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Abstract: Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the
pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine
formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of
cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response
such as an inflammasome activator. Most antigens are negatively charged and combine well with
oppositely charged adjuvants. This explains the paramount importance of studying a variety of
cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant
simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use
of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to
(1) cationic lipids, (2) cationic polymers, (3) cationic lipid/polymer nanostructures, and (4) cationic
polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet
poorly explored perspectives as general adjuvants for vaccine design.

Keywords: cationic nanoparticles; dioctadecyldimethylammonium bromide; poly (acrylates);
biomimetic lipid/polymer nanoparticles; cationic polymer /biocompatible polymer assemblies; cationic
adjuvants; cationic lipids; polycation

1. Introduction

Purified antigens in subunit vaccines usually lack the danger signals of full pathogens, resulting in
poor immunogenicity [1]. Adjuvants then become essential components of modern vaccines, enhancing
and guiding the immune response against each specific pathogen [2–5]. The only adjuvants licensed
for human use worldwide are the aluminum-based salts like Al(OH)3. Their water dispersions consist
of polydisperse and large aggregated particles poorly dispersed in water that are positively charged at
the pH of water and can combine with negatively charged antigens such as peptides, proteins, nucleic
acids, and RNA [6–8]. Other cationic adjuvants based on nanoparticles [9–12], liposomes [13–15],
cationic bilayer fragments [9,16,17], supported cationic bilayers on polymeric nanoparticles (NPs) [10],
silica [18], or cationic polymers on superparamagnetic iron oxide NPs have also been proposed as
effective micro- or nanomaterials able to effectively interact with antigens and antigen-presenting cells
(APC) [19].

The uptake of antigen/cationic assemblies depends on size [20,21]. Virus-like NPs (20–200
nm mean diameter) are taken up by endocytosis via clathrin-coated vesicles, caveolae, or their
independent receptors and are preferentially ingested by dendritic cells (DC) [22]. Bacteria-like
microparticles (500–5000 nm diameter) undergo phagocytosis and primary ingestion by macrophages.
Vaccines administered as particles in dispersion are internalized efficiently by APC either by
endocytosis or phagocytosis or a combination of both mechanisms [23,24]. Particles with diameters
below 500 nm, in particular NPs (40–100 nm diameter), are more efficient to promote CD8 and
CD4 type 1 T-helper cell responses than the microparticles (diameters above 500 nm). Similarly,
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to Al(OH)3, large particles usually induce good antibody responses from T-helper cells type
2 [23]. Cationic micro- and nanoparticles are effectively taken up both by macrophages and
dendritic cells. After electrostatics promotes the binding of cationic particles and assemblies
to APCs, subsequent internalization takes place [12,14,21,25]. Antigens of Mycobacterium
tuberculosis [15,26], Chlamydia trachomatis [12], Neisseria meningitides [17,27], Taenia crassiceps [9,10], and
Mycobacterium leprae [13] carried by cationic particles, liposomes, or bilayer fragments containing
dioctadecyldimethylammonium bromide (DODAB) cationic lipid enhanced the cellular and humoral
antigen-specific immune response [15,16,28]. Excellent reviews are available on the use of a variety of
cationic lipids such as dimethylaminoethane–carbamoyl–cholesterol (DC-Chol) and derivatives [29],
1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) [30], DODAB [9,16,31], and others to present
antigens [32].

In response to pathogens, the innate immune system recognizes the pathogen-associated molecular
patterns (PAMPs) by means of the pattern recognition receptors (PRRs) on the surface and in endosomes
of APCs [1,33]. As a second line of defense, the adaptive immune system developed by vertebrates
consists in memory T and B cells that employ new synthesized antigen-specific receptors able to
recognize pathogen-specific antigens when presented by major histocompatibility complexes (MHC)
on the surface of an APC. The balance between activity of T or B cells relies on signals provided
by the APC (such as co-stimulatory molecules and precise cytokines) in response to the priming by
PAMPs [1]. In summary, the co-delivery of antigen and adjuvant to APCs in subunit vaccines results in
up-regulation of co-stimulatory molecules essential for adequate T and B cells stimulation [1]. In order
to formulate vaccines, a fundamental comprehension of innate and adaptive immune responses is
required: the first PAMPS recognition is made via several receptors (innate immunity) leading to the
responses able to activate and differentiate T helper cells with possible B cell (antibody-mediated) and
CD8 T cell-mediated adaptive immune responses [33].

2. Assemblies from Cationic Lipids and Surfactants

Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and
vaccine delivery. Cationic biomimetic particles offered a suitable interfacial environment for adsorption,
presentation, and targeting of antigens in vivo. Thereby, antigens can effectively be presented by
tailored biomimetic particles for development of vaccines over a range of defined and controllable
particle sizes [34]. Lipid supramolecular association with particles has been systematically studied
on latex, silica, or drug particles over a range of experimental conditions in order to achieve optimal
bilayer deposition onto each particle. The difficult step of vesicle disruption, especially for bilayers in
the rigid gel state, was circumvented by using previously disrupted charged vesicles, namely charged
bilayer fragments or disks (BF). BF, under appropriate conditions of the intervening medium, coalesced
around particles for presentation of antigens to the immunological system [35].

Antigen loading in the vaccine can be driven in cationic assemblies by electrostatic attraction
between the antigen and oppositely charged moieties of the adjuvant. For example, cationic DODAB
bilayers in water dispersions are available as closed microstructures such as vesicles or open, nano-sized
bilayer fragments (BF) obtained by ultrasonic disruption from closed vesicles [28,36–39]. These micro-
or nano-structures efficiently combine with serum proteins [40], recombinant heat-shock proteins
from micobacteria [13], purified extracts from parasites such as Taenia crassiceps [9,10], ovalbumin
(OVA) model antigen [16], genetic material such as DNA [41–43], mono- or oligonucleotides such as
CpG [44–46], and other oppositely charged biomolecules, drugs, nanoparticles, surfaces, or biological
cells [28,41]. Several good reviews appeared on the use of a variety of cationic lipids and surfactants to
formulate vaccines [21,32,47–49].

Examples of monocationic lipids are N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium
trimethyl chloride (DOTMA), dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP),
dimethyldioctadecylammonium bromide (DDAB or DODAB), dimethylaminoethane carbamoyl
cholesterol (DC-Chol), 1,2-distearoyl-3-trimethylammonium-propane (chloride salt) (DSTAP), and
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dimyristoyl-3-trimethylammonium-propane (chloride salt) (DMTAP). One example of a polycationic
sphingolipid is N-palmitoyl d-erythro-sphingosyl-1-0-carbamoyl-spermine triacetate salt (CCS).
Figure 1 shows the chemical structures of DOTMA, DOTAP, DODAB, CCS and DC-Chol.
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Figure 1. Chemical structure of cationic lipids or surfactants used to formulate vaccines. They
bear the cationic charges of primary or secondary amino groups or quaternary ammonium
nitrogens in their structures which combine with oppositely charged antigens. CCS is N-palmitoyl
d-erythro-sphingosyl-1-0-carbamoyl-spermine triacetate salt. The CCS chemical structure was reprinted
from [50] with permission from Elsevier, Copyright 2006.
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In particular, CCS is a polycationic surfactant with one primary and two secondary amine groups
self-assembling as micelles in aqueous phase; CCS required “helper” lipids such as cholesterol to form
liposomes before being combined with the hemoaglutinin/neuraminidase antigens of influenza virus
to elicit both Th1 and Th2 responses in mice immunized via the nasal route [50,51].

Among the synthetic lipids, DODAB is possibly the less expensive and the most studied synthetic
lipid from several points of view such as its self-assembly as closed or open bilayers in aqueous
solutions, its physico-chemical properties in aqueous solutions, its ability to interact with several
oppositely charged molecules, nanostructures, nanoparticles, surfaces, and cells with a controllable
cytotoxicity against mammalian cells lines; its combinations with a large variety of antigens were able
to induce a Th1 response but did not improve the Th2 humoral response [9,13,16,28,37,52]. Among the
other cationic lipids, only those with more fluid bilayers due to their double bonds in the hydrocarbon
chains or to short hydrocarbon chains such as DOTAP or DMTAP, respectively, were able to elicit both
Th1 and Th2 responses combined with antigens [50]. The sphingolipid CCS has a large polycationic
polar head and inverted-cone molecular shape self-assembling as micelles. Bilayers were formed
combining CCS with other neutral lipids such as dioleoyl phosphatidylethanolamine (DOPE) or
cholesterol (Chol), at a CCS/helper lipid mole ratio of 1/1 to 4/1; these cationic assemblies were explored
by Barenholz and coworkers to deliver influenza virus antigens by the intranasal route [50,51].

The intranasal (i.n.) is an advantageous mucosal route that allows rapid administration for large
populations in the case of pandemics. A good example is the i.n. influenza vaccine, based on CCS
combining carrier and adjuvant activities, which elicits, in mice, strong systemic (serum) and local
(lung and nasal) humoral and cellular immunity. Unsized liposomes of DC-Chol, DODAB, and DSTAP
resulted in low serum and local responses, while two others (DMTAP- and DOTAP-based vaccines)
induced both systemic and local vigorous Th1 and Th2 immune responses [50]. However, only the
vaccine formulated with CCS was equivalent or superior to the commercial vaccine co-administered
with cholera toxin as an adjuvant [50]. Innovative mucosal vaccines against influenza [53] or other
diseases were recently comprehensively reviewed [54].

Figure 2 illustrates the possible events for mucosal immunization driven by an antigen/adjuvant
nano-assembly as reprinted with permission from Bernocchi et al. 2017, reference [54]. The possible
routes for an antigen/adjuvant nano-assembly are depicted from Figure 2A–E where there is direct
capture by dendritic cell in Figure 2A, antigen diffusion through the cell junctions in Figure 2B, M cells
performing the sampling of the antigen/carrier assemblies and directing them to appropriate cells in
their M cell pocket in Figure 2C, epithelial cells performing endocytosis of the NP/antigen for further
deliverance to local dendritic cells (DC) and T cells which are able to boost the immune response in
Figure 2D. At last in Figure 2E, once in endosomes, NP could release antigens and be exocytosed
as free, unloaded, NP (E1) and/or induce the endosomal escape of the antigens (E2) that would be
processed as an endogenous antigen and presented by MHC-I (E3). In the other way, also on Figure 2E,
NP could be degraded in endo/lysosomes (E4), and the released antigen be processed as exogenous
and presented by MHC-II (E5). This could lead to DC and CD8+ T cell activation and/or priming. The
activated DC from these pathways then migrate to germinal centers or directly to lymph nodes to
activate CD4+ T cells that in turn activate B cells. They undergo an IgA+ phenotype switch, migrate
by the blood flow to the effector sites and produce secreted IgA (sIgA) as IgA+ plasma cells.

Once NP/Ag undergo endocytosis by APC, the epitopes of processed antigens can be presented
as complexes with either major histocompatibility complex I (MHC-I) or major histocompatibility
complex II (MHC-II) [55,56]. In the case of cationic lipids, the versatile DODAB can be dispersed as
nanosized, cationic bilayer fragments (BF) able to combine with oppositely charged antigens in general,
driving the immune response to a cell-mediated one (Th1) [9,16]. In a certain sense, the DODAB BF are
discoidal and open nanostructures instead of closed, vesicular bilayers or liposomes, and antigen is
expected to become adsorbed from the electrostatic attraction all around the disk-like bilayer so that
desorption and endosomal escape might allow MHC-I presentation after trafficking from the cytosol to
the endoplasmic reticulum. This would agree with findings by Korsholm and coworkers [57]; they
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studied the mechanism of adjuvanticity for DODAB/OVA liposomes and found that these liposomes
did not affect the maturation of murine bone-marrow-derived dendritic cells (BM-DCs) related to the
surface expression of MHC-II, CD40, CD80, and CD86 but enhanced the uptake of OVA by BM-DCs
via endocytosis; intraperitoneal injection of DODAB/OVA liposomes also enhanced the uptake of the
antigen by peritoneal exudate cells and targeted the antigen preferentially to antigen-presenting cells,
leading to enhanced uptake and presentation of antigen [57].
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Figure 2. Mucosal immune induction in nasal and airways epithelia by antigen-loaded nanocarriers
(NP/antigen). (A) Dendritic cells (DC) protruding arms, the transepithelial dendrites, directly capture
the NP/antigen. (B) NP/antigen can also diffuse through epithelial junctions and reach the underlying
DC. (C) The M cells create a pocket enriched in immune cells (DC, macrophages-Mϕ and lymphocytes
T) and perform the sampling of the luminal antigens so that the immune cells contact the NP/antigen.
(D) The NP/antigen can also enter cells by endocytosis and deliver the antigens of the nanovaccine into
the cells. The endocytosis of NP/antigen by the epithelial cells triggers the production of cytokines,
defensines, and chemokines involved in local immune cells recruitment (DC and T cells) able to
boost the immune response. (E) The endocytosis of NP/antigen can also be the first step of antigen
presentation by epithelial cells. In endosomes, NP could release antigens and be exocytosed as free,
unloaded, NP (E1) and/or induce the endosomal escape of the antigens (E2) that will be processed as
an endogenous antigen and presented by major histocompatibility complex I (MHC-I) (E3). In the
other way, NP could be degraded in endo/lysosomes (E4), and the released antigen will be processed as
exogenous and presented by major histocompatibility complex II (MHC-II) (E5). This could lead to DC
and CD8+ T cell activation and/or priming. The activated DC from these pathways then migrate to
germinal centers or directly to lymph nodes to activate CD4+ T cells that in turn activate B cells. They
undergo an IgA+ phenotype switch, migrate by the blood flow to the effector sites and produce secreted
IgA (sIgA) as IgA+ plasma cells. Reprinted from [54] with permission from Elsevier, Copyright 2017.

