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Abstract
Background: Double-strand breakage of chromosomal DNA is obviously a serious threat to cells
because various activities of the chromosome depend on its integrity. However, recent
experiments suggest that such breakage may occur frequently during "normal" growth in various
organisms – from bacteria through vertebrates, possibly through arrest of a replication fork at
some endogenous DNA damage.

Results: In order to learn how the recombination processes contribute to generation and
processing of the breakage, large (> 2000 kb) linear forms of Escherichia coli chromosome were
detected by pulsed-field gel electrophoresis in various recombination-defective mutants. The
mutants were analyzed in a rich medium, in which the wild-type strain showed fewer of these huge
broken chromosomes than in a synthetic medium, and the following results were obtained: (i)
Several recB and recC null mutants (in an otherwise rec+ background) accumulated these huge linear
forms, but several non-null recBCD mutants (recD, recC1001, recC1002, recC1003, recC1004,
recC2145, recB2154, and recB2155) did not. (ii) In a recBC sbcA background, in which RecE-mediated
recombination is active, recA, recJ, recQ, recE, recT, recF, recO, and recR mutations led to their
accumulation. The recJ mutant accumulated many linear forms, but this effect was suppressed by a
recQ mutation. (iii) The recA, recJ, recQ, recF and recR mutations led to their accumulation in a recBC
sbcBC background. The recJ mutation showed the largest amount of these forms. (iv) No
accumulation was detected in mutants affecting resolution of Holliday intermediates, recG, ruvAB
and ruvC, in any of these backgrounds.

Conclusion: These results are discussed in terms of stepwise processing of chromosomal double-
strand breaks.

Background
Double-strand (ds) breakage of chromosomal DNA is ob-
viously a serious threat to cells because various activities
of the chromosome – gene expression, replication and
partition – depend on its integrity. However, recent exper-
iments suggest that such chromosomal ds breakage may
occur relatively frequently during "normal" growth in sev-

eral organisms – in bacteria [1,2], yeast [3] and chicken
cells [4].

In Escherichia coli, spontaneous breakage and degradation
of the chromosome associated with a replication fork
were predicted from early genetic analysis and were de-
tected under various conditions of altered replication (for
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review, see [5]). DNA ds breaks play a key role in homol-
ogous recombination. From a DNA ds break, RecBCD en-
zyme starts degrading DNA (for review, see [6]). When it
encounters a specific sequence called Chi, it promotes its
pairing with a homologous DNA. Even in the absence of
RecBCD enzyme, sbcA mutation confers other recombina-
tion pathway, called RecET pathway. The recE gene prod-
uct of the Rac prophage converts dsDNA ends into 3'
protruding single-stranded form and the recT gene prod-
uct promotes recombination by annealing them with a
homologous DNA in its vicinity (for review, see [7,8]).
This recombination may result in one progeny DNA (non-
conservative recombination) or two progeny DNAs (con-
servative double-strand break repair) [9]. In a recBC sbcBC
background, a ds end stimulates homologous recombina-
tion that results in only one progeny DNA (non-conserv-
ative recombination) [10]. Analysis of the stimulation of
recombination by replication (for review, see [11]) and
analysis of altered chromosomal replication (for review,
see [12]) led to the proposal that a chromosomal ds break
formed during replication fork arrest triggers homologous
recombination, which would reconstitute a replication
fork (for review, see [5]).

Game and his colleagues have developed a sensitive
means of detecting chromosomal ds breakage using a cir-
cular chromosome [3]. Under most conditions of pulsed-
field gel electrophoresis, a circular yeast chromosome and
circular bacterial chromosomes will not enter the gel, very
likely because they are trapped by the branches of the net-
work of agarose [3,13,14]. One double-strand break trans-
forms this circular form into a linear form, which can now
move slowly in the gel [3]. We used this procedure to de-
tect double-strand breakage of a circular bacterial chromo-
some occurring spontaneously or after loss of a
restriction-modification gene complex [15,16]. We found
increased chromosome breakage in recBC-null and
recC1002 mutants of E. coli under both conditions [1].
Michel and her colleagues used pulsed-field gel electro-
phoresis to detect degraded chromosomal DNAs arising
spontaneously in recBC mutants and arising during repli-
cation fork arrest [2]. RuvABC proteins, which catalyze
migration and cleavage of Holliday junctions, are respon-
sible for the occurrence of the degraded DNAs following
replication fork arrests [17].

