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Abstract: Most methods for sudden cardiac death (SCD) prediction require long-term (24 h)
electrocardiogram recordings to measure heart rate variability (HRV) indices or premature ventricular
complex indices (with the heartprint method). This work aimed to identify the best combinations
of HRV and heartprint indices for predicting SCD based on short-term recordings (1000 heartbeats)
through a support vector machine (SVM). Eleven HRV indices and five heartprint indices were
measured in 135 pairs of recordings (one before an SCD episode and another without SCD as control).
SVMs (defined with a radial basis function kernel with hyperparameter optimization) were trained
with this dataset to identify the 13 best combinations of indices systematically. Through 10-fold
cross-validation, the best area under the curve (AUC) value as a function of v (gamma) and cost
was identified. The predictive value of the identified combinations had AUCs between 0.80 and
0.86 and accuracies between 80 and 86%. Further SVM performance tests on a different dataset of
68 recordings (33 before SCD and 35 as control) showed AUC = 0.68 and accuracy = 67% for the
best combination. The developed SVM may be useful for preventing imminent SCD through early
warning based on electrocardiogram (ECG) or heart rate monitoring.

Keywords: sudden cardiac death; heart rate variability; heartprint; support vector machine

1. Introduction

Sudden cardiac death (SCD) refers to death from a cardiac cause within 1 h of symptom onset
or during sleep in a patient who was previously stable [1]. In most cases, SCD is initiated by a
transition from normal sinus rhythm to ventricular tachycardia (VT) or ventricular fibrillation (VF)
that leads to asystole (Figure 1) [2]. Since SCD is preventable in those wearing an implantable
cardioverter-defibrillator (ICD), identifying those that may benefit from an ICD is a great challenge,
which remains elusive despite the many current risk-stratification tools [1-3].

Heart rate variability (HRV) refers to the time series of the fluctuations in the beat-to-beat heart
period [4]. HRV is often obtained from the electrocardiogram (ECG) where the QRS complex of
each beat is identified, and the time interval between consecutive beats (RR interval) is measured.
HRYV comprises only RR intervals between normal beats (NN intervals) (Figure 1). Most research
on SCD prediction based on HRV indices has focused on SCD events that occur within long-term
follow-up intervals (at least one year) and used HRV indices obtained from 24 h recordings (with time
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series of approximately 100,000 beats) [5,6]. Few studies have tested the prediction of SCD events
within long-term follow-up intervals using HRV indices measured from 15 min recordings (with time
series of about 1000 beats) [7,8]. Other studies have documented the predictive value of HRV indices
for identifying SCD events in the short term (within the 72 h after arriving in the emergency room) [9]
or imminent SCD (within the following 15 min in patients with HRV monitored by Holter recordings
or ICDs) [10,11].
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Figure 1. Schematic representation of the heart and a recording of cardiac electrical activity or an
electrocardiogram (ECG) during an event of sudden cardiac death due to a transition from normal
rhythm (sinus rhythm) to an episode of ventricular tachycardia, which was initiated by a premature
ventricular complex or premature ventricular complex (PVC) (indicated by *). The heart rate variability
(HRV) indices are based on the interval between consecutive normal beats (NN interval). By contrast,
the heartprint indices include the coupling interval (CI) and the number of sinus intervening beats
(NIB) between two consecutive PVCs.

Since the HRV time series involve only heartbeats arising from the sinus node (the normal
pacemaker of the heart), HRV indices do not include information about ectopic beats that arise from
the ventricles, which are called premature ventricular complexes (PVCs). The occurrence of frequent
PVCs increases the risk of SCD [12], and usually, one or more PVCs trigger an episode of VT or VF
that leads to SCD [2]. The heartprint is a method developed for the quantitative analysis of different
beat-to-beat intervals that involve normal sinus beats (labeled as N) and PVCs (labeled as V), including
the coupling interval (CI) and the number of intervening beats between two PVCs (NIB) (Figure 1) [13].
Based on 24 h-length recordings, heartprint analysis has shown that having repeating forms of PVCs
and low CI variability are risk markers for SCD in the long period of 2 years [14]. Additionally, having
repeated forms of PVCs and short mean CI values predicts imminent SCD [11].