Nano-sized formulations enter the cells by endocytosis following the endo-lysosomal pathway
before the protein is delivered and degraded in the endosomes; the resulting peptides are complexed
with MHC-II and presented on cell surface for activation of CD4+ T helper cells, stimulating cytokine
secretion and humoral antibody responses (Th2). When the nanostructure promotes the protein
escape from the endosomes to the cytosol, the protein may be degraded in the proteasome with the
peptidic products of the degradation carried by transporters of antigen processing to the endoplasmic
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reticulum where they combine with MHC-I. Cellular expression of peptide-associated MHC-I activates
CD8+ T cells and cell-mediated immunity [58–61]. For effective control of tumors and pathogens
by the immune system, neoplastic and infected cells must be targeted and destroyed by cytotoxic
T lymphocytes (CTLs). While MHC-I conventionally present endogenous cytosolic antigens, the
alternative pathway, termed cross-presentation, also allows the presentation of peptides derived from
exogenous antigens by MHC-I [62]. As tumor antigens and pathogen-derived proteins are often not
endogenously produced by antigen-presenting cells (APCs), this exogenous pathway is crucial for the
generation of CD8+ CTL responses against these cell-associated antigens [63]. Enhancement of the
targeting of exogenous antigens to the cross-presentation pathway may help develop effective vaccines
against tumors, parasites, intracellular bacteria, and viruses. In summary, there are distinct intracellular
routes for antigen uptake and presentation to attain CD4 and CD8 T cell activation and ideal antigen
adjuvant systems should activate both of these pathways, thereby also inducing cross-presentation [58].
Since subunit vaccines are not effective in cytotoxic T cells activation, the association with adjuvants
becomes crucial [64]. Interestingly, the antigen encapsulation in nanostructures (nanoparticles and
bilayer nanodisks included) may direct the antigen presentation towards a different or combined
immune response. This orientation can be affected by multiple factors, such as the mechanism of
uptake, and is dependent upon the nanostructure physical properties such as the size, the outer
surface charge, and also the inner particle charge. In our group, we observed that cationic nanodisks
of DODAB BF complexed with the model antigen ovalbumin induced in vivo a large Th1 response
and very low or absent humoral response [9,13,16], whereas NPs of PDDA/OVA, where the antigen
was entangled with the cationic polymer PDDA, elicited potent Th2 humoral response in absence of
the cell-mediated one [65]. Therefore, the ideal adjuvant should combine the ability of offering the
antigen to be degraded inside the endosome with the ability to allow the antigen endosomal escape.
Should we mix DODAB BF/antigen with PDDA/antigen to achieve the right balance between Th1 and
Th2 responses?

The progress in gene or siRNA delivery to cells contributed substantially to the development of
novel cationic lipids [66–68]. A particularly interesting class of cationic lipids is the lipopolyamines
synthesized by Byk and coworkers in the 1990s aiming at DNA transfer to cells [69]. They were recently
explored by Pizzuto and coworkers as single-component adjuvants able to elicit both Th1 and Th2
responses in absence of toxicity in vivo [70]. Figure 3 illustrates the ability of these polyamines to
activate Toll-like receptor 2 (TLR2) and 4 (TLR4) besides inducing, in combination with OVA antigen,
both IgG1 and IgG2a; OVA alone or Alum induced exclusively IgG1, and lipopolyamines induced
both IgG1 and IgG2a antibodies production [70]. Figure 3A shows the chemical structure of the
lipopolyamines. Figure 3B illustrates the uptake of lipopolyamines alone or complexed with ovalbumin
by cultured human cell lines transfected with Toll-like Receptors (TLRs), leading to (1) secretion of
inflammatory and type-I interferon cytokines able to trigger a Th1 response (cell-mediated immunity);
(2) secretion of the interleukin-1beta (IL-1β) able to induce a Th2 response (humoral immune response).
Figure 3C shows that the uptake of lipopolyamines/antigen complexes in vivo by intraperitoneal
macrophages induced secretion of interleukin-5 (IL-5) and humoral immunity plus tumor necrosis
factor-alpha (TNF-α) and gamma-interferon inducible protein (IP-10) [71], typical inducers of Th1
response (cell-mediated immune response) by the cultured macrophages.

On Figure 3 reproduced from Pizzuto and coworkers are shown two lipopolyamines with 12 or
18 carbon atoms in their alkyl chains; however, only the lipopolyamines with 12 or 14 carbon atoms in
their alkyl chains activated TLR2- and TLR4-transfected cells, whereas the C18-lipopolyamine with
very similar or identical polar head group activated only TLR2-transfected cells. The hypothesis cast to
understand this was related to the fusogenic behavior of the lipopolyamines, since those with shorter
lengths of the carbon chains (as those with C12 or C14) would be more fusogenic than those with
long chains (as those with C18); thereby, the former would be taken up more easily by the cells. The
possible toxicity in vivo of the lipopolyamine–OVA complexes was evaluated from determinations
of liver enzymes alanine transaminase (ALT), aspartate transaminase (AST), and the inflammatory
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cytokine tumor necrosis factor-alpha (TNF-α) in the serum plus histological examination of liver slices
of the injected mice post-injection; no toxicity was detected, neither in serum nor on liver slices. The
TLR stimulation and secretion of pro-inflammatory and interleukin-1beta (IL-1β) cytokines suggested
that the C12 or C14-polyamines would be promising one-component vaccine adjuvants eliciting both
humoral and cell-mediated responses [70].
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Figure 3. (A) Chemical structure of lipopolyamines (12 or 18 C). (B) Uptake of lipopolyamines alone
or complexed with ovalbumin by cultured human cell lines transfected with Toll-like Receptors
(TLRs), leading to 1) secretion of inflammatory and type-I interferon cytokines able to trigger a Th1
response (cell-mediated immunity); 2) secretion of the interleukin-1beta (IL-1β) able to induce a Th2
response (humoral immune response). (c) Uptake of lipopolyamines/antigen complexes in vivo by
intraperitoneal macrophages induced secretion of interleukin-5 (IL-5) and humoral immunity plus
tumor necrosis factor-alpha (TNF-α) and gamma-interferon inducible protein (IP-10) [71], typical
inducers of Th1 response (cell-mediated immune response) by the cultured macrophages. Reprinted
from [70] with permission from Elsevier, Copyright 2018.

Aluminum adjuvants typically activate the inflammasome pathway and Th 2 response [72] so
that alum combinations with TLR agonists are needed to induce the cell-mediated Th 1 response
against pathogens [5]. Pizzuto et al. also demonstrated that lipopolyamines induced IP-10, IL-6, and
IL-1β secretion in murine macrophages and TNF-α in murine and human macrophages. TNF-α and
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IL-6 are pro-inflammatory cytokines typical of the NF-κB induction. IP-10 is instead the signature
of Type I IFN antiviral and T cell-stimulating response and is typical of the IRF induction. Finally,
IL-1β secretion demonstrates the concomitant activation of the NF-κB pathway, which expresses
pro-IL-1β, and of the inflammasome pathway that cleaves pro-IL-1 β. The activation of both TLR and
inflammasome pathways combined with the carrier properties makes cationic lipid lipopolyamines
excellent candidates as one-component vaccine adjuvants [70].

The mycobacterial cord factor trehalose-6,6′-dimycolate (TDM) present in the cell wall of
mycobacteria and its synthetic adjuvant analog trehalose-6,6′-dibehenate (TDB) are glycolipids
that trigger innate immunity. Bone-marrow-derived dendritic cells (BMDCs) stimulated with TDB
induced Nlrp3 inflammasome-dependent IL-1β secretion; in vivo, in Nlrp3-deficient mice, recruitment
of neutrophils by TDB was reduced, showing the essential role of the Nlrp3 inflammasome for the
induction of an innate humoral immune response triggered by TDB [73].

In murine models of Mycobacterium tuberculosis (Mtb) infection, TDM administration drove the
early pro-inflammatory M1-like macrophage response related to the granulomas of primary pathology;
proinflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-12p40 were produced in lung tissue [74].
Furthermore, CD11b+CD45+ macrophages with a high surface expression of the pro-inflammatory
CD38 and CD86 markers were found in lung lesions of mice at 7 days post-TDM introduction, but low
phenotypic marker expression of anti-inflammatory M2-like markers CD206 and EGR-2 were present
on macrophages. TDM played a role in establishment of the M1-like shift in the microenvironment
during primary tuberculosis. Thus, the MTB cell wall cording factor TDM is a physiologically relevant
and useful molecule for modeling early macrophage-mediated events during establishment of the
tuberculosis-induced granuloma pathogenesis [74].

In order to improve fusion of cell membranes with DODAB bilayers, which are in the rigid
gel state at room temperature [75], DODAB bilayer fluidity had to be increased by using DODAB
combinations with other lipids and surfactants such as the glycolipid TDB [15,76], the surfactant
monoolein (1-monooleoyl-rac-glycerol) [77], the C24:1 β-glucosylceramide [78] or the glycolipid
de-O-acylated lipooligosaccharide (dLOS) as a booster vaccine against tuberculosis [79]. In particular,
intranasal immunization with DODAB/TDB combined with influenza antigen A (H3N2) induced
superior humoral and cell-mediated responses; there was an effective facilitation of uptake by DC, DC
maturation in vitro, increased mucosal IgA production, increased IgG, IgG1, and IgG2b antibody titers
in comparison with other formulations using cationic lipids after intranasal administration in vivo [80].
Immunization of mice with a mycobacterial fusion protein in DODAB-TDB liposomes induced a strong,
specific Th1-type immune response characterized by substantial production of interferon-gamma
mediated by CD4 T cells and high levels of IgG2b isotype antibodies [15]. The combinations of DODAB
and monoolein improved the fusion of the liposomes with cell membranes, thereby allowing their
use for mammalian cell transfection [81] and in vitro gene silencing [82]. These combinations also
induced strong humoral and cell-mediated immune responses, producing antibodies (IgGs) against
specific cell wall proteins of Candida albicans (CWSP) useful for fighting fungus infections [77,83].
Figure 4 illustrates the use and activity of DODAB/monoolein vesicles as adjuvants as reproduced
from reference [77]. One should notice the inverted hexagonal phase of monoolein inside the liposome.

Another important line of research for vaccines against pathogens has been the use of cationic
liposomes or DODAB bilayer fragments (BF) as adjuvants for intranasal immunization. The cationic
DOTAP/DC-Chol liposomes combined with ovalbumin (OVA) were intranasally administered eliciting
enhanced production of IgG antibodies in the serum (Th2 response) in immunized mice as well as
mucosal IgA [84]. Immune responses for DODAB BF and alum complexes with outer membrane
vesicles (OMV) of Neisseria meningitidis B administered by intranasal and subcutaneous routes in mice
were compared; intranasal immunization produced a mixed Th1 and Th2 response, while subcutaneous
immunization exhibited a Th1 profile only [27]. Non-replicating, nanometric membrane vesicles (MV)
released both by Gram-positive and Gram-negative bacteria contain proteins, lipids, and nucleic acids
that are effectively able to stimulate the innate and adaptive immune system [85,86]. In this regard,
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the cationic lipids can add extra adjuvanticity. Furthermore, multiple antigens can decorate these
MV; for example, outer MVs from attenuated S. typhimurium was successfully decorated with one,
two, or three antigens from M. tuberculosis (ESAT6, Ag85B, and Rv2660c) and major outer membrane
protein epitopes from Chlamydia trachomatis; in vitro data showed that the antigen Ag85B delivered
by outer MVs is able to be recognized and processed by dendritic cells and subsequently activate M.
tuberculosis-specific T cells [87].Biomimetics 2020, 5, x FOR PEER REVIEW 9 of 47 

 

 

Figure 4. Activation of cell-mediated immunity and humoral response by DODAB/monoolein 

liposomes incorporating cell wall surface proteins of Candida albicans (CWSP). Reprinted from [77] 

with permission from Elsevier, Copyright 2015. 

Another important line of research for vaccines against pathogens has been the use of cationic 

liposomes or DODAB bilayer fragments (BF) as adjuvants for intranasal immunization. The cationic 

DOTAP/DC-Chol liposomes combined with ovalbumin (OVA) were intranasally administered 

eliciting enhanced production of IgG antibodies in the serum (Th2 response) in immunized mice as 

well as mucosal IgA [84]. Immune responses for DODAB BF and alum complexes with outer 

membrane vesicles (OMV) of Neisseria meningitidis B administered by intranasal and subcutaneous 

routes in mice were compared; intranasal immunization produced a mixed Th1 and Th2 response, 

while subcutaneous immunization exhibited a Th1 profile only [27]. Non-replicating, nanometric 

membrane vesicles (MV) released both by Gram-positive and Gram-negative bacteria contain 

proteins, lipids, and nucleic acids that are effectively able to stimulate the innate and adaptive 

immune system [85,86]. In this regard, the cationic lipids can add extra adjuvanticity. Furthermore, 

multiple antigens can decorate these MV; for example, outer MVs from attenuated S. typhimurium 

was successfully decorated with one, two, or three antigens from M. tuberculosis (ESAT6, Ag85B, and 

Rv2660c) and major outer membrane protein epitopes from Chlamydia trachomatis; in vitro data 

showed that the antigen Ag85B delivered by outer MVs is able to be recognized and processed by 

dendritic cells and subsequently activate M. tuberculosis-specific T cells [87]. 