In this work, we employed the pulsed-field gel electro-
phoresis procedure to measure large non-circular forms of
the chromosome obtained from various recombination-
defective mutants in rec+, recBC sbcA, and recBC sbcBC ge-
netic backgrounds.

Results
Effect of growth medium on the accumulation of large 
chromosomal fragments
Large linear chromosomal fragments were measured by
pulsed-field gel electrophoresis. In our analysis, growing
E. coli cells are harvested, embedded in an agarose plug,
and lysed in situ. The chromosomes in a plug are electro-
phoresed in varying electric fields. An example of such a
gel is shown in Figure 1. The DNA is partitioned in three
places in the gel – the well, the area just below the well
(marked by a bar to the right of the gel), and the lower ar-
ea. Intact circular chromosomes stay in the well [3,14]
likely because they are trapped in the branches of agarose
resin [13]. Large linear forms generated by a ds break in
this circle would escape from agarose trap and form broad
bands beneath the well (marked by the bar). This area cor-
responds to unbranched linear forms DNA of more than
2000 kb when compared with yeast chromosome mark-
ers. When the DNAs become smaller by degradation, they
will migrate further. These interpretations are based on a
previous work with a yeast circular chromosome and on
our analysis of E. coli chromosomal breakage after loss of
restriction-modification genes [3,15,16]. In this work, we
focus on the second DNA species – the huge linear forms
in the area just below the well (Figure 1, marked by the
bar).

In the experiment shown in Figure 1, a rec+ strain (in
AB1157 background) grown in minimal medium (M9)
(Figure 1, lane 2) gave rise to some of these huge linear
DNAs in this area. There was less of this DNA species
when the cells were grown in a rich medium (LB) (Figure
1, lanes 3). In an isogenic recB21 recC22 strain, the
amount was larger than in rec+.

We do not know why the medium makes such a differ-
ence. It could reflect properties of the spontaneous DNA
damages, the replication fork, the number of replication
forks, the number of chromosomes, the organization and
structure of the chromosomes, the repair machinery, or
the availability of homologous chromosomes for repair.
All of these features will influence the chromosome stabil-
ity not only in rec+, but also in mutants. This medium-de-
pendence is in the opposite direction to what is simply
expected from generation of a double-stranded chromo-
somal end by collapse of a replication fork with another,
replication fork moving in the same direction [18], be-
cause replication initiation should be more frequent in a
rich medium than in a poor medium. Whatever the rea-
son, we chose to use the rich medium in which the rec+

strain produce less linear forms, because the background
is clear and may allow sensitive detection of their increase
in a survey of various recombination-defective mutants.
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rec and ruv mutations
The accumulation of huge linear DNAs was also seen in
other recBC null mutants in this AB1157 genetic back-
ground (recB21, recC22 and recC73 (Figure 2A)) and in
another, V66, genetic background (recC73 (Figure 2B)), as
observed earlier [1,2]. A recD mutant showed no accumu-
lation. The other non-null recBCD alleles examined
(recC1001, recC1002, recC1003, recC1004, recC2145,
recB2154, and recB2155) did not accumulate the huge lin-
ears (Figure 2B). We do not know why the same mutant
allele, recC73, shows more accumulation in V66 back-
ground than in AB1157 background in a reproducible
manner (Figures 2A and 2B).