Beyond the traditional statistical methods for assessing the predictive value of HRV indices [5,7,8]
and heartprintindices [11,14], different classification strategies have been proposed to predict SCD based
on HRV indices, including support vector machines (SVM) [9,10] and artificial neural networks [15].
However, the studies based on different classifiers included only HRV indices and were tested on
small datasets. In the present study, the aim was to develop an SVM for the prediction of imminent
SCD based on combinations of both HRV and heartprint indices. Different combinations of indices
were tested systematically to find an optimal combination that achieved the best performance for
SCD prediction.
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2. Materials and Methods

2.1. Data

In this study, two datasets of RR interval time series were used: one dataset was used to train
the SVM, while the other dataset was used to test the performance. This procedure guarantees the
evaluation of classification models on completely unseen data, and it is a novelty regarding previous
work (Figure 2).
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Control = 135
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Figure 2. Flow chart of the study design: database description, a short description of the used
features, structure of the classification method and performance evaluation. MARITA = MARITA
study (Multivariate Analysis of RR-Intervals to predict ventricular TachyArrhythmia), MVTDB =
Spontaneous Ventricular Tachyarrhythmia Database.

The training dataset was obtained from the Spontaneous Ventricular Tachyarrhythmia Database
(MVTDB, available at https://physionet.org/content/mvtdb/1.0/) [16]. This dataset includes 135 pairs
of RR-interval time series obtained from electrograms recorded with ICDs (Medtronic Jewel Plus
TM ICD 7218), each pair consisting of one recording ended before a VT or VF episode and another
recording obtained during the follow-up visit (control recording). These recordings were obtained
from 78 patients, whose clinical characteristics are shown in Table 1.
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Table 1. Clinical characteristics of patients and number of recordings per patient for both datasets.
Data are shown as either absolute values (percentages) or medians (25th percentile-75th percentile).
The statistical significance of the difference between databases is shown in the p-value column.

MVTDB MARITA

N=78 (N=13 PValue
Age (years) 62 (53-69) 62 (57-69) 0.669
Sex 0.312
Male 63 12
Female 15 1
Diagnosed cardiac disease
Dilated cardiomyopathy 26 (33%) 1 (8%) 0.061
Ischemic cardiomyopathy 49 (63%) 11 (85%) 0.125
Left ventricular ejection fraction (%)  25(20-35) 40 (33-45) 0.006
New York Heart Association class 0.068
Torll 65 (83%) 8 (62%)
Il or IV 13 (17%) 5 (38%)
Medication
Beta-blocker 27 (35%) 12 (92%) <0.001
Digoxin 23 (29%) 5 (38%) 0.516
Antiarrhythmic drug 26 (33%) 4 (31%) 0.856
Others 9 (12%) 13 (100%) <0.001
None 19 (24%) 0 (0%) 0.045
Number of recordings per patient
Before tachyarrhythmia 1(1-2) 3 (1-3) 0.059
Total before tachyarrhythmia 135 33
Control 1(1-2) 2 (1-3) 0.221
Total control 135 35

The second dataset was obtained from the MARITA study (Multivariate Analysis of RR-Intervals
to predict ventricular Tachy Arrhythmia) [17]. The MARITA data of this study are available from the
corresponding author on request. Sixty-eight RR-interval recordings were obtained from electrograms
recorded with ICDs (Biotronik GmbH & Co, Berlin, Germany, model Biotronik Belos or microPhylax)
from 13 patients (Table 1). From the sixty-eight recordings, thirty-three were taken before a
tachyarrhythmia episode and thirty-five were used as control.

Compared to those in the MARITA dataset, the patients in the MVTDB dataset had lower left
ventricular ejection fractions and less use of beta-blockers or other medications (Table 1). All other
characteristics of the patients had no significant differences between the datasets.

2.2. Time Series Processing

Each of the recordings in both datasets contains the information of the RR-interval duration in
seconds and the type of beat corresponding to each interval. If the beat was of sinus origin, it is marked
with an “N” (normal beat), while the beats originated by a PVC are marked with a “V” (ventricular
beat). The beat classification was based on the application of an adaptive filtering technique [18],
which was revised manually by an expert to ensure correct beat classification. Additionally, the same
filtering technique was used to replace the RR intervals from PVCs with estimated NN intervals.
This provided an additional time series of only NN intervals for each recording (HRV time series).