The development of effective intranasal vaccines is of great interest due to their potential to 

induce both mucosal and systemic immunity. Some oil-in-water nanoemulsion (NE) formulations 

containing various cationic and nonionic surfactants were used as adjuvants for the intranasal 

delivery of vaccine antigens. Association of NE droplets with the mucus protein mucin in vitro was 

important as were the cationic NE formulations that facilitated cellular uptake of the model antigen, 

ovalbumin (OVA), in a nasal epithelial cell line. NE-facilitated mucosal layer penetration and cellular 

uptake led to enhancement of the immune response [88]. 

In an interesting comparative study, several cationic lipids were evaluated regarding their 

effectiveness as humoral adjuvants while carrying the influenza antigen hemoagglutinin (HA) [89]. 

DDA or DODAB and other cationic lipids combined with a neutral lipid (DPPC) in a molar 

Figure 4. Activation of cell-mediated immunity and humoral response by DODAB/monoolein liposomes
incorporating cell wall surface proteins of Candida albicans (CWSP). Reprinted from [77] with permission
from Elsevier, Copyright 2015.

The development of effective intranasal vaccines is of great interest due to their potential to induce
both mucosal and systemic immunity. Some oil-in-water nanoemulsion (NE) formulations containing
various cationic and nonionic surfactants were used as adjuvants for the intranasal delivery of vaccine
antigens. Association of NE droplets with the mucus protein mucin in vitro was important as were
the cationic NE formulations that facilitated cellular uptake of the model antigen, ovalbumin (OVA),
in a nasal epithelial cell line. NE-facilitated mucosal layer penetration and cellular uptake led to
enhancement of the immune response [88].

In an interesting comparative study, several cationic lipids were evaluated regarding their
effectiveness as humoral adjuvants while carrying the influenza antigen hemoagglutinin (HA) [89].
DDA or DODAB and other cationic lipids combined with a neutral lipid (DPPC) in a molar
proportion of 1:1 were again evaluated as poor inducers of humoral response with exception of
DC-Chol. The cationic liposomes contained a cationic compound (DDA or DODAB, 1,2-dipalmitoyl-3-
trimethylammonium-propane DPTAP, DC-Chol, or 1,2-diacyl-sn-glycero-3-ethylphosphocholine
(eDPPC) and a neutral phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and
carried the influenza antigen HA; they were well characterized regarding hydrodynamic diameter,
zeta potential, membrane fluidity, HA loading, and humoral immune response in subcutaneously
immunized mice from the production of HA-specific antibodies by ELISA and HA-neutralizing
antibodies by hemagglutination inhibition (HI) assay. Figure 5, reproduced from reference [89], shows
that liposomes at 1:1 DC-Chol/DPPC combined with HA gave the inhibition of hemoagglutination
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titers that could be related to the highest IgG1 and IgG2a titers compared to the other liposomal
HA formulations and HA alone. Moreover, increasing the proportion of cationic lipid increased the
incorporation of HA and the immune response [89]. One should notice that the physical state of the
cationic bilayers was the rigid gel state in all cases and the physical state of the DC-Chol/DPPC bilayers
was not determined in reference [89].

Biomimetics 2020, 5, x FOR PEER REVIEW 10 of 47 

 

proportion of 1:1 were again evaluated as poor inducers of humoral response with exception of DC-

Chol. The cationic liposomes contained a cationic compound (DDA or DODAB, 1,2-dipalmitoyl-3-

trimethylammonium-propane DPTAP, DC-Chol, or 1,2-diacyl-sn-glycero-3-ethylphosphocholine 

(eDPPC) and a neutral phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 

carried the influenza antigen HA; they were well characterized regarding hydrodynamic diameter, 

zeta potential, membrane fluidity, HA loading, and humoral immune response in subcutaneously 

immunized mice from the production of HA-specific antibodies by ELISA and HA-neutralizing 

antibodies by hemagglutination inhibition (HI) assay. Figure 5, reproduced from reference [89], 

shows that liposomes at 1:1 DC-Chol/DPPC combined with HA gave the inhibition of 

hemoagglutination titers that could be related to the highest IgG1 and IgG2a titers compared to the 

other liposomal HA formulations and HA alone. Moreover, increasing the proportion of cationic lipid 

increased the incorporation of HA and the immune response [89]. One should notice that the physical 

state of the cationic bilayers was the rigid gel state in all cases and the physical state of the DC-

Chol/DPPC bilayers was not determined in reference [89]. 

 

Figure 5. Hemagglutination inhibition (HI) assay for neutralizing antibodies against hemagglutinin 

(HA) elicited by combinations of HA with DDA/DPPC, DPTAP/DPPC, or DC-Chol/DPPC where 

DDA is dioctadecyldimethylammonium bromide, DPTAP is 1,2-dipalmitoyl-3-trimethylammonium-

propane, DPPC is 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, eDPPC is 1,2-diacyl-sn-glycero-3-

ethylphosphocholine and DC-Chol is 3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl] cholesterol. 

Reprinted from [89] with permission from Elsevier, Copyright 2012.  

The mRNA technology for vaccines [90] has been recognized as representing a transformative 

technology to control infectious diseases [91] and to fight cancer [92]. For example, while constructing 

an mRNA vaccine against influenza, the mRNA encoding the HA antigen of influenza A H1N1 virus 

was delivered by cationic lipid nanoparticles (LPN) and induced protective immune responses in 

mice. The lipid nanoparticles comprised several lipids such as DOTAP, 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE), and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

(methoxy(polyethylene glycol)-2000) (DSPE-mPEG2000) (50:50:1 mol/mol) [93]. The system allowed 

also the covalent binding of mannose (Man) to the PEG moiety so that targeting of the mannose -

cationic NPs (LNP-man) to the mannose receptors on antigen-presenting cells such as macrophages 

and dendritic cells improved the delivery efficiency of the assembly. These cationic lipid/mRNA NPs 

could protect their mRNA cargo from degradation by nucleases and deliver the m-RNA into cells by 

Figure 5. Hemagglutination inhibition (HI) assay for neutralizing antibodies against hemagglutinin
(HA) elicited by combinations of HA with DDA/DPPC, DPTAP/DPPC, or DC-Chol/DPPC where DDA
is dioctadecyldimethylammonium bromide, DPTAP is 1,2-dipalmitoyl-3-trimethylammonium-propane,
DPPC is 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, eDPPC is 1,2-diacyl-sn-glycero- 3-ethylphos
phocholine and DC-Chol is 3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl] cholesterol. Reprinted
from [89] with permission from Elsevier, Copyright 2012.

The mRNA technology for vaccines [90] has been recognized as representing a
transformative technology to control infectious diseases [91] and to fight cancer [92]. For
example, while constructing an mRNA vaccine against influenza, the mRNA encoding
the HA antigen of influenza A H1N1 virus was delivered by cationic lipid nanoparticles
(LPN) and induced protective immune responses in mice. The lipid nanoparticles
comprised several lipids such as DOTAP, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE),
and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000)
(DSPE-mPEG2000) (50:50:1 mol/mol) [93]. The system allowed also the covalent binding of mannose
(Man) to the PEG moiety so that targeting of the mannose -cationic NPs (LNP-man) to the mannose
receptors on antigen-presenting cells such as macrophages and dendritic cells improved the delivery
efficiency of the assembly. These cationic lipid/mRNA NPs could protect their mRNA cargo from
degradation by nucleases and deliver the m-RNA into cells by electrostatic adsorption and fusion with
the cell membrane. LNP-Man contained DOTAP, DOPE, and DSPE-PEG-Mannose (50:50:1 mol/mol).
This vaccine was properly tested from administration by the intra-nasal route and induced excellent
protection against influenza. The important issue of lipid-based anticancer vaccines was recently
reviewed [94].

In order to ascertain whether antigen depot or lymphatic targeting would benefit long-term
immunological memory, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or
DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines,
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respectively [95]; in vivo imaging showed that LP accumulated near the injection site, whereas
LP-Man accumulated in draining lymph nodes (LNs) and spleen enhancing the uptake by resident
antigen-presenting cells. LP vaccines with depot effect induced higher anti-OVA IgG production than
LP-Man vaccines on day 40 after priming but failed to mount an effective B-cell memory response
upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited
sustained antibody production and robust recall responses three months after priming, suggesting
that lymphatic targeting rather than antigen depot promoted the establishment of long-term memory
responses [95].

Small interfering RNAs (siRNAs) are able to recognize a homologous mRNA sequence in
the cell and induce its degradation; each siRNA molecule can inactivate several target RNAs in a
sequence-specific manner [96]. The main problems in the development of siRNA-based drugs and
vaccines for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation
of siRNAs by nucleases in biological fluids [67]. Among the approaches used to deliver RNA are those
based on non-saturated double-chained cationic lipids [97]. These lipids were shown to facilitate fusion
with cell membranes [98]. Figure 6 shows the encapsulation of self-amplifying RNA based on alphavirus
genome, which contains the genes encoding the alphavirus RNA replication machinery but lacks the
genes encoding the viral structural proteins required for infection; the cationic liposome composition
is also shown on the right as reproduced with permission from Geall and coworkers, 2012 [99]. The
cationic lipid employed was 1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DLinDMA) with two
double bonds per chain [98]. After immunization, replication and amplification of the RNA molecule
occur exclusively in the cytoplasm of the transfected cells, thereby eliminating risks of genomic
integration, cell transformation, and safety issues that occur for recombinant DNA, viral vectors, and
pDNA vaccines. Furthermore, there is no need for crossing the nuclear membrane, a rate-limiting step
for nonviral pDNA delivery.
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Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune
responses when encountered in association with activating signals, such as pathogen-associated
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molecular patterns. Monophosphoryl lipid A (MPL) is a ligand of the Toll-like receptor-4 and has been
used in several studies on vaccines [100]. Using combined therapy against murine model tumors,
both MPL and IL-12 were included in cationic DOTAP liposomes for intratumoral injection [101]. In
4T1 murine model of breast cancer, the injection decreased cellular proliferation and increased serum
levels of IL-1β and TNF-α. The addition of recombinant IL-12 further suppressed tumor growth and
increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic
T cells, DC, and F4/80(+) macrophages in the tumor. The combination of MPL and IL-12 elevated the
levels of nitric oxide synthase 7-fold above basal levels in the tumor and caused cell cycle arrest and
apoptosis, also inhibiting the growth of untreated tumor in the same animal and revealing the systemic
activity of the formulation [101].

In another very interesting approach, sterically stabilized nanodisks based on high-density
lipoproteins (HDL) carried MPL, CpG (ligand of Toll-like receptor-9), and antigen for personalized
cancer immunotherapy; synthetic high-density lipoprotein (sHDL) nanodisks were composed of
phospholipids and apolipoprotein A1 (ApoA1)-mimetic peptides (the peptides were named 22A because
they were synthesized as 22-mer peptides, derived from the repeat α-helix domain of ApoA1) [102].
Thereby the endogenous role of HDL as a nanocarrier for cholesterol was explored in synthetic HDL
that carried cholesteryl-CpG, neo-antigens, and tumor Ag peptides (neo-antigens identified via tumor
DNA sequencing) to produce homogeneous, stable, and ultrasmall nanodisks in less than two hours at
room temperature; nanodisks promoted co-delivery of Ag/CpG to draining lymph nodes; prolonged Ag
presentation on antigen-presenting cells (APCs); elicited striking levels of broad-spectrum antitumor
T-cell responses; and significantly inhibited tumor growth, also eradicating established tumors [102].
Cationic nanodisks of DODAB, also called DODAB bilayer fragments (BF), have also been used as
adjuvants for carrying several antigens, CpG agonist, and oligonucleotides [16] directing excellent
Th1 response and also Th2, depending on the administration route [see references [21,25,28]. Figure 7
schematically represents cross-sections of DODAB nanodisks carrying CpG and ovalbumin (OVA).
DODAB BF have two major strategic advantages when compared to more sophisticated formulations:
(1) DODAB is possibly the less expensive synthetic cationic lipid available nowadays, (2) DODAB
dispersion as open bilayers in water solution can be rapidly performed by sonication with a macrotip,
and (3) the nanometric size of the DODAB bilayer disks allows direct stimulation of APC in the
draining lymph nodes [103].
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Figure 7. Schematic representation of cross sections for DODAB bilayer fragments (DODAB BF) used
for carrying ovalbumin (OVA) and CpG agonist of Toll-like receptor 9. The final assemblies were
anionic and directed excellent Th1 response in mice immunized subcutaneously. Curiously, addition
of CpG to the assembly did not improve the immune response; DODAB was effective by itself. In
addition, the nanosize of the assemblies was more important than the charge. Reprinted from [16] with
permission from Elsevier, Copyright 2012.

