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Abstract: In this paper, the physical properties of a new series of multilayer structures of oxide/metal/
oxide type deposited on glass and plastic substrates were studied in the context of their use as transparent
conductive layers for solar cells. The optical properties of TiO2/Ag/TiO2, TiO2:Nb/Ag/TiO2:Nb
and NiO/Ag/NiO tri-layers were investigated by spectrophotometry and ellipsometry. Optimized
ellipsometric modeling was employed in order to correlate the optical and electrical properties with the
ones obtained by direct measurements. The wetting surface properties of single layers (TiO2, TiO2:Nb
and NiO) and tri-layers (TiO2/Ag/TiO2 TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO) were also studied
and good correlations were obtained with their morphological properties.

Keywords: oxide/metal/oxide; OMO; DMD; ellipsometry; transparent conductive electrodes; plastic
substrates; organic solar cells; perovskite solar cells; contact angle; wettability

1. Introduction

In the class of transparent conducting electrodes, there are few highly-doped oxides
that are typically used as single layers of about 100 to 200 nm for electronics and solar cell
applications [1]. Among these, the most well-known is Sn-doped In2O3 (ITO–indium tin
oxide). Due to its intensive use and extremely limited resources on Earth, indium is one of
the most economically important critical raw materials [2]. Hence, alternative solutions
for ITO have been intensively looked for. A lot of studies have been done on Al, In and
Ga-doped ZnO (AZO, IZO and GZO) thin films, and on F-doped SnO2 (FTO) [3–13]. Be-
sides, in the last few years, a new class of electrodes including ITO/Au/ITO, ITO/Ag/ITO,
ZnO/Au/ZnO, AZO/Au/AZO and Bi2O3/Au/Bi2O3 [14–17] was developed on plas-
tic substrates for OPV applications [18,19]. A lot of studies were also done on using
TiO2/Ag/TiO2 as an electrode, especially for DSSC applications and perovskite solar cells,
due to such electrodes’ energy conversion efficiency [20–30]. These oxide/metal/oxide
(O/M/O) electrodes have many advantages, due to their suitability for deposition on
flexible substrates. Of their favorable mechanical properties, the metallic layer’s ductility is
notable. The necessary quantity of oxide materials is generally reduced by two or three
times; hence, the total electrode film’s thickness can be reduced. The oxide layers act
as protective coatings against the oxidation and mechanical degradation of the metallic
interlayer film. For solar cell applications, the surface film’s properties positively influence
the values of the extraction potential.
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The novelty of this study consists in its comprehensive analysis of a new class of
oxide/metal/oxide electrodes, including TiO2:Nb/Ag/TiO2:Nb and NiOx/Ag/NiOx (for
simpler reading, we use the notation NiO/Ag/NiO for the last structure), which were
deposited on plastic and glass substrates by sputtering from metallic targets.

Indeed, very few studies have been done on TiO2:Nb/Ag/TiO2:Nb [31,32] and
NiO/Ag/NiO [33–35]. Recently, it was proved that the NiO/Ag/NiO antireflective multi-
layer electrodes used as top cathodes [33], bottom electrodes for CH3NH3PBI3 perovskite
solar cells [34], or bottom electrodes for PBDTTT-C:PCBM organic solar cells, have im-
proved efficiency compared to the industry standard [35]. To further this important
progress for organic and perovskite solar cells, the purpose of this paper is to give a com-
plete and comparative overview of the physical properties of three of these new electrodes:
TiO2/Ag/TiO2, TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO.

2. Materials and Methods

The study involved the preparation and analysis of three sets of samples, including sin-
gle layers and three-layer oxide/metal/oxide structures deposited on plastic (HIFIPMX739
PET) and glass substrates. Thin oxide films and the metallic interlayer film were deposited
by DC magnetron sputtering in reactive and argon atmospheres, respectively, using dif-
ferent metallic targets. The deposition was performed at room temperature in a vertical
target–substrate configuration. The deposition parameters were the same regardless of
the structures with which the layers were involved, which are mentioned in Table 1. They
were chosen taking in account the optimal values in order to obtain simultaneously good
optical and electrical properties.

Table 1. Deposition conditions for the samples.