The other mutants tested – recA, recF, recG, recJ, recN,
recO, recQ, recR, ruvAB, and ruvC – did not accumulate
huge linear DNAs. The recF mutation partially suppressed
the effect of the recC73 mutation in accumulating the
huge linear chromosomes (Figure 2B).

recBC sbcA background
In the recBC sbcA strain, an sbcA mutation on the Rac
prophage expresses recET genes, which promotes homol-
ogous recombination at a ds end [7]. The accumulation of
the huge linears was seen with recA, recE, recT, recJ, recQ,
recF, recO and recR strains (Figure 2C). Mutations in genes
involved in processing Holliday structures – recG, ruvAB
and ruvC – did not lead to their accumulation. The accu-
mulation by recJ mutation was suppressed by a recQ mu-
tation (Figure 2C, lanes 7 and 15).

recBC sbcBC background
In the recBC sbcBC strain, RecBCD enzyme is inactive and
RecFOR and RecQJ proteins promote recombination to-
gether with RecA [19]. In the recBC sbcBC background, re-
cA, recF, recJ, recQ and recR mutants accumulated these
huge linears to varying extents (Figure 2D). However,
again the ruvC mutation did not lead to accumulation.

Control experiments
These assays were carried out more than twice for each
strain, and the extent of accumulation of the linear forms
was reproducible. The DNA in the area just below the or-
igin was also measured by densitometry to confirm the
above results (data not shown).

When the chromosomal DNA in the agar plug was digest-
ed with a restriction enzyme (XbaI) before the pulsed-field
gel electrophoresis, all the strains examined produced
comparable amounts of DNA (Figure 3). This amount is
much larger than the large linear forms. This indicates that
the total amount of undegraded DNA associated with the
cells is comparable for all the strains.

Discussion
We found that large, non-circular forms of the chromo-
some accumulate in varying amounts in various recombi-
nation-defective mutants of Escherichia coli.

Our operational definition of the non-circular forms is
their presence in an area just below the well in our pulsed-
field gel, as marked by a bar in Figure 1. The molecular
species in this area may not be limited to a simple linear
form of varying lengths. If a chromosome carries multiple
replication forks as usual at 37°C in rich media, more
than one double-strand break may be necessary to form a
non-circular, branched species, which should be able to
move through the gel. Finding out macroscopic forms of
these giant molecules would be a technical challenge (see
[20], for example). We do not know why DNAs make two
broad bands in this area (Figure 1, 4th lane, for example),
either. Depending on the electrophoresis condition, one
narrow band, a pair of two bands or one very broad band
was observed (data not shown).

Figure 1
Detection of large non-circular forms of the chromo-
some by pulsed-field gel electrophoresis. AB1157 (= 
rec+) and JC5519 (= recBC) cells were grown either in M9, a 
minimal medium, or in LB, a rich broth (Materials and Meth-
ods). The cells were harvested, embedded in agarose, lysed 
in situ, and analyzed by pulsed-field gel electrophoresis. Giant 
circular chromosomes stay in the well. Huge non-circular 
forms generated by ds breakage will band just below the well 
(bar in the right). Lane "M" contains Saccharomyces cerevisiae 
chromosomes as linear size markers.
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Figure 2
Accumulation of large non-circular forms of the chromosome in recombination-defective mutants. A: In an oth-
erwise rec+ background. The mutation alleles are as follows: ∆recA306::Tn10, recB21 recC22, recB268::Tn10, recC266::Tn10, 
recC73, recD1901::Tn10, recF143, recG258::mini-Tn10 Kan, recJ284::Tn10, recN1502::Tn5, rec01504::Tn5, recQ1803::Tn3, 
recR252::mini-Tn10Kan, ∆ruvAB100::Cm, ∆ruvC100::Cm, ruvC53 eda::Tn10. B: Various recBCD alleles in V66 background. C: In a 
recBC sbcA background. The mutation alleles are the same as in A except for recE159, recQ1801, recT101::Tn10, and ∆ru-
vAB::Tc. D: In a recBC sbcBC background. The mutation alleles are the same as in A except for recN262 tyrA16::Tn10.
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Abundance of these huge non-circular forms is expected
to be affected by several factors, which might work poten-
tially in opposite directions, such as: (i) breakage in the
cell; (ii) degradation in the cell; (iii) repair in the cell; (iv)
breakage and degradation out of the cell. Each term is, in
turn, affected by other factors such as chromosome organ-
ization, number of the replication forks, speed of the rep-
lication forks, abundance of specific proteins, and so
forth. Therefore, our finding of accumulation of more of
the non-linear forms in a rich medium than in a poor me-
dium (Figure 1) does not immediately allow us to con-
clude that starving conditions induce a chromosomal
double-strand breakage.