Whereas DODAB BF harboring CpG did not improve the adjuvanticity of DODAB BF in vivo [16],
DOTAP/DC-chol liposomes harboring CpG ODN as a mucosal adjuvant induced both antigen-specific
mucosal IgA responses and balanced Th1/Th2 responses so that the combination resolved adverse
effects of CpG ODN as mucosal adjuvant by means of dose minimization [104].
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Human papillomavirus (HPV) is the most common sexually transmitted biological agent and
causes precancer lesions and cancer; three prophylactic HPV vaccines targeting high-risk HPV types
are available in many countries worldwide: 2-, 4- and 9-valent vaccines; all three of the vaccines
use recombinant DNA technology and are prepared from the purified L1 protein that self-assembles
to form HPV type-specific empty shells [105]. There are a few instances of using cationic lipids to
formulate vaccines against HPV. DOTAP/oncoprotein E7 of papillomavirus was evaluated for its
anti-cancer activity; E7 peptide formulated with DOTAP induced migration of activated dendritic
cells (DC) to the draining lymph node (DLN) and efficiently generated functional antigen-specific
CD8+ T lymphocyte infiltration and apoptosis at tumor sites; the effect did not change by adding
CpG to the same formulation [106]. Efficient eradication of tumors in mice was also achieved using
combinations of DOTAP/DOPE cationic liposomes with synthetic long peptides (SLP) derived from
OVA alone or combined with different Toll-like receptors ligands including CpG; a single intradermal
tailbase vaccination of tumor-bearing mice with a low dose of E7/poly(I:C)-liposomes led to complete
clearance of the tumors in 100% of the mice; therapeutic vaccination with SLP could be clinically
effective against HPV-induced premalignant lesions; induced antigen-specific CD8+ and CD4+ T cells
and in vivo cytotoxicity against target cells after intradermal vaccination; at a low dose (1 nmol) of
SLP, our liposomal formulations significantly controlled tumor outgrowth in two independent models
(melanoma and HPV-induced tumors) and even cured 75%–100% of mice of their large established
tumors; cured mice were fully protected from a second challenge with an otherwise lethal dose of
tumor cells, indicating the potential of liposomal SLP in the formulation of powerful vaccines for
cancer immunotherapy [107].

SLP-loaded (1,2-dioleoyl-3-(trimethyammonium) propane)-based cationic formulation as a
therapeutic cancer vaccine was tested against two independent tumor models. The OVA-derived SLPs
containing CTL and Th epitopes were loaded into DOTAP- based cationic liposomes combined with
different TLR ligands [poly(I:C), Pam3CysK4, CpG], and the most potent formulations were applied in
a foreign antigen (OVA)-expressing melanoma model. In an independent setting, HPV16 E7 SLP was
formulated in the same liposomal system and analyzed as a therapeutic vaccine in the TC-1 HPV+

tumor model; both formulations were highly effective in the induction of cellular immunity and tumor
control [107].

The humoral and cellular immune responses induced in mice against hepatitis B virus surface
antigen (HBsAg) were examined when the antigen was either adsorbed to aluminum hydroxide
or administered with DC-Chol. DC-Chol induced cellular immune responses to HbsAg and a
balanced Th1/Th2 response, which enabled mice to overcome the inherited unresponsiveness to HBsAg
encountered with aluminum-adjuvanted vaccine. Thus, the DC-Chol provided a signal to switch on
both Th1 and Th2 responses for vaccination against hepatitis B virus [108].

An early model study on trafficking of cationic-liposome-DNA complexes in the cells attempted
to reveal by electron microscopy the intracellular fate of gold-labeled structures. Cells treated with
DOTMA liposome-DNA complexes demonstrated endocytosis of the liposome–DNA complexes in
coated pits, which were seen in early endosomes, late endosomes, and lysosomes. In isolated alveolar
type II cells, the gold-labeled DOTMA lipid apparently mixed with the contents of lamellar bodies. In
most cells, gold particles were dispersed throughout the cytoplasmic matrix. In a small proportion of
cells, a membrane system resembling the endoplasmic reticulum developed within the nucleus; this
novel structure was also present in isolated nuclei from cells and then mixed with DOTMA-containing
liposomes [109].

DNA vaccination technologies have been important in several areas despite the difficulties
involving DNA transfection efficiency, prevention of DNA degradation, APC targeting, and enhancing
DNA escape from endo/lysosomal compartments and attachment of virus-derived nuclear localization
sequences facilitating nuclear entry of the DNA [110]. For example, DNA vaccines provide an attractive
technology platform against anthrax bioterrorism agents; monovalent and bivalent anthrax plasmid
DNA (pDNA) vaccines encoding genetically detoxified protective antigen (PA) and lethal factor (LF)
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proteins were formulated in cationic lipids, and immune responses after two or three injections of
cationic lipid-formulated PA, PA plus LF, or LF pDNAs were at least equivalent to two doses of anthrax
vaccine adsorbed (AVA). High titers of anti-PA, anti-LF, and neutralizing antibody to lethal toxin (Letx)
were achieved in all rabbits. All animals receiving PA or PA plus LF pDNA vaccines were protected. In
addition, 5 of 9 animals receiving LF pDNA survived, and the time to death was significantly delayed
in the others. Groups receiving three immunizations with PA or PA plus LF pDNA showed no increase
in anti-PA, anti-LF, or Letx neutralizing antibody titers postchallenge, suggesting little or no spore
germination. In contrast, titer increases were seen in AVA animals and in surviving animals vaccinated
with LF pDNA alone. Preclinical evaluation of this cationic lipid-formulated bivalent PA and LF
vaccine is complete, and the vaccine has received U.S. Food and Drug Administration Investigational
New Drug allowance [111].

Early work involving cationic liposomes to carry plasmid encoding antigens revealed that the
liposomes indeed protected the liposome-entrapped DNA from degradation in vivo, thereby resulting
in greater antibody responses against the encoded antigen when compared with naked DNA, both
given via the subcutaneous route; T-cell responses from analysis of interferon-γ and interleukin-4
levels in the spleens of mice treated with liposomes/DNA were also significantly higher than those
measured in mice treated similarly with naked DNA [112–114]. More recently, Perrie and coworkers
gave an excellent summary of the possible fate of cationic liposomes/DNA (L/DNA) assemblies injected
by the subcutaneous route [115]. L/DNA assemblies injected locally are taken up by APC penetrating
the site of injection or in the lymph nodes draining the injected site; the clearance of L/DNA from the
site of injection depends on L/DNA size; the smaller the size, the more rapid the clearance through the
anatomical barriers [116]. The L/DNA become dispersed throughout the lymph node either permeating
along the sinuses or being taken up by cells such as macrophages; once within cells, L/DNA are
digested by the lysosomes, leaving their contents within the lysosomes or escaping this degradation
via fusion with the endosomal membrane (which happens due to the fusogenic lipid DOPE present in
the liposomal bilayer) [117–119]. Thereby DNA is displaced from the complex and released into the
cytosol for eventual episomal transfection so that cationic lipid and DOPE favor liposome-mediated
-DNA immunization [115,117,118]. The possible fates of nanosized adjuvant/antigen assemblies were
thoroughly discussed by Smith and coworkers, 2013 [120].

Lecithins are components of cell membranes consisting of combinations of phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI), plus
other substances such as triglycerides and fatty acids; in particular, soy lecithin contains 21% PC, 22%
PE, and 19% PI, along with other components. Lecithins are widely used for dispersing, emulsifying,
and stabilizing a variety of pharmaceuticals often included in intramuscular and intravenous injectables,
parenteral nutrition formulations, and topical products [121]. Hexadecyltrimethyl ammonium bromide
(CTAB) surfactant added to lecithin nanoparticles yielded cationic particles with diameters in the range
of 100–200 nm where soy lecithin was the matrix material and CTAB, the outer surfactant. The zeta
potential of the particles was positive, reached a value of about 40 mV at a CTAB concentration of 2.5
mM, and was used to adsorb plasmid DNA and transfect cells efficiently, representing a potential
carrier for DNA vaccines [122].

Cationic liposomes are commonly used as a transfection reagent for DNA, RNA, or proteins
and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close
to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger
cascades that are classically activated by endogenous cationic compounds, though carrier/protein
or carrier/nucleic acid might have anionic charges and still trigger significant immune responses.
There are several cellular pathways, like pro-apoptotic and pro-inflammatory cascades, that can be
induced by cationic liposomes, depending on their nature, size, and structural properties (nature of
the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) [123]. Their use and design
for specific applications such as gene transport or as adjuvants certainly require more knowledge
on their structure–function relationship. Excellent reviews are available on this nano-era regarding
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applications of nanotechnology in immunology [120,124], progress in prophylactic and therapeutic
nanovaccines [124], cancer nano-immunotherapy [125], nanomaterial interactions with the immune
system [126], and liposomes formulations for vaccines [127,128].

3. Assemblies Based on Cationic Polymers

Similarly to cationic lipids, cationic polymers constitute another important class of cationic
adjuvants despite their often-reported dose-dependent cytotoxicity that requires dose minimization [9,
10,65,129–133]. They easily combine with oppositely charged proteins [40,134]. Biodegradable
polymeric particles of poly (lactic-co-glycolic acid) (PLGA) have been combined with cationic surfactants
or lipids or polymers (CTAB, DODAB, polyethyleneimine (PEI) or ε-poly-l-lysine (PLL)) for improving
antigen adsorption, colloidal stability, and the immune response [135,136]. Nanocomplexes of PEI and
antigens (influenza hemagglutinin or herpes simplex virus type-2 glycoprotein D) delivered by the
mucosal route activated APC in vivo, promoting dendritic cell trafficking to draining lymph nodes
besides eliciting a potent immune response against the viral subunit glycoproteins; a single intranasal
administration elicited robust antibody-mediated protection [137]. Systemic administration of the same
antigens with PEI induced both Th1/Th2 immune responses and higher titers of both antigen-binding
and -neutralizing antibodies than alum [138].

The cationic antimicrobial polymer poly (diallyldimethylammonium chloride) (PDDA) is a
poly-cation [139–141] able to combine with bovine serum albumin (BSA), yielding NPs with diameters
around 50 nm [142,143]. In combination with HIV-1 DNA, nanorods of gold yielded particles of
gold/PDDA/DNA, which elicited a Th2 response that was higher than the one obtained using PEI or
cetyltrimethylammonium bromide (CTAB). Stimulated cellular and humoral immunity, as well as T cell
proliferation, was obtained in comparison with naked HIV-1 Env plasmid DNA treatment in vivo [144].
Recently, NPs of PDDA/ovalbumin were prepared, characterized by their physical properties, and
evaluated as stimulators of the OVA-specific immune response [65]. Dynamic light scattering (DLS)
showed that these cationic PDDA/OVA NPs at reduced doses of cationic polymer had low size, positive
zeta-potential, low polydispersity, good colloid stability, and low cytotoxicity against mammalian
cells in culture eliciting potent Th2 OVA-specific immune response (high OVA-specific IgG1 and low
OVA-specific IgG2a production); the OVA-specific antibody production was even higher than the one
elicited by Al(OH)3/OVA [65].

Polycations combine spontaneously with molecules of opposite charge like proteins and nucleic
acids [65,137,142]; thus, the main use of polycations in the biomedical field is the delivery of bioactive
molecules including DNA, RNA, and protein [145]. Polycations as adjuvants can be used in a variety
of assemblies, ranging from the simple complexation of polymer with antigen driven by electrostatic
interactions [65,138,146] to the use of the polymers as particle coatings or particle cores [147]. The
spontaneous complexation of polycations with negatively charged antigens is the simplest way to use
these systems as antigen carriers. Figure 8 shows the chemical structures of some cationic polymers
that have been used as antigen carriers.

Polyethyleneimine (PEI) is an organic, hydrophilic, and cationic polymer that displays a strong
positive charge density promoting the combination with negatively charged molecules such as DNA,
negatively charged antigens, or plasma membranes [146]. An interesting quality of PEI is its ability
to leak from endosomes after cell internalization due to its capacity for avoiding the endosomal
acidification; the high number of nitrogen atoms in the PEI molecule makes the polymer an excellent
buffer also at low pH [148]. This proton sponge effect is due to deprotonated PEI amino groups binding
protons as they are pumped into the lysosome, resulting in the influx of Cl– ions and water with
lysosome osmotic swelling and stretching of the PEI molecule itself due to repulsion between protonated
amino groups; thereby, there is rupture of the lysosomal membrane with release of lysosomal contents
into the cytoplasm, the so-called endosomal escape leading to a cellular, Th1 response [149,150]. PEI
as an adjuvant protects antigens from enzymatic degradation [151], activates the inflammasomes,
up-regulates the transcription factor called interferon regulatory factor 3 (Irf-3) [137] and also other
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immunostimulatory genes [152], induces Th1 immune response associated with endosomal escape
and cross-presentation [153]; administered by the mucosal route, it improves the uptake of antigen
and the activation of APCs [137,154]. PEI promotes dsDNA release by host cells triggering the
Irf-3-dependent signaling [137]; Irf-3 is a transcription factor related with the activation of innate
response by means of the synthesis of type I interferon [155]. Besides Irf-3, PEI activates Nlrp3
inflammasomes, a critical component of the innate immune system, which directs the immune response
toward a Th2-biased type [137,138]. PEI as an adjuvant can induce Th1-, Th2-, or Th1/Th2- biased
immune response; although PEI has the proton sponge effect to carry out the lysosomal escape,
sometimes the escape does not occur, and antigens are presented via MHC class II, resulting in a
Th1/Th2 or Th2 response [137,138,146]. PEI/antigen administered by intranasal route induced Th2
response [137], while PEI/antigen administered by a subcutaneous route yielded a Th1/Th2 mixed
response [138].Biomimetics 2020, 5, x FOR PEER REVIEW 16 of 47 

 

 

Figure 8. Chemical structures of some cationic polymers: poly (diallyldimethylammonium chloride) 

(PDDA), linear polyethyleneimine (PEI), branched polyethyleneimine (PEI), poly-L-arginine (PLAr), 

poly-L-lysine (PLL), poly-L-histidine (PLH), diethylaminoethyl-dextran (DEAE-). 