Layer Atmosphere
Conditions

Target–Substrate
Distance (cm)

Deposition
Current (mA)

Pressure
(10−3 mbar)

Deposition
Time

Target Composition
(wt%)

TiO2 Reactive atm. 7 100 9 4 min Ti 100%
Ag Argon atm. 7 20 9 18 s Ag 100%

TiO2 Reactive atm. 7 100 9 4 min Ti 100%
TiO2:Nb Reactive atm. 7 100 9 4 min Ti 94% Nb 6%

Ag Argon atm. 7 20 9 18 s Ag 100%
TiO2:Nb Reactive atm. 7 100 9 4 min Ti 94% Nb 6%

NiO Reactive atm. 7 100 10 4 min Ni 100%
Ag Argon atm. 7 20 10 18 s Ag 100%

NiO Reactive atm. 7 100 10 4 min Ni 100%

The morphological properties were analyzed by electron microscopy and atomic force
microscopy using a CP-R, Veeco thermo-microscope (CSInstruments, Les Ulis, France) and
a JEOL JSM 6301F Electronic Microscope (JEOL, Croissy-sur-Seine, France). The wetting
properties were studied via contact angle measurements performed at room temperature
using distillated water droplets of equal volumes (3 µL). The optical properties were inves-
tigated on both single oxide layers and oxide/metal/oxide layers, using several techniques.
Information regarding the transmission and reflection spectra was recorded using a double
beam UV/VIS S9000 (Labomoderne, Gennevilliers, France) spectrophotometer and an
AvaSpec-3648 Avantes optical fiber spectrophotometer (Avantes, Apeldoorn, The Nether-
lands), respectively. The optical properties were studied in a 300–1100 nm wavelength
range. For instance, the amplitude (ψ) and phase difference (∆) spectra were registered by
spectroscopic ellipsometry using an UVISEL NIR Horiba Jobin Yvon ellipsometer (Horiba
Jobin Yvon, Longjumeau, France) equipped with a 75 W high discharge Xe lamp. The
chosen configurations for the modulator (M), analyzer (A) and polarizer (P) positions were:
M = 0◦ and A = 45◦; the incidence angle was AOI = 70◦. The experimental data were
fitted by modelling using the Delta Psi 2 software from Horiba Jobin Yvon (Horiba Jobin
Yvon, Longjumeau, France). The optimization of the models was done by following the
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procedure described in [17]. The electrical conductivity measurements were done using
four-point method in planar geometry at room temperature using a Keithley 2600 source
Metter (RS Components Ltd., Northants, UK), by measuring the total (sheet) resistance
of the multilayer structure. The distance between the probe tips was 0.635 mm. The
electrical conductivity was calculated using the estimated value of thickness obtained by
ellipsometry for the three-layer structure.

3. Results and Discussion

Figure 1a–c depicts the SEM micrographs of the bottom oxide films prior to the
deposition of subsequent layers, and Figure 1a–c depicts the top of the second oxide layer
of the three-layer structures (oxide/metal/oxide).
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Figure 1. SEM micrographs of single oxide (bottom) layers: (a) TiO2, (b) TiO2:Nb and (c) NiO; and SEM micrographs of the
top oxide layers of oxide/Ag/oxide multilayer structures: (a’) TiO2, (b’) TiO2:Nb and (c’) NiO.
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Figure 2 illustrates the SEM and AFM images of the silver interlayer. The AFM analysis
was done both for the surfaces of the oxide single layers deposited on glass (not shown
here) and for the top oxide layers of the oxide/metal/oxide multilayer structures deposited
on glass. The root mean square (RMS) and average (RA) roughness values of these layers
are given in Table 2.
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Figure 2. (a). SEM image of the Ag interlayer and (b) AFM image of the Ag interlayer.

Table 2. A summary of RMS and RA roughness values, and contact angle (CA) values of the single oxide layers and the top
oxide layers of the multilayer structures (O/M/O) deposited on glass and PET substrates.

Sample RMS (nm) RA (nm)
Without UV Light With UV Light

CA (deg) t = 0′ CA (deg) t = 10′ CA (deg) t = 0′ CA (deg) t = 10′

TiO2 6.4 4.5 55 35 57 27
TiO2/Ag/TiO2 8.2 5.9 95 83 79 49

TiO2/Ag/TiO2 (on PET) 13.1 10.3 101 70 88 52
TiO2:Nb 7.8 4.2 70 35 71 21

TiO2:Nb/Ag/TiO2:Nb 16 9.9 91 60 99 67
TiO2:Nb/Ag/TiO2:Nb (on PET) 26.5 20.7 90 54 93 77

NiO 3.4 2.0 93 65 98 70
NiO/Ag/NiO 2.6 1.8 96 68 100 79

NiO/Ag/NiO (on PET) 6.8 5.4 102 87 101 81
Ag 8.7 6.9 75 66 75 60

Regarding the topography and morphological properties, the SEM micrographs show
that the silver layer influenced the surface morphologies of the top surfaces of the O/M/O
structures with TiO2 and TiO2:Nb, but this influence was smaller for the NiO-based struc-
ture. This can be explained, on the one hand, by the fact that the thickness of the NiO
second layer was greater than those of the other two oxides (see Table 3), and on the
other hand, by the fact that NiO’s roughness value was lower than those of TiO2 and
TiO2:Nb layers.