Spontaneous DNA damages, repair and degradation are
expected to be the key processes in interpreting our data.
Spontaneous DNA damages may interfere with replica-
tion fork progression and produce chromosomal double-
stranded breaks. This would lead to extensive exonucleo-
lytic degradation. Complete repair at some of these steps
would reconstitute a circular chromosome, which will
stay in the well. On the other hand, further degradation of
the huge, non-circular forms would result in shorter or no
fragments, which will run faster in the gel. The presence of
huge linear forms, therefore, probably indicates both the
absence of complete repair and the absence of further deg-
radation. The absence of the large linears could either
mean the presence of complete repair or the presence of
extensive degradation activity. Our control experiments
demonstrated that restriction digestion of chromosome
DNAs before the electrophoresis results in release of com-
parable amounts of DNA from the wells in all the strains

examined (Figure 3). This result, at least, excludes the pos-
sibility that the absence of the large, non-circular chromo-
somes in some strains (Figure 2) reflects the absence of
DNAs in the wells during the process or by extensive and
general nuclease action. Of course, we cannot exclude the
possibility that the broken chromosomes specifically have
suffered extensive degradation.

In spite of these potential complexity and essential ambi-
guity, our measurements provided a unique clue to the ac-
tion of recombination-associated enzymes in the
chromosome metabolism. Indeed, some of our
observations in the mutants can be readily related to the
established properties of the affected enzyme.

Accumulation of the huge linear DNAs in the recBC null
mutants can be interpreted from the known properties of
RecBCD enzyme in a straightforward way. These null mu-
tant enzymes cannot degrade DNA from a ds break nor
can they repair DNA by recombination [6]. We assume
that they cannot repair the broken chromosomes to form
intact circular chromosomes and that they cannot degrade
them into smaller pieces. The recD mutant does not show
nuclease activity but is recombination-proficient and able
to repair the broken DNA molecules [6]. This explains
why it does not accumulate the huge linear forms. The
other non-null recBCD mutants (recC1001, recC1002,
recC1003, recC1004, recC2145, recB2154, and recB2155)
are all nuclease positive [21,22]. They would be expected
to degrade the huge linears. They retain some to nearly
complete recombination proficiency [21,22], which may
contribute to repair of the large linears into circles. The

Figure 3
Pulsed-field gel electrophoresis of the chromosomes after restriction enzyme digestion. The cells were lysed in an 
agarose plug and were treated with XbaI before pulsed-field gel electrophoresis. M indicates yeast chromosome marker.
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other recombination-defective mutants, in otherwise rec+

background, did not accumulate the huge linears proba-
bly because the DNA was degraded by active RecBCD en-
zyme or was not produced.

Partial suppression of the accumulation of the huge line-
ars in a recBC null allele by a recF mutation (Figure 2B)
leads to several possible explanations. For example, RecF-
mediated homologous recombination may transform a
circular chromosome, possibly with a spontaneous dam-
age, into some type of non-circular forms. This is expected
because RecF-mediated recombination is non-conserva-
tive in the sense that it generates only one progeny DNA
molecule from two parental DNA molecules [10]. Alterna-
tively, RecF function may somehow help generation of
broken chromosomes or maintenance of break to load
RecA [23].

In the recBC sbcA and the recBC sbcBC backgrounds, the
absence of RecBCD nuclease may prevent faster degrada-
tion of the large non-circular DNAs. However, we see only
little accumulation of the broken forms. One might expect
that the accumulation of the huge linears may correlate
with the capacity for recombination repair that reconsti-
tutes a circular form. Indeed, the effects of recA, recJ and
several other rec mutations on accumulation of the huge
linear chromosomes in these two recBC backgrounds (Fig-
ures 2C and 2D) were similar to their negative effects on
conjugational recombination [19] with interesting excep-
tions (see next paragraph). This accords with the concept
that a huge linear fragments of the chromosome is in-
volved in recombination following conjugation. Howev-
er, any of the recombination mutants that lead to
accumulation of linear DNA could affect the probability
of breaks occurring in the first place.