Once all the time series were obtained, it was necessary to ensure all the recordings from both
datasets had the same characteristics. Both datasets were checked to ensure all the recordings contained
no PVCs at the end of the recording, since these could be an indicator of the start of the tachyarrhythmia
episode, biasing the classifier with a false performance enhancement. Another important characteristic
of the training dataset was that the duration of the recordings was around 1000 beats (on average,
15 min), while in the test dataset, the recordings were much longer. Therefore, the test dataset recordings
were truncated to include the last 1000 beats only. By doing so, all the recordings from both datasets
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included the last 1000 beats before the occurrence of a tachyarrhythmia episode or 1000 beats from
control recordings.

2.3. Feature Extraction of HRV and Heartprint Indices

HRYV indices (based on time series analysis derived from NN intervals only) were calculated
according to international recommendations [4], including the following time-domain indices:
the average of the NN intervals (meanNN), the standard deviation of the NN intervals (SDNN),
the root-mean-squared successive differences between consecutive beats (RMSSD), and the percentage
of beats with differences greater than 50 ms between consecutive beats (pNN50). Additionally,
the frequency-domain indices were estimated: the mean power within the low-frequency band
(LF, 0.04 to 0.15 Hz), mean power within the high-frequency band (HF, 0.15 to 0.4 Hz), LF in normalized
units (LFnu), HF in normalized units (HFnu) and LF/HF ratio. Power spectral analysis was performed
using Welch'’s periodogram method with a Hanning window of 300 data points with an overlap of
50%; NN time series were interpolated to achieve three samples per second, and linear trends were
eliminated before the power spectral estimation. These HRV indices were estimated in 5 min-length
segments, and an average was calculated from all the segments in each recording. Additionally,
the average of the NN intervals in the last minutes of the recording (meanNN l.m.) and the standard
deviation of the NN intervals in the last minutes of the recordings (SDNN l.m.) were measured [11,19].

The heartprint of each recording was obtained according to the method described in previous
work [11,19,20]. The heartprint indices estimated were the number of PVCs/hour, mean coupling
interval (meanCl), standard deviation of the coupling interval (SDCI), number of intervening sinus
beats between consecutive PVCs (NIB) and most frequent NIB number (also called the NIB score
or SNIB).

Prior to machine-learning modeling, all the HRV and heartprint indices were transformed to a
linear scale within the range (0-1) by subtracting the minimum and dividing by the maximum value.
The aim of this process was to avoid bias from indices with larger numerical ranges in their original
scales. The same transformation factor was used in the training and performance tests. This could
produce values for the tests outside the 0-to-1 range but did not bias the machine-learning approach to
lead to erroneous results and is a better simulation for the behavior for online detection.

2.4. Classification

For the classification task, SVMs with the Radial Basis Function (RBF) kernel (Equation (1)) [21]
were tuned by hyperparameter optimization. The RBF kernel has shown better performance compared
to others [22-24]. This algorithm (SVM) was used because of the relatively low number of samples,
which did not allow the use of a deep-learning approach in this study.

K(xi, xp) = exp(=y llx; — x1"2), v > 0 )

The RBF kernel (K) was selected since it is a Gaussian function that maps the original feature map
to a nonlinear space [25], based on data distribution. The vy (gamma) parameter is used to control the
smoothness of the border, and x;, x; refer to the data points (Equation (2)):

y = sign

where v is the label of any data point (x) to be classified, the learning process is referenced to find those
w vectors (support vectors) that describe the border or frontier decision, and C refers to the cost.

In addition, it is necessary to select the indices that will be included in the SVM training.
There were 16 available indices: 11 HRV indices and 5 heartprint indices, as described in Section 2.3.
In order to perform the index selection for the SVM, a greedy search was performed, where different
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combinations of indices were tested to find the combination that produced the best results (based on the
cross-validation criteria described below). The process started by testing every possible combination of
two indices. Once the best combination of two indices was found, a third index was added. This process
continued until all possible combinations, with a maximum of 16 indices, were tested. The combination
with the best overall performance was selected for the SVM training.