Polyethyleneimine (PEI) is an organic, hydrophilic, and cationic polymer that displays a strong 

positive charge density promoting the combination with negatively charged molecules such as DNA, 

negatively charged antigens, or plasma membranes [146]. An interesting quality of PEI is its ability 

to leak from endosomes after cell internalization due to its capacity for avoiding the endosomal 

acidification; the high number of nitrogen atoms in the PEI molecule makes the polymer an excellent 

buffer also at low pH [148]. This proton sponge effect is due to deprotonated PEI amino groups 

binding protons as they are pumped into the lysosome, resulting in the influx of Cl– ions and water 

with lysosome osmotic swelling and stretching of the PEI molecule itself due to repulsion between 

protonated amino groups; thereby, there is rupture of the lysosomal membrane with release of 

lysosomal contents into the cytoplasm, the so-called endosomal escape leading to a cellular, Th1 

response [149,150]. PEI as an adjuvant protects antigens from enzymatic degradation [151], activates 

the inflammasomes, up-regulates the transcription factor called interferon regulatory factor 3 (Irf-3) 

[137] and also other immunostimulatory genes [152], induces Th1 immune response associated with 

endosomal escape and cross-presentation [153]; administered by the mucosal route, it improves the 

uptake of antigen and the activation of APCs [137,154]. PEI promotes dsDNA release by host cells 

triggering the Irf-3-dependent signaling [137]; Irf-3 is a transcription factor related with the activation 

of innate response by means of the synthesis of type I interferon [155]. Besides Irf-3, PEI activates 

Nlrp3 inflammasomes, a critical component of the innate immune system, which directs the immune 

response toward a Th2-biased type [137,138]. PEI as an adjuvant can induce Th1-, Th2-, or Th1/Th2- 

biased immune response; although PEI has the proton sponge effect to carry out the lysosomal 

escape, sometimes the escape does not occur, and antigens are presented via MHC class II, resulting 

in a Th1/Th2 or Th2 response [137,138,146]. PEI/antigen administered by intranasal route induced 

Th2 response [137], while PEI/antigen administered by a subcutaneous route yielded a Th1/Th2 

mixed response [138]. 

Figure 8. Chemical structures of some cationic polymers: poly (diallyldimethylammonium chloride)
(PDDA), linear polyethyleneimine (PEI), branched polyethyleneimine (PEI), poly-l-arginine (PLAr),
poly-l-lysine (PLL), poly-l-histidine (PLH), diethylaminoethyl-dextran (DEAE-).

Aiming at improving the mucosal response against major viral pathogens, glycoproteins derived
from influenza A virus, herpes simplex virus type-2, or HIV-1 combined with PEI as particles in
dispersion, administered as a single intranasal dose induced a robust protection from further lethal
viral infection, which was superior to the one elicited by cholera toxin as an experimental mucosal
adjuvant; these PEI/antigen nanoparticles were efficiently taken up by APCs in vitro, while in vivo they
enhanced the DCs trafficking to draining lymph nodes. The nasal immunization with the recombinant
envelope glycoprotein gp140 from HIV-1 carried by PEI induced high titer of antigen-specific IgA
in vaginal lavages, demonstrating that nasal immunization can induce a systemic immune response.
In Nlrp3-knockout mice, PEI/gp140 complexes elicited a Th1-biased immune response, suggesting
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that in normal mice the NPs activated the inflammasome Nlrp3 towards a Th2-type response [137].
In continuation, four different PEI polymers such as linear PEI (40 and 160 kDa) and branched PEI
(25 and 750 kDa) were combined with the gp 140 from HIV-1; after immunization, all elicited similar
responses characterized by a moderate Th1-biased response. The comparison of PEI with alum showed
significantly improved performance of PEI compared to alum. PEI-induced immune response was
characterized by an intermediate IgG1/IgG2a endpoint titer ratio, indicating a mixed Th1/Th2 immune
response as corroborated from analysis of cytokines profile using antigen-re-stimulated splenocytes
from mice immunized with gp140 glycoprotein and PEI. Significant amounts of Th1 cytokines IL-2,
TNF-α, and GM-CSF and the Th2-associated cytokine IL-5 were determined [138].

Eliciting a cell-mediated immune response is necessary for achieving effective vaccines against
cancer and other major diseases like malaria; thus adjuvants able to enhance the antigen presentation
via MHC I are needed. Chen and coworkers reported that PEI/OVA NPs, obtained from mixtures
of PEI and OVA, promoted cross-presentation through the major MHC class I pathway. The mouse
bone-marrow-derived dendritic cells stimulated in vitro with PEI/OVA NPs resulted in improved and
more frequent OVA(257-264)/MHC I complex presentation on dendritic cell surfaces. Besides, DCs
pulsed with PEI/OVA NPs but not those pulsed with OVA alone showed significant capacity to stimulate
T cells [153]. Using DNA as antigens is an encouraging alternative for designing anticancer therapeutic
vaccines. Complexes formed by OVA plasmid and PEI (PEI/DNA) were administered to animals, and
the corresponding immune response and antitumor activity were assessed. Animals injected with the
PEI/DNA complexes displayed antigen-specific cell lysis, and there was increased antigen presentation
via MHC class I and significant lymphocyte infiltration at the intra-tumor inoculation sites; importantly,
the vaccine injected either before or after the tumor cell inoculation repressed the tumor growth and
increased the survival rate of animals [156].

Poly (diallyldimethylammonium chloride) (PDDA) is a synthetic and linear polycation that
combines well with DNA [157,158] or protein [142,143]. Figure 9A,B show scanning electron
micrographs of PDDA/OVA nanoparticles (NPs) under low and high magnification, respectively; these
NPs elicited OVA-specific Th2 response in immunized mice, which was superior to the one elicited by
alum [65].
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Figure 9. Scanning electron micrographs of PDDA/OVA NPs assembled at 0.1 mg·mL−1 OVA and 0.01
mg·mL−1 PDDA obtained under low (A) and high magnification (B). At the low PDDA dose employed,
PDDA cytotoxicity was not significant against cells in culture. Reprinted from [65].

Biomedical uses for PDDA have mostly focused on the design of biosensors [159], transfection [158],
or antimicrobial chemotherapy [139–141,160–163] probably due to its high toxicity [65,129]. PDDA,
when combined with OVA, in water, formed cationic, nano-sized, and stable NPs that displayed a
dose-dependent cytotoxicity, which could be easily controlled from the use of low doses. Interestingly,
PDDA/OVA NPs induced a potent Th-2-type immunity (high ratio IgG1:IgG2a) and elicited an
OVA-specific IgG1 antibody production higher than the one induced by OVA or Al(OH)3/OVA;
PDDA/OVA NPs displayed low cellular immune response as determined from footpad swelling tests
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for detecting the delayed-type hypersensitivity reaction (DTH) and the low elicited production of
IgG2a quantified in serum, both in immunized mice [65].

An important biomolecule that can be carried by cationic polymers is DNA, essential for
DNA vaccines despite its relative delivery inefficiency when compared to viral vectors [164]. Cell
internalization of the polyplexes (cationic polymer/DNA) and subsequent release of their cargo requires
translocation across endosomal and/or nuclear membranes, a determinant factor for therapeutic
efficiency, and hence, potential clinical impact. Polyplexes or lipoplexes (cationic lipid/DNA)
essentially follow a similar intracellular route once captured by endocytosis [165,166]. Figure 10
shows the intracellular trafficking of a fluorescently labeled oligo-deoxynucleotide (ODN) carried in
PEI/fluorescein isothiocyanate-labelled ODN (FITC-ODN) polyplexes; fluorescence is firstly inside
the endosome, then in the cytosol after escaping from the endosome due to the endosomal burst, and
finally in the cell nucleus as reproduced from ur Rehaman et al. 2013 [166]. The limited efficiency of
ODN delivery to the nucleus relates to the fact that most endosomes did not burst.
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Figure 10. PEI-mediated cytosolic delivery of oligonucleotides occurs by endosomal bursting. HeLa
cells were incubated with polyplexes carrying fluorescein isothiocyanate labeled oligo-deoxy nucleotides
(FITC-ODNs) in green and monitored by time-lapse microscopy. Following internalization of the poly
(ethylene imine) (PEI) polyplexes in endosomes, endosomal bursting occurs causing the release of ODNs
into the cytosol. After an initial appearance throughout the cytosol, the ODNs rapidly accumulate in
the nucleus. Reprinted from [165] with permission from 2013 American Chemical Society.

Diethylaminoethyl-dextran (DEAE-) polymer is a quaternary ammonium compound that contains
three basic groups with different pKa values [167]. The polymer facilitates the adsorption and
penetration of viral particles or bacteria into cells, suggesting that it is adequate for delivering antigens
into the APCs [168]. DEAE- has delivered Venezuelan equine encephalomyelitis virus [169] and
whole-cells Vibrio cholerae Inaba and Ogawa serotypes vaccines [170], although its adjuvant properties
have been explored mainly for use in vaccines for veterinarian treatment [171]. DEAE-Dextran
mixed with formalin-inactivated Venezuelan equine encephalomyelitis virus exhibited a significant
adjuvant effect on the primary immune response in rhesus monkeys [169]. In a whole-cell vaccine,
DEAE- combined with Vibrio cholerae produced a higher and longer-lasting antibody titer than the
one elicited by vaccines without adjuvant; furthermore, there was a greater protection against cholera
re-infection [170]. In a breast cancer model, DEAE- induced the production of IFN-beta inhibiting the
gene expression of the vascular endothelial growth factor (VEGF) gene and the NOTCH1 gene both
related to angiogenesis and tumorigenesis [172].

Poly (2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain length and narrow
molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP)
so that PAEM of different chain lengths (45, 75, and 150 repeating units) showed varying strength
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in condensing plasmid DNA into narrowly dispersed nanoparticles. Longer polymer chain length
resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter
polymer chains favored intracellular and intranuclear release of free plasmid from the polyplexes.
Using a model antigen-encoding ovalbumin plasmid, transfected DCs activated naïve CD8(+) T cells
to produce high levels of interferon-γ. Efficiency of transfection, DC maturation, and CD8(+) T cell
activation showed varying degrees of polymer chain-length dependence, showing the importance of
using structurally defined cationic polymers as carriers for DNA vaccines [173]. This model study
emphasized the importance of well-defined chain length for cationic polymers in DNA vaccines; this
type of cationic polymer poly (2-aminoethyl methacrylate) was also recently reviewed for exploring
structure–function relationship while delivering DNA [174]. Excellent reviews are available on micro-
and nanoparticles for DNA vaccine delivery [175] and on molecular delivery of plasmids for genetic
vaccination [176].

Polyaminoacids are another important class of polycations used for carrying antigens in vaccine
formulations [177]. Like other polycations, one major advantage of using them is their ability to
combine spontaneously with molecules of negative charge, a phenomenon driven for electrostatic
interactions. Within the group of polyaminoacids, poly-l-lysine and poly-l-arginine are among the
most studied as adjuvants. For instance, poly-l-arginine on the surface of microcapsules obtained
by layer-by-layer or spray-drying techniques supports the particles’ uptake by the APCs [178,179].
Promising research reported the use of poly-l-arginine for carrying tumor antigen-derived peptides
for synthesizing a synthetic antitumor vaccine; the work described that the subcutaneous injection of a
mixture of poly-l-arginine and peptides induced a large number of antigen-specific T cells detectable
in the systemic circulation for more than four months. Another important finding reported by the
authors was the presence of numerous APCs loaded with antigen in the draining lymph nodes of
vaccinated animals, suggesting that poly-l-arginine is a suitable carrier for targeting antigens into
the lymph nodes. An additional relevant result is the absence of antibodies against poly-l-arginine,
allowing this compound to be used for numerous booster injections [180].

Employing TLR agonists as adjuvants is an attractive alternative for stimulating a specific
type of immunity like a Th1-biased response. Negatively charged TLR agonists could also
be easily attached to polycations by electrostatic interactions [138]. The adjuvant activity of
combinations between CpG ODN (ligand for Toll-like receptor 9) and different polycations such
as poly-l-arginine, poly-l-lysine, poly-l-histidine, or chitosan in an OVA vaccination model, as well
as poly-l-arginine and poly-l-histidine, but not poly-l-lysine or chitosan, improved efficiently both
the IgG antibody production and the number of splenocytes secreting IFN-gamma after T CD8+ ex
vivo stimulation. CpG-ODN/poly-l-arginine is better than complete Freund’s adjuvant and aluminum
salt as adjuvants and did not induce local toxicity [181]. The assembly of poly-l-arginine, CpG-ODN,
and synthetic peptides induced an improved peptide-specific immune response as compared to the
application of peptides with either of the immunomodulators alone. Poly-l-arginine synergized with
oligodeoxynucleotides containing CpG-motifs (CpG-ODN) for enhanced and prolonged immune
responses and prevented the CpG-ODN-induced systemic release of pro-inflammatory cytokines;
CpG-ODN are known to be potent inducers of predominantly type 1-like immune responses, while
polycationic amino acids, facilitate the uptake of antigens into antigen-presenting cells (APCs).
The potentially harmful systemic release of pro-inflammatory cytokines induced upon injection of
CpG-ODN was inhibited and long-lasting, and high numbers of antigen-specific T cells could be
observed from fluorescence-labeled OVA even after only one injection of the vaccine [182].