The mutations in Holliday-structure-processing enzymes
– RecG, RuvAB, and RuvC – did not result in accumula-
tion of the huge linears even in the recBC-minus back-
ground. The complex intermediate forms accumulating in
these mutants may be trapped in the agarose gel (see
[24,25]). An alternative interpretation could be that these
enzymes may be involved in generation of double-strand
breaks as hypothesized by Seigneur et al. [17].

The accumulation by the recJ mutation in the recBC sbcA
background is suppressed by a recQ mutation (Figure 2C).
Kusano et al. [26] found that both sensitivity to DNA
damaging agents and decreased association of crossing-
over with double-strand break repair in a recBC sbcA recJ
strain are suppressed by mutant recQ alleles. Such sup-
pressing relationship was interpreted to suggest that RecQ
acts prior to or concurrently with RecJ. Pulsed-field gel
electrophoresis analysis of chromosomes after ultraviolet
irradiation has revealed extensive chromosome degrada-

tion dependent on uvrA incision enzyme [27]. A report
[28] showed that RecQ and RecJ proteins process nascent
DNA at replication forks blocked by ultraviolet irradiation
prior to the resumption of DNA synthesis (see also [29]).

The accumulation of the non-circular, broken chromo-
somes correlated with the growth rate or DNA damage re-
sponse in most of the recBC-minus background [30]. The
recB or recC null mutation showed low viability even in
the absence of exogenous DNA damage [31,32]. A simple
interpretation of these data is that RecA, RecFOR, and
RecQJ functions (and RecET functions for the sbcA back-
ground) repair chromosome breakage and/or prevent
generation of the breakage. The major contradiction ob-
served here is the phenotype in ruv mutants. The ruv mu-
tants in all the background did not show any
accumulation of the broken chromosome. This may sug-
gest that the possible role of Ruv protein is making a break
into dsDNA [33].

Conclusions
Our sensitive measurements of the large non-circular
forms of the chromosome – which should be able to de-
tect one ds break out of 4 million bp – provided unique
sets of data that would help in further elucidating the
mechanisms of chromosome double-strand break repair.
A simplest interpretation of our data is that RecBCD en-
zyme is involved in repair and degradation of broken
chromosomes, and that RecA, RecFOR, RecQJ and RecET
functions are involved in prevention and/or repair of the
breakage. Interaction was observed between a recC muta-
tion and a recF mutation and between a recQ mutation
and a recJ mutation. ruvABC mutants and a recG mutant
did not accumulate broken chromosomes. Further molec-
ular analysis would bring about interpretation of the
present data in detailed molecular terms.

Methods
Bacteria
Escherichia coli K-12 strains used are listed in Table 1.

Media
E. coli cells were grown in M9 medium (1 × M9 salts [34],
0.2% glucose, 0.05 mM CaCl2, 0.5 mM MgSO4, 0.2%
casamino acids and 1 microgram/ml vitamin B1) and LB
broth (1.0% Bacto-tryptone, 0.5% Yeast extract and 1.0%
NaCl) with antibiotics at the following concentrations
when necessary: ampicillin (Amp) at 50 microgram/ml
together with methicillin at 200 microgram/ml, chloram-
phenicol (Cml) at 25 microgram/ml, kanamycin (Kan) at
10 microgram/ml and tetracycline (Tet) at 10 microgram/
ml.
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Table 1: Bacterial strains used here

Strain Other name Genotype Source/Reference

AB1157 BIK788 thr-1 leu-6 thi-1 lacY1 galK2 ara-14 xyl-5 mtl-1 proA2 his-4 
argE3 str-31 tsx-33 supE44 rec+

[36]