To select the optimum values for both cost and the y parameter, it was also necessary to conduct
an exhaustive search. Hyperparameter optimization was performed by using a non-linear grid.
For cost, a range from 0.5 to 10 in increments of 0.5 was used, while for v, a range from 2715 0 23,
with an incremental exponent increase of 0.5, was used. In order to improve the computational time,
the selection of the best combination of indices was combined with the selection of the optimal values
for cost and y. The complete process was performed using a 10-fold cross-validation.

The training data were separated into 10 groups using the following procedure: for each patient,
a pair or recordings was selected—one control recording and one recording preceding a tachyarrhythmia
episode. This selection reduces the classification bias and ensures that more than one subject is used
on each model. Once these recordings were selected, the patients were randomly distributed across
the 10 groups. Both recordings corresponding to a patient were included in the group. As a result,
every group had the same numbers of control recordings and of recordings preceding tachyarrhythmia.
This procedure fixes the class prevalence and random threshold to 0.5, and the specificity and sensitivity
levels to the same value.

Once the groups were obtained, the cross-validation was repeated several times. For each possible
combination of indices, the optimum values for C and y were obtained using a cross validation.
Once these values were obtained for every combination of indices, the combination that produced the
best values in the cross-validation process was selected.

After defining the optimum hyperparameters for the kernel function and for the index combination,
the SVM was trained using all the records from the MVTDB dataset. The adjusted values for the selected
indices were included, along with the outcome for each record (either ventricular tachyarrhythmia or
control). The SVM obtained from this training process was then used on the MARITA dataset records
for performance testing.

2.5. Statistical Analysis

Nominal variables are described as absolute values and percentages and were compared between
groups by chi-squared tests or Fisher’s exact test. For continuous variables, the normality of distribution
was tested by a Kolmogorov-Smirnov test. Variables with normal distributions are described as
means and standard deviations and were compared by Student’s t-tests for paired or independent
samples. Otherwise, these variables are described as medians (25th percentile-75th percentile)
and were compared by Mann-Whitney U tests or Wilcoxon signed-rank tests. The effectiveness
of the classifications was evaluated by receiver operator characteristic (ROC) curve analysis and
the estimation of the area under the curve (AUC) for each index and the combinations of indices.
The statistical analysis was performed with the software SPSS version 21 (IBM Corp, Armonk, NY,
USA). The software MATLAB (The MathWorks Inc., Natick, MA, USA) and the library LibSVM
(available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/) were used for the validation and performance
tests of the support vector machine. A p-value < 0.05 was considered as statistically significant.

3. Results

3.1. Conventional Statistical Analysis of Heart Rate Variability and Heartprint Indices

Table 2 shows the heart rate variability and heartprint indices compared by dataset (MARITA or
MVTDB) and recording type (before VT/VF or control). In both datasets, the meanNN and meanNN in
the last minute (1.m.) were shorter (i.e., heart rates were faster) in the recordings before VI/VF than
in the control recordings (indicated by asterisks, *). Additionally, the recordings before VI/VF had
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larger LE/HF (i.e., larger sympathetic hyperactivity) and more PVCs/hour than control recordings
(in both datasets). Only in the MVTDB dataset did the recordings before VI/VF show larger SDNN
L. m. and shorter meanCI compared to the control recordings. In recordings before VI/VF, there were
no significant differences between datasets, except for a larger LF/HF and smaller SDNN L. m. in the
MARITA dataset compared to MVTDB (symbol &). By contrast, in the control recordings, there were
several differences between the datasets: the MVTDB had a larger LFnu and LF/HF, and smaller HFnu,
meanNN L. m. and meanCI.

Table 2. Heart rate variability and heartprint indices evaluated from recordings before tachyarrhythmia
(ventricular tachycardia (VT)/ventricular fibrillation (VF)) or control recordings for both datasets.
Data are shown as medians (25th percentile-75th percentile).