Cationic polymers are also used for coating or functionalizing different types of NPs, namely,
magnetic NPs, metallic NPs, ceramic NPs, hydrophobic NPs, or biocompatible polymer-based NPs.
For instance, PEI has been used for coating SPIONs [19,183,184], silica NPs [185], or gold NPs [144,186].
Cationic and nanosized PEI-coated SPIONs in vitro activate macrophages and polarize them to an
M1-like phenotype [184]. PEI-coated SPIONs obtained from the sonication of iron oxide suspension
and PEI solution was used for carrying the plasmid-malaria DNA vaccine encoding VR1020-PyMSP119;
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the intraperitoneal administration of the complex displayed high titers of antigen-specific IgG1 and
IgG2a and improved the immunological memory after vaccination [19]. Another example of metallic
nanoparticles functionalized with polycations was reported for Xu and coworkers; they coated gold
nanorods with the polycations PEI or PDDA or with the surfactant CTAB and attached therapeutic HIV-1
DNA-vaccine. Gold nanorods coated with both polycations show the best capacity for packing DNA,
and they were uptaken by DCs in a higher level than the ones coated with CTAB; polycation-coated
gold nanorods induced a significant increase of the cellular and humoral immunity as determined by
antibody titers (IgG1/IgG2 ratio) and T cell proliferation. It was also described that PDDA enhances a
Th2 whereas PEI induces a Th1/Th2 immune response [144].

In situ silicifications and capping treatment produced PEI–silica–PEI coatings on Japanese
encephalitis virus vaccine maintaining its immunogenicity better than the vaccines without adjuvant;
this fact could be relevant in cases where keeping the vaccine under refrigerated condition is
difficult [187]. PEI coating mesoporous silica micro-rods (MSR-PEI) significantly enhanced the
antigenicity of a peptide antitumor vaccine. The antigen was coupled to the microstructure
by simple adsorption enhancing host DCs activation and T cell response compared to controls;
MSR-PEI/E7-peptide eradicated large established TC-1 lung tumors in ~80% of mice and generated
immunological memory; MSR-PEI vaccine, using a pool of neoantigens, eliminated established lung
metastases and controlled tumor growth [188].

Carboxylated polystyrene particles conjugated covalently with poly-l-lysine carried a DNA
vaccine improving the immune Th-1 response; C57BL/6 mice were immunized with the NPs carrying
an OVA plasmid yielding a high level of activated CD8 T cells and OVA-specific antibodies. The
animals immunized with the poly-l-lysine-coated polystyrene NPs generated a significant antitumor
response evidenced by the inhibition of tumor growth after challenging with the OVA expressing EG7
tumor cell line; NPs with diameters of 50 nm yielded the best activity [189].

In summary, polycations can be excellent adjuvants for vaccines, but a quantitative determination
of toxicity should always be performed for determining the minimal doses where toxicity is absent
and the adjuvant effect still occur; this includes also the equally toxic cationic polyaminoacids. One
should notice also that cationic polymers in general are potent antimicrobials as often reviewed [139].

4. Hybrid Cationic Assemblies of Biocompatible Polymer/Cationic Polymer

Hybrid cationic polymer/biocompatible polymer assemblies are useful for improving the
characteristics of delivery systems. For example, the use of biocompatible polymers decreases
the toxicity of the systems, whereas the cationic polymers improve the colloidal stability, antigen
loading capacity, and APCs internalization. Some researchers have used this approach for achieving
improved delivery systems [136,190,191].

Biocompatible synthetic or natural polymers can improve body functions without interfering with
its normal functioning or triggering side effects [192–194]. Some examples of biocompatible polymers
are poly (lactic-co-glycolic acid) [195], poly (ε-caprolactone) (PCL) [196], poly (lactic acid) [197],
poly (3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [198], chitosan [199,200], cellulose [201]
and poly (acrylates) including poly (methyl methacrylate) (PMMA) [202,203]. Neutral or anionic
biocompatible synthetic or natural polymers as polylactide-co-glycolide microparticles have been
cationized with cationic lipid DODAB or cationic surfactant CTAB to assure combination with the
oppositely charged DNA antigens to design DNA vaccines [135,204]. In another instance, DODAB
cationic bilayer surrounded polystyrene sulfate particles available over a range of diameters [205–207]
or silica particles [208,209]; recently optimal coverage with single cationic bilayers on the anionic
polymeric or inorganic particles was achieved [207,209]. Synthetic biocompatible polymers such as
PMMA were also hybridized with cationic polymers or cationic lipids or surfactants [160–163,210–213].
In summary, a variety of model hybrid and cationic delivery systems are already available to combine
with a myriad of oppositely charged antigens for vaccine design [25,163,214,215].
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In a brief overview, biocompatible polymers interact with biological systems without exerting
significant damage or toxicity, displaying characteristics like biodegradability and/or biosorption.
Their broad utility has been reported in different areas of medicine including orthopedics, tissue
engineering, and drug and vaccine delivery; eventually, these materials also display intrinsic biological
activity [192–194,216]. Medical devices or drug delivery systems based on biocompatible polymers
have been approved by the Food and Drug Administration (FDA) [192–194,216]. Biocompatible
polymers can be natural (e.g., chitosan, alginate, cellulose) or synthetic (e.g., polylactic acid, poly
(lactic-co-glycolic acid)); some excellent reviews on biocompatible polymers are available [217,218].
One of the most promising delivery strategies for activating the immune system is the controlled
release of antigens from a biodegradable polymeric matrix, the sustained liberation of antigens may
induce strong immune responses [216,217]. Many biocompatible polymers have often been used
as vaccine adjuvants such as the biocompatible and biodegradable poly (lactic acid) (PLA), poly
(lactic-co-glycolic acid) (PLGA), and chitosan [216,219,220]. Figure 11 shows the chemical structures of
some biocompatible polymers used for vaccine delivery.
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Figure 11. Chemical structure of some biocompatible polymers such as polylactic acid (PLA), poly
(lactic-co-glycolic acid) (PLGA), polyhydroxybutyrate (PHB), polycaprolactone (PCL), chitosan, and
sodium alginate.

As a first example of combination of cationic polymer and biocompatible polymer, assemblies
of PEI and PLGA have often been used in vaccine delivery systems to carry antigens; they enhanced
the antigen-specific antibody titer, lymphocyte proliferation, antigen internalization by phagocytic
cells, and Th-1 typical cytokines production [136,221,222]. Biocompatible PLGA NPs were coated with
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three different cationic polymers, PEI, chitosan, or ε-Poly-l-lysine (PLL), aiming at improving the
antigen loading capacity of PLGA NPs and evaluating the immune response against OVA as model
antigen. PLGA-PEI/OVA NPs displayed the highest OVA loading capacity and colloidal stability,
improved lymphocyte proliferation, CD4/CD8 ratio, increased the production of OVA-specific IgG1
and IgG2a antibodies and the secretion of TNF-α, IFN-gamma, IL-4, and IL-6 [136]. Similarly, the
cationic PEI-coated PLGA NPs encapsulating the immunopotentiator Angelica sinensis polysaccharide
(ASP) significantly activated macrophages, induced the expression of MHC II and CD86 molecules and
the production of IL-1β and IL-12p70 cytokines. The adsorption of the porcine circovirus type 2 (PCV2)
antigen onto NPs improved the macrophages antigen internalization. Immunized mice significantly
improved the production of PCV2-specific IgG and responded with a mixed Th-1/Th-2 biased immune
response [221].

Microparticles of PLGA coated with branched or linear PEI were suitable for delivering DNA
vaccines demonstrating low cytotoxicity and improvement of APCs internalization [223,224]. In
an interesting approach, PEI/DNA complexes were entrapped into PLGA microspheres warranting
protection against DNA degradation and efficient uptake by APCs in comparison to the one of naked
DNA. The humoral response elicited by PLGA/PEI/DNA against an DNA-HIV-1 antigen was from two
to three times higher than one elicited by naked DNA; the cytolytic T lymphocyte at low doses of the
antigen was also improved by the complex [224].

Other pairs of polymers used for assembling polymer–polymer hybrid NPs were PLGA/chitosan
or PLGA/chitosan-derivatives, these hybrid NPs also improved the uptake rates of antigen by APCs
and enhanced the elicited immune response in vivo [191,225,226]. By a modified double emulsion
solvent evaporation process, three different NPs based on PLGA were synthesized, chitosan-coated
PLGA, glycol-chitosan-coated PLGA, and PLGA NPs, all of them with a diameter smaller than
200 nm and positive zeta potentials; the NPs were used as adjuvants for assessing their capability
to induce an enhance immune response. After immunization, glycol-chitosan/PLGA NPs elicited
the higher mucosal and systemic response when administered with hepatitis B surface antigen,
associated due to in vitro mucoadhesion. Both coated NPs experimented on had less mucosal clearance
than PLGA uncoated NPs, resulting in improvement of the immune response [226]; permanence
of the vaccine at the mucosa improved the obtained response [226–228]. Slow antigen-releasing
N-trimethyl-chitosan-coated-PLGA/OVA NPs with permanent cationic charges yielded high IgA
production [229].

Assemblies of PLA with cationic polymer physical properties and immunoadjuvant activity were
described [230,231]. Polycation-coated PLA NPs increased the expression of MHC and co-stimulatory
molecules, enhanced cytokine production, activated and induced maturation of APC, and improved
antibody titer [147,227]. PLA microspheres coated with PEI or chitosan or chitosan chloride significantly
increased the loading antigen capacity according to the increment of surface charge; coating PLA
microspheres with polycations also augmented the macrophages uptake rates of the adsorbed hepatitis
B surface antigen, the expression of CD86, MHC I, MHC II, and the secretion of IL-1β, IL-6, TNF-α,
and IL-12. Intraperitoneal administration of cationic microspheres carrying the antigen improved the
production of antibodies as compared with aluminum-based adjuvant and free antigen; besides, the
cationic microspheres elicited a Th-1 biased showing the assemblies adequacy for performing antiviral,
antimalaria, and antitumor vaccines [227].

Chen and coworkers tested chitosan-decorated PLA microspheres carrying hepatitis surface
antigen administered via commonly used parenteral administration routes and obtained robust immune
responses such as maturation of DCs with overexpression of CD40, CD80, and IL-12 in contrast with the
absence of these responses when aluminum-based adjuvant was used; in vivo tests showed increased
IgG production induced by both the MPs and the alum-based adjuvants; only the MPs administered
by intramuscular route could induce high IgG2a titer, Th-1 cytokines (IL-2, IL-12, and IFN-γ) and
Th-2 cytokine IL-4 secretions, demonstrating that PLA-coated NPs improve the cellular and humoral
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response [147]. Figure 12 shows a scanning electron micrograph of PLA microparticles coated by
chitosan chloride and gives details on mean diameter, zeta-potential, and antigen loading [147].
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Figure 12. Scanning electron micrographs and dynamic light scattering Zetasizer analysis were used to
characterize PLA microparticles (MP) modified by cationic chitosan chloride surface coating. Antigen
adsorption was calculated by comparing the amount of antigen in supernatants after centrifugation with
total input antigen (protein concentration was analytically determined). The load of HBsAg/particles
was 3.2 (µg/mg). Reprinted from [147] with permission from Elsevier, Copyright 2014.

Alginate and chitosan are two versatile biopolymers widely used in drug delivery systems, as
they are oppositely charged and it is relatively simple to obtain hybrid systems from them. Taking
advantage of the physical–chemical properties of those polymers, one can obtain interesting systems
for carrying a myriad of antigens like protein, DNA, or RNA antigen; for instance, it is possible to
encapsulate the cargo into the hybrid assembly or to obtain surfaces positively or negatively charged
for adsorbing antigens. Regarding the adjuvant properties, one of the main limitations of oral vaccines
is that antigens suffer degradation into the gastric cavity losing their native structures and antigenicity;
using alginate and chitosan, it is possible to avoid this phenomenon [232–234]. In an interesting work
where hybrid NPs from chitosan and alginate were synthesized for vaccine delivery, it was shown
that alginate coating antigen/chitosan complex is a good strategy for avoiding antigen degradation
from gastric environment. The system showed a pattern of controlled release and low in vitro toxicity;
furthermore, alginate/chitosan hybrid NPs elicited systemic and mucosal immune response exhibiting
the highest titer of antibody as compared with the controls [234]. However, alginate/chitosan hybrid
anionic NPs failed in inducing a Th1 response when the NPs and a hepatitis B virus antigen were
administered by the subcutaneous route in a mouse model [235].

Alginate and PLL were assembled as NPs by ionotropic complexation method. The NPs displayed
a diameter between 130 and 850 nm, a negative zeta-potential, and a sustained-release behavior
regarding the encapsulated BSA. Additionally, the system showed low cytotoxicity and significant
increment of BSA internalization in vitro [236].

Hybrid NPs from combinations of biocompatible and cationic polymers have been less studied
as antigen carriers. For example, hybrid systems between PEI and alginate are little explored in the
context of vaccine delivery, although there is evidence that the two polymers form complexes by
electrostatic interactions [237]; combinations of PEI with alginate reduce significantly the toxicity of
the polycation favoring the degradation of PEI [238]. Alginate/PEI hybrid systems formed nanogels
able to incorporate and deliver antigens enhancing both cellular and humoral response. Nanogels
facilitated antigen uptake by mouse bone-marrow DCs; promoted intracellular antigen degradation
and cytosolic release, and increased antigen presentation via MHC I and II, vaccine-induced antibody
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production, and CD8+ T cell-mediated tumor cell lysis, suggesting that the nanogels are potent
immunoadjuvants [239].