TES1 BIK733 As AB1157, but ∆recA306::Tn10 K. Yamamoto/[37]
JC5519 BIK751 As AB1157, but recB21 recC22 T. Kato/[38]
N2101 BIK2876 recB268::Tn10 R. Lloyd/[39]
N2103 BIK2877 recC266::Tn10 R. Lloyd/[39]
BIK3961 As AB1157, but recB268::Tn10 P1 (BIK2876) to AB1157
BIK3963 As AB1157, but recC266::Tn10 P1 (BIK2877) to AB1157
BIK806 As AB1157, but recD1901::Tn10 [40]
JC9239 BIK783 As AB1157, but recF143 A. J. Clark
BIK1538 As AB1157, but recG258::mini-Tn10 Kan P1 (BIK1400) to AB1157
JC12123 BIK 787 recJ284::Tn10 his-4 A. Clark/[41]
BIK2563 As AB1157, but recJ284::Tn10 P1 (BIK787) to AB1157
BIK2565 As AB1157, but recN1502::Tn5 P1 (BIK1044) to AB1157
KEN24 BIK1179 As AB1157, but recO1504::Tn5 K. Yamamoto/[40]
KD2216 BIK1048 recQ1803::Tn3 ilv-145 metE46 his-4 trpC3 pro thi 

thyA::Tn5 thyR mtl-1 malA1 ara-9 galK2 lac-114 rpsL ton F-
H. Nakayama/[42]