MARITA MVTDB

Before VT/VF Control Before VT/VF Control

(N =33) (N =35) (N =135) (N =135)

meanNN (ms) 705 (610-784) 759 (678-873) * 676 (607-819) 787 (707-898) *
SDNN (ms) 46 (28-71) 41 (30-78) 49 (34-77) 50 (27-78)
RMSSD (ms) 15 (11-24) 15 (12-20) 18 (13-31) 20 (13-35)
PNN50 (%) 2.00 (0.50-6.71) 1.00 (0.40-3.50) 0.49 (12.38-2.09) 2.75 (0.49-2.75)
LFnu 49.4 (42.2-63.2) 56.5 (52.7-67.5) & 45.2 (33.5-56.2) 50.1 (39.3-60.6) *
HFnu 25.7 (20.3-32.5) 16.9 (12.1-32.5) & 31.3 (21.5-42.9) 29.6 (20.0-38.7)
LF/HF 1.6 (1.0-3.1) & 2.7 (2.0-3.9) & 1.2 (0.7-2.4) 1.6 (0.9-2.3) *
meanNN Lm. (ms) 625 (560-801) 764 (676-823) *& 625 (532-734) 803 (726-954) *
SDNN L.m. (ms) 19 (13-35) & 22 (15-31) 65 (39-90) 24 (13-38) *
PVCs/hour 1 154 (63-500) 79 (11-181) * 159 (42-433) 71 (11-351) *
meanCI (ms) 1 485 (444-522) 493 (446-553) & 520 (446-592) 575 (509-636) *
SDCI (ms) T 41 (32-71) 59 (30-75) 63 (46-78) 57 (37-88)
sNIB 1 14 (2-36) 4 (1-9) 9 (3-25) 5 (1-22)
NIB mode T 2 (1-3) 2 (1-8) 1 (0-4) 2 (0-7)

Lm.: last minute; * p-value < 0.05 (before VT/F vs. control); & p-value < 0.05 (MARITA vs. MVTDB);
T heartprint indices.

3.2. Definition and Validation of the Support Vector Machine

An exhaustive search was carried out to define the best combination of the indices cost and y’s
values by a 10-fold cross-validation. In each validation, the area under the ROC curve (AUC) was
calculated and the combination that achieved the highest AUC value was selected. Figure 3 shows an
example of the cross-validation process and the corresponding results for a combination of five indices.
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Figure 3. Example of the cross-validation process for a combination of 5 indices: meanNN L.m., SDCI,
meanNN, meanCI and LF/HF. The area under the receiver operating characteristic (ROC) curve results
are shown for the different values of cost and y. The best area under the curve (AUC) value (0.8578)
corresponds to a C value of 8.5 and a y value of 0.7071.
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Table 3 shows the combinations of indices tested in the support vector machine. These indices
were a combination of both HRV and heartprint characteristics. The selected HRV indices were
meanNN, SDNN, RMSsd, pNN50, LFnu, HFnu and LF/HE. The values for meanNN and SDNN in the
last minute before the tachyarrhythmia episode were also considered (meanNN l.m. and SDNN l.m.).
The selected heartprint indices were PVCs/hour, meanCI, SDCI, sNIB and NIBmax.

Table 3. Combination of indices for the support vector machine.

Combination Indices
2 indices meanNN l.m., SDCI *
3 indices meanNN l.m., SDCI *, meanNN
4 indices meanNN l.m., SDCI *, meanNN, meanCI *
5 indices meanNN l.m., SDCI *, meanNN, meanCI *, LF/HF
6 indices meanNN l.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN lL.m.
7 indices meanNN l.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu
8 indices meanNN l.m., SDCI *, meanNN, meanCI *, LF/HF, SDNN l.m., LFnu, NIBmax *
9 indices meanNN l.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd

10 indices meanNN l.m., SDCI *, meanNN, meanCI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd, HFnu
11 indices meanNN l.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd, HFnu, sNIB *
meanNN 1.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd, HFnu, sNIB %,

12 indices SDNN

13 indices meanNN 1.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd, HFnu, sNIB %,
¢ SDNN, PVCs/hour

14 indices meanNN 1.m., SDCI *, meanNN, meanClI *, LF/HF, SDNN l.m., LFnu, NIBmax *, RMSsd, HFnu, sNIB ¥,

SDNN, PVCs/hour, pNN50

Lm.: last minute. * Heartprint indices.

The results of the cross validation for the support vector machine definition are shown in Table 4.
This table shows the best results for each combination, from 2 to 14 indices. Each combination shows the
average AUC values for the 10 folds of the cross-validation, along with the accuracy and the obtained
values for cost and y. A comparison of the AUC values for the different combinations of indices
was carried out; however, there was no statistical significance between the different combinations.
As a result, the combinations of four and five indices were selected since they presented, respectively,
the highest accuracy and the highest AUC value.