PEI-coated PMMA NPs synthesized by emulsion polymerization combined well with DNA
and are a suitable alternative for gene delivery, showing low cytotoxicity and high transfection
capacity [240,241]; however, these works did not report evidence of the immunoadjuvant activity of
those assemblies.

Using emulsion polymerization of the two co-monomers, interesting functionalities were reunited
in the same polymeric particle: the cationic moiety represented by the quaternary ammonium nitrogen
of comonomer 1 and the hydrophilic poly (ethyleneglycol) chains of comonomer 2; thereby poly
(methylmethacrylate) (PMMA) was covalently modified to yield core–shell cationic nanoparticles that
enhanced cellular responses induced by HIV-1 Tat DNA vaccination. These biocompatible core–shell
cationic nanoparticles, composed of an inner hard core of poly (methylmethacrylate) (PMMA) and
a hydrophilic tentacular shell bearing positively charged groups and poly (ethyleneglycol) chains
covalently bound to the core electrostatically and reversibly adsorbed DNA, efficiently delivered it
intracellularly and were not toxic in vitro or in mice [242]. Furthermore, two intramuscular (i.m.)
immunizations (4 weeks apart) with a very low dose (1 microgram) of the plasmid PCV-tat delivered
by these nanoparticles followed by one or two protein boosts induced significant antigen-specific
humoral and cellular responses and greatly increased Th1-type T cell responses and CTLs against HIV-1
Tat [242]. Along similar lines, PEG was covalently bound to the cationic polymer poly (2-aminoethyl
methacrylate hydrochloride) in order to improve the stability of nanstructures in vivo [243]. Figure 13
shows the core–shell microparticles obtained by Castaldello and coworkers, 2006, incorporating both
functionalities, cationic charge and the stability, in aqueous medium imparted by PEG [242].
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Figure 13. Scanning electron micrograph of PMMA core–PEG shell microparticles where the hydrophilic
non-ionic co-monomer poly (ethylene glycol) methyl ether methacrylate and the cationic co-monomer
2-(dimethyloctyl) ammonium ethyl methacrylate bromine were used in the emulsion polymerization
reaction. Reprinted from [242] with permission from Elsevier, Copyright 2011.

Non-covalent nanoparticle (NP) assemblies of PMMA, a synthetic, non-charged, and biocompatible
polymer, and PDDA polycation have been described earlier by our group since the first report on the
good compatibility and miscibility of PDDA with PMMA evaluated from microbicidal PMMA/PDDA
NPs [160–163,210–214]. The synthesis of PMMA NPs by emulsion polymerization of MMA in the
presence of PDDA yielded cationic, homodisperse, and stable NPs [160,212], which are presently being
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evaluated in our group for possible applications as immunoadjuvants. In summary, it is possible to take
advantage of the biocompatibility of PMMA and the cationic character of PDDA to investigate novel
applications for these assemblies obtained in absence of any covalent linkage between the polymers.
In addition, our group recently synthesized and characterized hybrid NPs from PMMA, PDDA, and
surfactants that could be excellent alternatives for carrying antigen due to the combination of the
biocompatibility of PMMA with the adjuvant properties of the cationic polymer PDDA and/or the
cationic lipid DODAB [65,161,162]. Figure 14 shows the core–shell PMMA/PDDA NPs and a schematic
picture of their nanostructure with PMMA in the core and PDDA non-covalently bound to PMMA,
forming a surrounding shell [214]. One should notice that the hydrophobic PMMA is in the core and
the cationic and hydrophilic PDDA is in the shell; upon increasing the ionic strength, the shell can
collapse due to the screening of the PDDA charges [19–71].
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Figure 14. Scanning electron micrograph of PMMA/PDDA NPs and schematic representation of the
PMMA/PDDA NPs structure with their core–shell nanostructure that occurs at low ionic strength.
Reproduced from reference [160].

Antigen endosomal escape has been observed for protein loaded in cationic and porous
maltodextrin NPs [244]. Figure 15 illustrates the endosomal escape or permanence of two types
of cationic maltodextrin NPs, those modified with anionic lipids in their cores (named DGNP+) and
those with cationic cores (named NP+). The OVA/NPs intracellular traffic was determined from
fluorescence-labeled OVA. Both types of NPs efficiently delivered OVA to cells; however, whereas
those with the anionic inner core delivered OVA to the cytosol and endoplasmic reticulum, those
with the cationic core were less able to release OVA in the cytosol and delivered it to the endosomes.
One should notice the punctuated distribution pattern of OVA delivered by NP+ into cells, typical of
endosomal localization and the diffused OVA localization throughout the cytoplasm when OVA was
delivered with DGNP+ NPs. Both NPs increased intracellular proteolysis of OVA; however, DGNP(+)
facilitated OVA escape from endosomes [244].

Cancer vaccines targeting patient-specific tumor neo-antigens have recently emerged as a
promising component of the immunotherapeutic treatment against the disease [245,246]. However,
neo-antigenic peptides typically elicit weak CD8+ T cell responses, so there is a need for universally
applicable vaccine delivery strategies to enhance the immunogenicity of these peptides. Ideally, such
vaccines could also be rapidly fabricated using chemically synthesized peptide antigens customized
to an individual patient. An interesting approach for implementing the combination between
biocompatible polymer and cationic polymer was achieved with the biocompatible propyl-acrylic
acid and cationized antigen from covalently binding decalysine peptide to the antigen and then
assembling this with the biocompatible polymer via electrostatic assembly; these NPs promoted
cytosolic delivery of the antigen and MHC I presentation [245,247]. In addition, poly (acrylic acid)
derivatives as mucoadhesive polymers might increase the epithelial permeability for carried antigens
or drugs after easily crossing the mucus layer of the mucosae. The attachment to the mucus layer
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could be achieved by exclusively non-covalent bonds such as ionic interactions, hydrogen bonds,
and van der Waal’s forces, leading also to a certain extent to opening of the tight junctions [248].
Figure 16 shows a schematic representation of the electrostatically stabilized NPs assembled by
mixing decalysine-modified antigenic peptides and poly (propyl acrylic acid) (pPAA) poly-anion. NPs
increased and prolonged antigen uptake and presentation on MHC-I (major histocompatibility complex
class I) molecules expressed by dendritic cells with activation of CD8+ T cells. The suitable intranasal
immunization route inhibited formation of lung metastases in a murine melanoma model; further
addition of the adjuvant α-galactosylceramide (α-GalCer) stimulated robust CD8+ T cell responses,
significantly increasing survival time in mice with established melanoma tumors [245]. On Figure 16a,
poly (propylacrylic acid)-cationic peptide nanosized assemblies aiming at enhancing antigen endosomal
escape and MHC-I antigen presentation are prepared. On Figure 16b, one should notice the simple
simple and rapid mixing of decalysine-modified antigenic peptides with poly (propylacrylic acid)
(pPAA) forming antigen-loaded nanoplexes, which are electrostatically stabilized nanoparticles. On
Figure 16c the scheme shows the nanoplexes promoting cytosolic antigen delivery via endosomal
escape, resulting in enhanced levels of antigen presentation on class I major histocompatibility complex
(MHC-I).
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Figure 15. Comparison of ovalbumin (OVA) intracellular delivery by maltodextrin porous nanoparticles
with outer and inner cationic charges (NP+) or outer cationic/inner anionic charges (DGNP+) using
confocal microscopy to visualize OVA labeled with fluorescent markers (FITC-OVA). NP+ and DGNP+

were loaded with FITC–OVA and incubated for different periods with 16HBE cells. After 30 min
incubation, cells were washed with PBS and fixed with 4% PAF. Intracellular FITC–OVA was visualized
by confocal microscopy. Scale bar = 10 µm. Adapted from [244] with permission from Elsevier,
Copyright 2012.
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Figure 16. (a) Poly (propylacrylic acid)-cationic peptide nanosized assemblies for enhancing antigen
endosomal escape and MHC-I antigen presentation. (b) Assembly of antigen-loaded nanoplexes
via simple and rapid mixing of decalysine-modified antigenic peptides and pPAA, which generates
electrostatically stabilized nanoparticles. (c) Schematic representation of nanoplexes promoting cytosolic
antigen delivery via endosomal escape, resulting in enhanced levels of antigen presentation on class
I major histocompatibility complex (MHC-I). Reprinted from [245] with permission from Elsevier,
Copyright 2018.

Inside the endosome, PLGA erosion with release of the glycolic or lactic acids further reduced
the pH, improving the antigen degradation and presentation through MHC-II [249,250]. Oral
administration of antigens may lead to their uptake by microfold cells (M cells) in Peyer’s patches of
intestine to initiate protective immunity against infections, but limitations such as the lack of specificity
of proteins toward M cells and degradation of proteins in the harsh environment of gastrointestinal
(GI) tract had to be overcome. Mucoadhesive vehicle of thiolated eudragit (TE) microparticles
transported an M cell-targeting peptide-fused model protein antigen [251]. Thereby, oral delivery of
TE microparticulate antigens exhibited high transcytosis of antigens through M cells resulting in strong
protective sIgA as well as systemic IgG antibody responses. The delivery system not only induced CD4+

T cell immune responses but also generated strong CD8+ T cell responses with enhanced production of
IFN-γ in spleen [251]. Along similar lines, the mucoadhesive, cationic, and biocompatible chitosan in
combination with poly-ε-caprolactone yielded NPs effective in immunization against influenza [252].

In conclusion, hybrid assemblies of polycation and biocompatible polymer have the advantages of
reducing the toxicity of the cationic polymer and adding the interesting properties of muco-adhesiveness
so important for mucosal vaccines.

5. Cationic Assemblies of Lipid–Polymer and Polymer–Lipid

Assemblies obtained from combining lipids and polymers gather the benefits of lipids’ amphiphilic
nature, possibility of high organizational level in the lipid-based structures, and the mechanical and
resistance advantages offered by polymers; blending these materials, it is possible to overcome major
limitations like degradation of bioactive incorporated principles, short circulation time of drugs and
vaccines, and lack of controlled release [253,254]. Diverse types of arrangement between lipids and
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polymers have been described; in general, these hybrid assemblies could be classified as lipid–polymer
or polymer–lipid, depending on the position of each material in the hybrid structure; either the polymer
or the lipid is in the inner part the nanostructure. In addition, polymer and lipid may mix, driven by
intermolecular interactions, so that the lipid may become embedded in the polymer matrix displaying
good compatibility with the polymer [210,212,213,253,254].

Lipids and polymers can assemble as hybrid materials driven by attractive, non-covalent, and
weak but frequent multipoint interactions. For example, lipid deposition from charged bilayers onto
oppositely charged spherical solid cores such as polymeric nanoparticles [37,205,255], silica [208,256–
258], or hydrophobic drug aggregates [38,259] led to interesting and bioactive hybrid nanoparticles.
The so-called biomimetic, lipid–polymer, or polymer–lipid NPs have been finding applications in
biomolecular recognition [260], drug delivery [259,261–263], vaccine design [9,10,16,18,21,25,28,46,163],
and antimicrobial chemotherapy [131,139–141,160,163,207,211,212,263–271].

The principal forces driving bilayer deposition onto hydrophobic or hydrophilic nanoparticles or
surfaces from bilayer vesicles or bilayer fragments (BF) are the electrostatic attraction, van der Waals
attraction, and/or the hydrophobic effect [37,205,255,256,258]. Medium composition, pH, and the ratio
between the surface areas of the particles (Aparticles) and bilayers (Abilayers) also play a crucial role
in achieving the optimal bilayer deposition on the particles: this ratio should be around 1 for complete
coverage of all particles with bilayers [38,208,259–263]. The amount of added lipid must be sufficient to
surround all particles in the dispersion with one bilayer; otherwise, poor colloidal stability may result
with formation of aggregates. Figure 17 illustrates some possible interactions between one bilayer
vesicle and two particles, vesicle, and particles with similar sizes [206].Biomimetics 2020, 5, x FOR PEER REVIEW 29 of 47 
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Figure 17. The interaction between one bilayer vesicle and two particles. In the first step (step 1),
electrostatic and/or van der Waals and/or hydrophobic attraction leads to aggregation of a vesicle and a
particle. These same interaction forces may disrupt the vesicle bilayer and promote bilayer adsorption
onto the microsphere (step 2) and/or further aggregation with the other microsphere (step 2′). The
adsorbed bilayer may attract the second microsphere (step 3). The hydrophobic interaction between an
eventually hydrophobic surface and the hydrocarbon chains in the bilayer may completely destroy
the bilayer structure, flip-flopping the hydrocarbon chains onto the particle surface and generating a
monolayer coverage on each microsphere (step 4). Adapted from [206] with permission from Elsevier,
Copyright 1999.

When lipid bilayers are the starting nanostructure, their physical state is an important factor
determining lipid–particle interactions; bilayer vesicles in the rigid gel state do not disrupt upon
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adhesion onto solid particles, so bilayer coverage does not take place [272]. For avoiding this difficulty,
either the lipid has to be changed to a lipid able to form bilayers in the liquid-crystalline, more fluid
state at room temperature, or flat and open bilayer fragments of the charged lipid (BF) has to be
used. BFs not only can adsorb onto solid particles but also can independently function as scaffolds for
deposition of a variety of bioactive molecules such as peptides [207,265,267,268], drugs [131,207,259,263,
264,269], antimicrobial polymers [139,141,163,266,273], proteins [21,25,28,40,46,140,141,163,260,264],
oligonucleotides [16,46], or nucleic acids [41,42]. Adhesion of a DODAB vesicle layer onto the rough
and highly hydrated surface of cells was electrostatically driven; cationic closed vesicles of DODAB at
low ionic strength surrounded bacterial cells as a vesicle layer [274]; the absence of DODAB vesicle
disruption upon interaction with the bacteria was depicted from absence of (14C)-sucrose leakage from
the large vesicles in experiments where this marker was used to label the inner water compartment of
the vesicles [275]. Given the quaternary ammonium moiety of the DODAB molecule, its antimicrobial
effect was systematically evaluated and its differential cytotoxicity was reviewed [38].