BIK2680 As AB1157, but recQ1803::Tn3 P1 (BIK1048) to AB1157
BIK2577 As AB1157, but recR252::mini-Tn10 Kan P1 (BIK1399) to AB1157
HRS1004 BIK1331 ∆ruvAB::Tc T. Shiba & H. Shinagawa
HRS2302 BIK1620 As AB1157, but ∆ruvAB100::Cm H. Shinagawa/[24]
HRS1100 BIK1618 As AB1157, but ∆ruvC100::Cm H. Shinagawa/[43]
KEN72 BIK1051 As AB1157, but ruvC53 eda::Tn10 K. Yamamoto
JC8679 BIK813 As AB1157, but recB21 recC22 sbcA23 A. J. Clark/[44]
BIK1415 As JC8679, but ∆recA306::Tn10 [26]
JC8691 BIK784 As JC8679, but recE159 A. J. Clark/[44]
JC9610 BIK786 As JC8679, but recF143 A. J. Clark/[44]
N2796 BIK1400 As JC8679, but recG258::mini-Tn10 Kan R. Lloyd/[45]
BIK814 As JC8679, but recJ284::Tn10 Kusano et al. (1994b)
BIK1044 As JC8679, but recN1502::Tn5 Takahashi et al. (1993)
BIK1192 As JC8679, but recO::Tn5 [26]
RDK1693 BIK1401 As JC8679, but recQ1801 S. Lovett/[46]
BIK1427 As JC8679, but recQ1801 recJ284::Tn10 [26]
BIK1224 As JC8679, but recQ1803::Tn3 [26]
AM265 BIK1399 As JC8679, but recR252::mini-Tn10 Kan R. Lloyd/[47]
BIK3884 As JC8679, but recT101::Tn10 N. Kobayashi-Takahashi
BIK1478 As JC8679, but ∆ruvAB::Tc P1 (BIK1331) to JC8679
BIK1050 As JC8679, but ruvC53 eda::Tn10 [26]
JC7623 BIK752 As AB1157, but recB21 recC22 sbcB15 sbcC201 T. Kato/[48,49]
BIK2176 As JC7623, but ∆recA306::Tn10 P1 (BIK733) to JC7623
JC8111 BIK749 As JC7623, but recF143 A. J. Clark
BIK1772 As JC7623, but recJ284::Tn10 P1 (BIK814) to JC7623
BIK1212 As JC7623, but recN262 tyrA16::Tn10 [10]
BIK1774 As JC7623, but recQ1803::Tn3 P1 (BIK1224) to JC7623
BIK1776 As JC7623, but recR252::mini-Tn10 Kan P1 (BIK1399) to JC7623
KEN87 BIK1181 As JC7623, but ruvC53 eda::Tn10 K. Yamamoto
V66 BIK796 recF143 his-4 met rpsL31 gal xyl(?) ara(?) argA21 F-λ- A. Taylor/[21]
V68 BIK2411 As V66, but recC73 G. Smith/[50]
V73 BIK1275 As V66, but recC73 recC1001 G. Smith/[21,50]
V69 BIK1272 As V66, but recC73 recC1002 G. Smith/[21]
V71 BIK1273 As V66, but recC73 recC1003 G. Smith/[21,50]
V72 BIK1274 As V66, but recC73 recC1004 G. Smith/[21,50]
V1296 BIK1910 As V66, but recC2145 G. Smith/[22]
V1360 BIK1911 As V66, but recB2154 G. Smith/[22]
V1363 BIK1912 As V66, but recB2155 G. Smith/[22]
BIK1288 As V66, but recF+zic::Tn10 [51]
BIK3713 As BIK1288 (tetS) tetS selection from BIK1288
NK5992 BIK800 IN (rrnD-rrnE)1 λ- F- argA81::Tn10 N. Kleckner via A. Taylor
BIK3732 As BIK2411, but argA81::Tn10 P1 (BIK800) to BIK2411
BIK3738 As BIK3713, but recC73 argA81::Tn10 P1 (BIK3732) to BIK3713
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Preparation of DNA samples in agarose gel
The cells were lysed in agarose gel by a modification of the
method of Kusano et al. [35]. Cells were grown in 5 ml of
L-broth with or without antibiotics to an OD660 of 0.4
and were harvested. This OD660 of 0.4 corresponds to 5 ×
10E8 to 1 × 10E9 cells/ml depending on the strain. One
milliliter of the culture was transferred to a micro-tube
and mixed with 2,4-dinitrophenol (to the final concentra-
tion of 0.01%), which blocks energy metabolism. After
centrifugation, the pellet was washed twice with a half vol-
ume of 10 mM Tris-HCl (pH 7.5), 1 M NaCl and 2,4-din-
itrophenol. The cells were suspended in 0.5 ml of the
same buffer, mixed with the same volume of 1.0% of
InCert agarose (FMC), split into 10 molds, and allowed to
solidify at 4°C. One agarose plug, thus obtained, corre-
sponds to 0.04 OD660 of the culture. Six of these agarose
plugs were treated at 37°C for 15 hrs with 2.5 ml of a so-
lution containing 6 mM Tris-HCl (pH 7.5), 1 M NaCl, 0.1
M EDTA, Brij-58 (0.5%), sodium deoxycholate (0.2%),
sodium lauryl sarcosinate (0.5%), lysozyme (1 mg/ml)
and RNase A (20 mg/ml). The plugs were then washed
with 0.5 M EDTA (pH 9.5), treated at 50°C for 48 hrs with
2.5 ml of a solution containing 0.5 M EDTA, 1% SDS and
2 mg/ml proteinase K (pH 9.5), and washed with 0.5 M
EDTA (pH 9.5).

Pulsed-field gel electrophoresis
The sample plugs were placed in the wells of a running gel
(1.0% (w/v) SeaKem GTG agarose (FMC)) and solidified
with molten 1.0% agarose. Pulsed-field gel
electrophoresis was carried out in a Pharmacia/LKB appa-
ratus under the following conditions: electrophoresis
buffer, 1 × TBE (45 mM Tris-borate/1.25 mM EDTA);
165V; pulse time, 120 sec; run time, 24 hrs; temperature,
10°C. As a size marker, a plug containing yeast (Saccharo-
myces cerevisiae) chromosomes (Pharmacia) was used. Af-
ter the run, the gel was stained with ethidium bromide,
and photographed under ultraviolet illumination. The
DNA in the region of the huge linear chromosomes was
quantified using a VILBER LOURMAT apparatus with
BIO-PROFIL software.

The control experiment (XbaI digestion before the run)
was done in a CHEF-DR III system (Bio-Rad) under the
following conditions: electrophoresis buffer, 0.5 × TBE; 6
V/cm; angle, 120°; pulse time, 4 × 50 sec; run time, 20 hrs;
temperature, 14°C. After the run, agarose gels were proc-
essed as described above.
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