θ, ϕ pairs inside these regions, Poisson’s
ratio is negative).

Figure 9. Cont.
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Figure 9. Extreme Poisson’s ratio for cubic (upper part) and tetragonal (lower part) systems. Plotted in (a) as two 3D
surfaces of the maximal and minimal Poisson’s ratio (similar to (8)). In (b), the surfaces were cut in order to clearly show the
internal topology and to mark the location of the typically studied crystallographic directions, as well as the characteristic
points on the surfaces, e.g., isotropic Poisson’s ratio points (A) or extreme Poisson’s ratios for a given direction (B′, B′′).
These values are also marked in (c) as a plot of Poisson’s ratio with respect to the orientation of the ~m-direction (for the same
~n-direction as marked in (b)). (d–g) present how the same data can be decomposed and folded in spherical coordinates
resulting in the shapes presented in (e–g). The respective points from (b) are also marked here. For clarity, the positive and
negative part of the minimal Poisson’s ratio are drawn separately (d,f,g).

5. Conclusions

It has been shown that the elastic properties of even such simple models as f.c.c.
crystals of hard spheres may be significantly altered by small modifications of the crystalline
structure. The use of an inclusion of particles, sizes of which are only a few percent greater
than other particles in the system, can significantly modify elastic properties of the model
material. It has been shown that, with the help of a hybrid inclusion in the form of a
nanochannel joined with a nanolayer, one can completely eliminate auxetic properties
from the f.c.c. crystal. It was surprising that such a small modification of the structure
was enough to eliminate one of the characteristic features of f.c.c. hard sphere systems,
namely the negative value of Poisson’s ratio in the [110][11̄0]-direction. For all studied
values of pressure, with increasing values of σ′/σ, an extinction of the auxetic properties
was observed. This lack of auxeticity was sustained along with the further increase of
σ′/σ as long as the tetragonal system remained stable. It is worth noting that this hybrid
inclusion was made from components that either slightly (nanolayer [72]) or strongly
(nanochannel [71]) enhanced auxeticity.

The results presented in this manuscript showed the potential of structural mod-
ifications to significantly modify elastic properties of systems. It has been shown that
controlling the sizes of nanoinclusion particles (a certain subset of the system’s particles)
was an efficient method for the modification of the nanocomposites’ elastic properties. This
research clearly demonstrated that not only the size modifications, but, more importantly,
the shape of inclusions were of crucial importance in modifying the elastic properties.
Because the HS potential is not a real interaction, but merely a convenient reference model
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in condensed matter [80], it rather indicates some general trends in condensed matter
systems, such as, e.g., colloids, instead of describing any particular material precisely. This
work pointed out some qualitative behaviors, expected in various “entropic” materials [80],
that can be modeled by hard spheres. We hope that the results presented in this article will
be of interest to scientists in material engineering and metamaterials.
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