Charged BFs are easily obtained from vesicles by ultrasonic disruption and have been used
for the production of a variety of lipid-based biomimetic particles [37–39,41]. Deconstruction of
the bilayer by solubilizing cationic lipid and drug or biocompatible polymer in a common solvent
has also been a useful approach; this successfully allowed the obtaining of hybrid nanoparticles of
hydrophobic drug/cationic lipid/ethanol in water dispersion surrounded or not by the biocompatible
carboxy methyl cellulose biopolymer [276]. Another successful strategy was the optimization of single
bilayer deposition onto silica nanoparticles from lipid films [209]. In order to ascertain whether bilayer
coverage indeed took place, size distribution, polydispersity, and zeta-potential are often determined
from dynamic light scattering (DLS) techniques [277] complemented by morphology evaluation
from advanced electron microscopy techniques [131,160,212] and quantitative methods for obtaining
adsorption isotherms [209]. Figure 18 shows some adsorption isotherms of the cationic lipid DODAB
from DODAB films or from pre-formed bilayers onto silica particles where maximal adsorption values
yielded an adsorbed amount consistent with bilayer deposition on silica for depositions from DODAB
films [209].
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Figure 18. Adsorption isotherms for DODAB from films or pre-formed bilayer fragments (BF) onto silica
(2 mg/mL). The dashed line at 0.288 mM DODAB represents the theoretical concentration corresponding
to bilayer adsorption. Reproduced from [209].

If the lipid bilayers and the particles are oppositely charged, poor colloidal stability occurs at a
critical lipid concentration where the size is maximum and the zeta-potential is zero [10,18,205,208,259,
263]. Above this critical lipid concentration, the particles exhibit zeta-potentials that are similar to that
of the charged bilayer and recover colloidal stability [10,18,205,259]. Aggregates of hydrophobic drugs
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dispersed in water have also been treated as particles and coated with lipids at high drug-to-lipid
molar ratios [140,259,263]. More recently, protocols have evolved to employ bilayer disassembly and
biopolymers for stabilization of very hydrophobic drugs such as indomethacin [163,276].

BFs combine well with several antigens and are available as cationic (made of DODAB) or anionic
nanostructures (made of the anionic and synthetic lipid sodium dihexadecylphosphate or DHP),
allowing combinations with both positively and negatively charged antigens. Transmission electron
micrographs of DODAB BF [278] and DHP BF [279] are on Figure 19A,B, respectively.
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Figure 19. Lipid bilayer fragments of cationic and anionic synthetic lipids. (A) Bilayer fragments
of dioctadecyldimethylammonium bromide (DODAB) visualized by cryo-transmission electron
micrograph. Adapted from [278] with permission from 1995 American Chemical Society. (B) Bilayer
fragments of sodium dihexadecylphosphate (DHP) visualized by transmission electron micrograph
after negatively staining the sample. Disks were observed edge-on or face-on. Bars denote 100 nm
Adapted from [279] with permission from 1991 American Chemical Society [278,279].

DODAB BFs loaded or unloaded with antibiotics were covered consecutively by a
carboxymethylcellulose (CMC) and a poly (diallyl dimethyl ammonium chloride) (PDDA)
layer [131,141] being efficiently captured by macrophages to deliver their antibiotic cargo against
difficult intracellular pathogens, as are the mycobacteria [270]. The activity of DODAB BF/CMC or
DODAB BF/CMC/PDDA in combination with antigens still requires further research.

The differential cytotoxicity of DODAB, its dose-dependent toxicity, and its ability to induce
delayed-type hypersensitivity (DTH) in vivo, a marker for cell-mediated immune responses, pointed
out the feasibility of using DODAB as an efficient immunoadjuvant mainly for veterinary uses but
also in humans in a few instances [9,13,52,57,280–282]. Supramolecular assemblies of DODAB BF
by themselves or after interaction with supporting particles were also combined with three different
model antigens in separate and tested as immunoadjuvants [9]. DODAB-based immunoadjuvants
carrying antigens at reduced DODAB dose (0.01–0.1 mM) induced superior DTH responses in mice in
comparison to alum. Thus, the cationic immunoadjuvant was either reduced to a single-component,
nanosized system—DODAB BF—or was a dispersion of cationic nanoparticles with controllable nature
and size as obtained after covering silica or polystyrene sulfate latex (PSS) with a cationic DODAB
bilayer. DODAB BF interacted with proteins via both the hydrophobic effect and the electrostatic
attraction at low ionic strength. DODAB-based adjuvants exhibited good colloid stability while
complexed with the antigens, complete absence of toxicity in mice (i.e., local or general reactions), and
a remarkable induction of Th1 immune response at reduced doses of cationic and toxic DODAB lipid.
DODAB vesicle disruption by probe sonication at low ionic strength (0.1–5.0 mM monovalent salt)
produced DODAB BF which remained electrostatically stabilized in dispersion by the electrostatic
repulsion in between fragments. DODAB BF also interacted with oppositely charged particles such as
silica or polystyrene sulfate (PSS) latex to produce the cationic particulates. Figure 20 shows some
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hybrid and cationic immunoadjuvants based on reduced DODAB doses and their compared DTH
response [9,10,18].

Biomimetics 2020, 5, x FOR PEER REVIEW 32 of 47

Figure 20. Schematic representation of nanometric dioctadecyldimethylammonium bromide 

(DODAB)-based adjuvants inducing delayed-type hypersensitivity (DTH) in mice as compared to 

alum. The same antigen (Ag) carried by each adjuvant was used for immunization. Ag was carried

by DODAB BF at 0.1 mM DODAB (DODAB BF/Ag) or by polystyrene sulfate nanoparticles 

(PSS)/DODAB or by silica/DODAB particles at 0.01 or 0.05 mM DODAB (PSS/DODAB/Ag or 

silica/DODAB/Ag), respectively, or by alum (Al(OH)3/Ag). After immunization, elicitation of the 

swelling response was done by injecting Ag alone in the mice footpad so that % footpad swelling was

measured in comparison to alum [9,10,18]. At the DODAB doses employed, DODAB cytotoxicity was

absent against mammalian cells in culture. Adapted from [9,10] with permission from Elsevier, 

Copyright 2007 and Copyright 2009 and reference [18].

Figure 20. Schematic representation of nanometric dioctadecyldimethylammonium bromide
(DODAB)-based adjuvants inducing delayed-type hypersensitivity (DTH) in mice as compared to
alum. The same antigen (Ag) carried by each adjuvant was used for immunization. Ag was carried by
DODAB BF at 0.1 mM DODAB (DODAB BF/Ag) or by polystyrene sulfate nanoparticles (PSS)/DODAB
or by silica/DODAB particles at 0.01 or 0.05 mM DODAB (PSS/DODAB/Ag or silica/DODAB/Ag),
respectively, or by alum (Al(OH)3/Ag). After immunization, elicitation of the swelling response was
done by injecting Ag alone in the mice footpad so that % footpad swelling was measured in comparison
to alum [9,10,18]. At the DODAB doses employed, DODAB cytotoxicity was absent against mammalian
cells in culture. Adapted from [9,10] with permission from Elsevier, Copyright 2007 and Copyright
2009 and reference [18].
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An interesting approach was described in order to apply immunotherapy associated with
chemotherapy against Leishmania infection: solid lipid NPs using soya phosphatidyl choline and stearic
acid were prepared by solvent emulsification-evaporation method followed by ultrasonication. These
solid NPs were loaded with amphotericin B before coating with chitosan and displayed diameters
lower than 220 nm and positive zeta-potentials showing low hemolytic activity and antileishmanial
activity higher than the one for commercial AmBisome or Fungizone. The NPs were taken up by
J774A.1 macrophages, which activated the production of TNF-α and IL-12; importantly, cytotoxicity
experiments in vitro and acute toxicity experiments in mice evidenced the safety of the formulation in
comparison to marketed formulations [283].

Cationic and porous NPs from maltodextrin and the anionic lipid 1,2-dipalmitoyl-sn-glycero-
3-phosphatidylglycerol (DPPG) were synthesized to evaluate their interaction with the nose mucosa;
these NPs, combined with OVA displayed low toxicity, were efficiently taken up by airway epithelial
cells and significantly improved the OVA delivery to the cells, increasing the permanence time of OVA
at the nose mucosa to at least 6 h, in contrast to unformulated OVA, which remained 1.5 h only at the
mucosa [284].

DODAB coating the biocompatible PLGA yielded cationic nanoparticles that elicited Th1 and
Th17 responses [284,285]. Cationic NPs of PLGA, DODAB, and TDB in a nasal vaccine displayed
nanometric sizes and high and positive zeta-potentials while carrying the outer-membrane protein
(MOMP) antigen of Chlamydia trachomatis, inducing high titers of IgG2a, IFN-γ, and IL-17a [286].

Similarly, PLGA and DODAB were combined to yield cationic NPs for delivering a Mycobacterium
tuberculosis nasal vaccine; PLGA/DODAB NPs showed uniform size, spherical shape, and smooth
surface. PLGA/DODAB NPs loaded with HspX/EsxS antigen (a recombinant fused protein of M.
tuberculosis) and with monophosphoryl lipid A (MPLA) increased the secretion of IFN-γ and IL-17
and enhanced the antibody titers of IgA, IgG1, and IgG2a [285]. In a different approach, cationic
liposomes obtained from DOTAP, hyaluronic acid (HA), and PEG achieved a good immune response
after intranasal vaccination with a recombinant antigen from M. tuberculosis; there was improved
colloidal stability and prolonged antigen release. Besides, the typical cytotoxicity exerted by DOTAP
was reduced 20-fold. DOTAP/HA/PEG NPs carrying OVA and MPLA promoted DCs maturation and
up-regulation of co-stimulatory markers such as CD40, CD86, and MHC-II. Mice vaccinated with
DOTAP/HA/PEG NPs carrying OVA and MPLA via intranasal route generated robust OVA-specific
CD8(+) T cell and humoral responses; in addition, the intranasal inoculation of DOTAP/HA/PEG NPs
co-loaded with MPLA and F1-V, a fused antigen from Yersinia pestis, induced a potent and long-lasting
antibody production, evidencing that these hybrid liposome/polymer NPs are appropriate as a mucosal
adjuvant [287].

PLGA/DC-Chol core/shell hybrid NPs synthesized by a double emulsion solvent evaporation
method were tested as an adjuvant with the peculiarity that the antigen, OVA, was attached to the
NPs in three different ways: inside the NPs (OVA in), adsorbed on the NPs (OVA ad), or both ways
(OVA in/ad). After the internalization by DCs, FITC-OVA traffic from fluorescence microscopy showed
that OVA ad and free OVA remained in the lysosomes, whereas OVA in or in/ad escaped from the
endo-lysosome favoring cross-presentation. In vivo experiments showed that OVA in/ad provided
not only adequate initial antigen exposure but also long-term antigen persistence at the injection
inside. OVA in and OVA in/ad elicited significantly higher antigen-specific immune response than
OVA ad [288].

Summarizing this topic, cationic lipids are very versatile and can either carry antigens by
themselves via BF or impart positive charges to a variety of polymeric NPs under good control of
their usual toxicity. They have the advantage of eliciting a potent cellular immune response in many
instances. The adjuvant properties of the hybrid NPs have been often reviewed [21,25,34].
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6. Conclusions

Cationic nanostructures such as the lipid-covered particles, the bilayer fragments, the cationic
polymers, and the hybrid nanostructures of biocompatible and cationic polymers or lipids are
interesting carriers with sizes below 100 nm. Their size directs them to the lymphatic vessels and
antigen-presenting cells in the lymph nodes, and their positive charge allows efficient combination
with important biomolecules such as peptides, proteins, nucleic acids, epitopes, and enhancers of the
immune response.

The composition with lipids allows the inclusion of targeting in the microstructures that cannot
directly reach the lymph nodes or that require special targeting to avoid degradation in the endosomes
or to reach the cell nucleus.

The cationic nanostructures can protect the carried antigen for vaccine administration by the
oral route and can increase the permanence time of the antigen/carrier assembly at the mucosae still
enhancing the systemic immunity. The cationic nanostructures are particularly efficient in delivering
antigens to APCs, allowing both antigen processing and presentation via MHC-II or processing and
cross-presentation via MHC-I. The intracellular traffic depends on administration route and location of
the antigen in the complex. The direct connection of the complex antigen/adjuvant to APCs in the
lymph nodes avoids permanence at injection sites and local inflammatory reactions since they easily
overcome the anatomical barriers due to their nanometric size. Their toxicity is easily controllable by
using low concentrations of the cationic lipid or cationic polymer in the nanostructures.

There is a huge variety of cationic nanostructured materials available from nanomaterials science.
However, most of them remain untested regarding their properties as immunoadjuvants or their
intrinsic toxicity both in vitro and in vivo. This means that a huge area for biomedical research remains
still unexplored and it is our hope that this review will be the trigger for further valuable research on
vaccine design with novel cationic nanostructures.
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