Figure 3 reproduces the AFM images obtained by scanning the top surfaces of the
oxide/metal/oxide layers deposited on glass and on plastic substrates. As was the case for
films of ITO/Metal/ITO, AZO/Metal/AZO and ZnO/Metal/ZnO studied previously [15],
the films deposited on plastic substrates were rougher than the films deposited on glass
substrates (see Table 2). Since the morphology in this context is closely related to wettability
expressed in terms of contact angles, we measured such contact angles, and the results
are given in Table 2. As one can see, the existence of the metallic interlayer increased
the contact angle of the oxide surface in every case. All surfaces were also sensitive to
UV exposure. The changes of the contact angles as a function of time with and without
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exposure to UV irradiation by using a 254 UV-C a 1 × 8W EF180C 1180 mW/cm2 lamp, are
given in Figure 4. For TiO2 films and TiO2/Ag/TiO2 films on glass and plastic substrates,
the contact angles decreased after exposure to UV, indicating that the surfaces became
more hydrophilic. This is in agreement with the classical behavior of TiO2 films [36]. For
TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO, the influence of UV radiation was quite slight.

Table 3. Thicknesses obtained from ellipsometry simulations.

Sample Thickness (nm) X2

TiO2 28 ± 1 4.55
TiO2:Nb 28 ± 1 4.90

NiO 63 ± 1 3.41

Oxide
bottom layer Ag Oxide

top layer

TiO2/Ag/TiO2 24 ± 1 8 ± 1 37 ± 1 0.85
TiO2:Nb/Ag/TiO2:Nb 34 ± 1 8 ± 1 42 ± 2 0.55

NiO/Ag/NiO 42 ± 9 8 ± 1 72 ± 9 7.9

Refractive index and film thickness were determined by spectroscopic ellipsometry.
Thickness for single layers and the individual thicknesses in multilayer structures were
determined by fitting the experimental ellipsometric spectra with those which resulted
from theoretical models. For the numerical simulations and modeling, we used the Delta
Psi2 software from Horiba Jobin Yvon. The global refractive indices of structures were
measured and modelled using the following dispersion formulas: the new amorphous
dispersion formula for TiO2 and TiO2:Nb; the Tauc–Lorentz formula for NiO; and the
Drude and Tauc–Lorentz formulae for Ag.

Figure 5 illustrates the optical models used for the theoretical calculations and simula-
tions for single layers (A) and O/M/O structures (B).

The films’ thickness values obtained after the optimization of the models as described
in [17], are given in Table 3.

In Figure 6, the experimental ellipsometric data for the global refractive index are
represented as dotted lines, and the fitting curves as continuous lines. The optimal thickness
of the silver interlayer, realized by ellipsometric measurements (Table 3) is of 8 nm [20].
This thickness is the lowest limit because, for lower values, the film does not completely
cover the substrate, and islands of Ag might appear which are not interconnected, making
the resulting layer not conductive. By increasing the thickness, the metallic interlayer is
certainly conductive, but the transparency of the O/M/O electrode is reduced.
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As for single-layer films deposited by a sol–gel method—or in this case for films
deposited by reactive sputtering—the refractive indices of thin Nb-doped TiO2 films are
smaller than those of an undoped TiO2 thin films [37]. For the multilayer structures
TiO2/Ag/TiO2 and TiO2:Nb/Ag/TiO2:Nb, the refractive indices were higher than those of
single layers. On the contrary, the refractive index of NiO/Ag/NiO was smaller than the
refractive index of the NiO single layer. These optical properties are important, since these
films are used as electrodes for solar cells and optoelectronic devices.

The transmittance and reflectance spectra for single layers, obtained by spectropho-
tometry, are given in Figure 7a. From these spectra, the optical energy band gaps were
calculated using the Tauc plots (Figure 7b) for indirect optical transitions. The calculated
band gap values were compared with the results from the ellipsometric modelling and
those given in literature (see Table 4). We can report a satisfactory correlation between the
values obtained by different methods, and satisfactory correlations with those reported
by others authors—this being the second verification of the validity of the ellipsometric
optical models.

Table 4. Energy band gap values from spectrophotometric and ellipsometric measurements.