Table 4. Results for the cross-validation for the parameter definition of the support vector machine.
The area under the ROC curve and the accuracy are presented as mean + standard deviation. The optimal
values for cost (C) and gamma (y) are also shown. The random threshold was set to 50 for all tests.

Combination AUC Accuracy C Value r Value
2 indices 0.8339 =+ 0.0655 82.14 +8.18 7.5 0.1250
3 indices 0.8433 + 0.0827 84.55 +7.25 9.0 1.0000
4 indices 0.8557 + 0.0799 85.80 + 6.71 % 5.0 8.0000
5 indices 0.8578 + 0.0768 * 84.64 + 6.61 8.5 0.7071
6 indices 0.8403 + 0.0716 85.27 +5.06 8.5 0.7071
7 indices 0.8397 + 0.0811 84.02 +£5.13 2.0 0.7071
8 indices 0.8534 + 0.0700 83.75 +£9.09 8.0 0.1250
9 indices 0.8379 + 0.0671 81.34 + 5.65 8.0 0.7071
10 indices 0.8421 + 0.0708 82.77 £5.91 15 1.0000
11 indices 0.8378 + 0.1001 84.20 + 8.91 6.0 0.1768
12 indices 0.8271 + 0.0841 81.25+6.13 8.0 0.2500
13 indices 0.7972 + 0.0705 79.55 + 6.24 10.0 0.1250
14 indices 0.8022 + 0.1060 80.27 +10.25 2.0 0.7071

AUC: Area under the ROC curve; * best AUC; & best accuracy.
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3.3. Support Vector Machine Training and Performance Tests

Based on the selected characteristics for the SVM, two training processes were performed, one for
the four-indices and one for the five-indices combination (Table 5). For the training stage, all the
records of the MVTDB dataset were used to obtain the final SVM model, compared to the 10-fold
cross validation where only a selected number of records was used. After obtaining this final model,
the performance of the SVM was tested on the MARITA dataset. A lower performance was observed in
the testing phase compared to the training phase, which was expected due to different methodological
factors, as discussed below.

Table 5. Results of the training and testing of the support vector machine. The area under the ROC
curve and the accuracy are presented with their 95% confidence intervals.

Training Testing
Combination AUC Accuracy AUC Accuracy
4 indices 0.892 (0.852-0.931) 82.593 0.678 (0.550-0.806) 67.647
5 indices 0.858 (0.812-0.903) 77.407 0.646 (0.515-0.777) 63.235

AUC: Area under the ROC curve.

4. Discussion

The main contribution of this work is showing that combining HRV and heartprint indices
through a support vector machine allows the identification of an increased risk of an imminent
tachyarrhythmia episode in patients wearing an ICD. Specifically, combining heartprint indices such as
sdCI and meanCI with HRV indices such as meanNN (both the average and in the last minute before a
tachyarrhythmia episode) and LF/HF can be used for potential risk identification. Previous work based
on conventional statistical analyses evaluated the predictive value for tachyarrhythmia of several HRV
indices [15,19,26,27] and heartprint indices [14,19]. Among the HRV indices, the one reported with
the best prognostic value for a tachyarrhythmia is a shorter meanNN (i.e., a faster heart rate) [27,28].
The grid search for the best combinations of indices confirmed the importance of such a simple feature,
since the meanNN in the last minute and the averaged meanNN were among the three indices with
the best predictive values. Moreover, having an increased heart rate may be associated with chronic or
transient sympathetic nervous hyperactivity before a tachyarrhythmia episode [29]. Notably, another
HRV index (LF/HF) that is also associated with higher sympathetic nervous activity prior to some forms
of VT [30] was included in the combinations with higher predictive values. Notably, these indices that
are compatible with a scenario of higher sympathetic hyperactivity were significantly different before
VT/VF than in the control recordings in both datasets (Table 2), despite the differences in treatment
with beta-blockers (i.e., drugs that decrease the effect of sympathetic nervous activity on the heart);
sympathetic hyperactivity was more frequent in the patients of the MARITA dataset than in those
of the MVTDB dataset (Table 1). Nevertheless, the physiological interpretation of LH/HF has to be
considered with caution, as it has been debated in the literature for a long time [31].