Sample Eg by Ellipsometry (eV) Eg by Spectrophotometry (eV) Eg by Literature (eV) Reference

TiO2 3.36 3.59 3.28–3.32 [36]
TiO2:Nb 3.18 3.53 3.25–3.58 [37]

NiO 3.76 3.20 3.60–4.00 [38,39]
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Similarly to Figure 7, Figure 8 gives the transmittance and reflectance spectra for
O/M/O layers. Due to the increased thicknesses of these structures, the transmittance was
10% lower.
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Due to the presence of the Ag interlayer, the reflectance increased consistently by 10%,
except for the NiO/Ag/NiO three-layer structure, for which the optical features of silver
were reduced by the thicker NiO top layer.

The electrical resistivity values determined from direct measurements and also from
ellipsometric calculations were roughly 7 × 10−3 Ω·cm for TiO2/Ag/TiO2, 1 × 10−4 Ω·cm
for TiO2:Nb/Ag/TiO2:Nb and 2 × 10−4 Ω·cm for NiO/Ag/NiO, and are in line with
the values obtained by other authors [32,33,35,40] for films deposited on oxide targets.
The correlation between the electrical measurements and the ellipsometric simulations is
demonstrated by equivalent values of plasma frequency. Therefore, taking into account
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Drude’s model describing the kinetic theory of electrons in metal, plasma frequency is
defined as follows [39]:

ωp =

√
4πσ

ε0ε∞〈τ〉
(1)

where σ represents the electrical conductivity; ε0 is the vacuum permittivity (ε0 = 8.85 ×
10−12F/m) − ε∞ = 1 generally, according to the Lorentz dispersion model, on which
Drude’s model is based; and 〈τ〉 is the relaxation time of electrons (for Ag electrons,
〈τ〉 ∼= 4× 10−14 s [40,41]).

The resulting values of plasma frequency based on electrical conductivity (from
direct measurements) are compared with the values of plasma frequency released in the
ellipsometric simulations of samples in Table 5.

Table 5. A comparison between plasma frequency values obtained from direct electrical measure-
ments and from ellipsometric simulations.

Sample
ωp (s−1)

Using Formula (1) and the
Direct Measured Values of σ

ωp (s−1)
From Ellipsometric Modeling

TiO2/Ag/TiO2 0.7× 1015 (4.9± 1.5)× 1015

TiO2:Nb/Ag/TiO2:Nb 5.6× 1015 (67.0± 17.5)× 1015

NiO/Ag/NiO 4.2× 1015 (12.6± 1.3)× 1015

The differences in the values of plasma frequency calculated from electrical measure-
ments and from ellipsometric modelling are within reasonable limits when taking into
account the fact that the spectroscopic ellipsometry technique is based on reflections at
one point (local measurements) and also taking into account the limits in the accuracy of
the models.

By analyzing all these data, we can conclude that TiO2/Ag/TiO2, TiO2:Nb/Ag/TiO2:
Nb and NiO/Ag/NiO have quite similar optical and electrical properties. However, higher
values of transparency and electrical conductivity were obtained for TiO2:Nb/Ag/TiO2:Nb.
The NiO/Ag/NiO three-layer electrodes could be slightly improved by reducing the oxide
layer’s thickness. The main advantage of NiO/Ag/NiO electrodes is the fact that the
refractive index is lower than those of TiO2/Ag/TiO2 and TiO2:Nb/Ag/TiO2:Nb. Using
ellipsometry, which is a powerful tool, the established optimal models will be used in a
future work to simulate the properties of the new optimized structure.

4. Conclusions

We presented a comparative study regarding the physical properties of oxide/metal/
oxide three-layer structures which are promising alternatives to ITO electrodes in the
photovoltaic field. The oxide layers (TiO2, TiO2:Nb, NiO) and the metallic interlayer
(Ag) were laid by successive DC sputtering deposition on glass and plastic substrates.
The performances of this type of electrode architecture were presented from optical and
electrical points of view, and we also described the morphological features. The presence
of Ag as an interlayer influences the three-layer structure. Firstly, the transmittance shows
a decrease of 10%, and the reflectance an increase of 10%, the latter depending on the oxide
layer’s thickness. Secondly, the roughness of such a structure is directly dependent on
the substrate roughness, and it too is influenced by the silver’s morphological properties.
Thirdly, from an electrical point of view, in terms of electrical resistivity (~10−3 Ω·cm), these
O/M/O structures presented huge potential for photovoltaic applications as transparent
conductive electrodes. The ellipsometry optical models were validated by combining
different direct measurements. These ellipsometric models can be now used to simulate
the properties of new optimized structures.
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