Regarding the heartprint indices, the ones involved in the best performance combinations are
related to the CI, having either high variability of the CI (i.e., a larger SDCI) or more premature PVCs
(i.e., shorter meanCl). The heartprint index NIBmax, which is related to a high incidence of PVCs with
a certain repetitive pattern, also appeared in some combinations with good predictive performance.
These results agree with previous conventional statistical analyses [11,14]. Our results are the first
report that considered combining heartprint with HRV indices in a machine-learning algorithm to
predict SCD.

The approach of support vector machines has been used previously for arrhythmia identification
based on data derived from ECG [32-35]. Some of these recordings were obtained from hospitalized
patients, while others were obtained from 24 h ambulatory Holter recordings. All these previous
studies used long-term recordings, in contrast with the present work, which focused on the analysis
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of short-term recordings (~1000 heartbeats). Our results show that several combinations of indices
had outstanding performance for predicting imminent tachyarrhythmia. These indices obtained from
short-term recordings could be tested as predictors of tachyarrhythmia and other cardiac events using
implantable cardiac monitors [36], as predictors of mortality in patients in the intensive care unit [34],
and as predictors of a heart attack in patients in the emergency room [9]. Nevertheless, the support
vector machine was tested exclusively on data obtained from patients with a high risk of SCD who
were wearing an ICD. It is necessary to extend this analysis to data from the general population with an
unknown risk of SCD and to assess the impact of comorbidities on the use of both HRV and heartprint
indices as risk markers for SCD.

In the present work, the heartbeat classification (either as normal or PVC) was obtained from RR
intervals with a previously validated algorithm that is highly efficient in most cases [19]. Such an
algorithm is less efficient in RR-interval time series with a high number of complex PVCs, and heartbeat
classification had to be corrected manually [11,19]. However, having an ECG signal is optimal for
ensuring proper beat classification, even when using an automatic detection and classification method,
through direct comparison against the ECG signal. Further work is needed to test the support vector
machine proposed in the present study with data where proper beat classification was verified against
the ECG signal.

The selection of the indices used for training and testing with the support vector machine involved
no preprocessing of the data (e.g., transforming the scale of some indices). The selection of the indices
was based solely on their performance in the grid search and cross validation on the training dataset.
In a future exploration, it will be interesting to evaluate the effect of preprocessing the data to improve
the performance of the vector support machine. Such exploration requires a new analysis of the data
where the characteristics of the indices are checked to choose the adequate processing that would
effectively improve the predictive capacity of the vector support machine.

Regarding the performance of the final SVM model, which was lower in the testing stage compared
to the training stage, such a difference is expected due to the use of a testing dataset that proceeds from
a different population than that of the training dataset. Machine-learning problems focus on the search
for target functions that are able to correctly predict outcomes with a different testing dataset that is not
necessarily similar to the training dataset [37]. Notably, previous studies of machine-learning methods
for predicting imminent SCD events did not test their SVM models with different training datasets but
used other sampling strategies from the same training dataset [9,10,15,38,39]. The lower performance
achieved using a completely unseen dataset could be associated with an overfitting caused by the
normalization procedure, and it could be desirable to test other normalization techniques such as
elastic nets or standardization. Nevertheless, by using a different testing dataset, the SVM model
presented in this work was shown to demonstrate a series of indices that are useful in the detection of
an imminent tachyarrhythmia episode.

Future work can include the use of other classification methods, such as neural networks, random
forest, genetic algorithms, and deep-learning or hidden-Markov models, to compare their individual
or combined performance in predicting tachyarrhythmia [22-24,40-42]. Additionally, other indices
(for instance, those derived from the non-linear analysis of HRV) could be explored. It is also desirable
to test the performance of these methodologies for risk classification in other types of patients with
other types of devices, such as ambulatory patients with implantable cardiac monitors or hospitalized
patients with ECG monitors.

5. Conclusions

The development of a support vector machine in this work showed combinations of both HRV
and heartprint indices with outstanding predictive value for imminent tachyarrhythmia in patients
wearing an ICD. These findings based on short-term recordings may be useful for preventing SCD
through the addition of early warnings in settings with RR-interval monitoring such as intensive care
units or the emergency room.
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