
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6274  | https://doi.org/10.1038/s41598-021-85781-7

www.nature.com/scientificreports

Influential factors 
and spatial–temporal distribution 
of tuberculosis in mainland China
Siyu Bie1, Xijian Hu1*, Huiguo Zhang1, Kai Wang2 & Zhihui Dou3 

Tuberculosis (TB) is an infectious disease that threatens human safety. Mainland China is an area with 
a high incidence of tuberculosis, and the task of tuberculosis prevention and treatment is arduous. 
This paper aims to study the impact of seven influencing factors and spatial–temporal distribution 
of the relative risk (RR) of tuberculosis in mainland China using the spatial–temporal distribution 
model and INLA algorithm. The relative risks and confidence intervals (CI) corresponding to average 
relative humidity, monthly average precipitation, monthly average sunshine duration and monthly 
per capita GDP were 1.018 (95% CI 1.001–1.034), 1.014 (95% CI 1.006–1.023), 1.026 (95% CI 1.014–
1.039) and 1.025 (95% CI 1.011–1.040). The relative risk for average temperature and pressure were 
0.956 (95% CI 0.942–0.969) and 0.767 (95% CI 0.664–0.875). Spatially, the two provinces with the 
highest relative risks are Xinjiang and Guizhou, and the remaining provinces with higher relative risks 
were mostly concentrated in the Northwest and South China regions. Temporally, the relative risk 
decreased year by year from 2013 to 2015. It was higher from February to May each year and was 
most significant in March. It decreased from June to December. Average relative humidity, monthly 
average precipitation, monthly average sunshine duration and monthly per capita GDP had positive 
effects on the relative risk of tuberculosis. The average temperature and pressure had negative effects. 
The average wind speed had no significant effect. Mainland China should adapt measures to local 
conditions and develop tuberculosis prevention and control strategies based on the characteristics of 
different regions and time.

Tuberculosis ia a public health that places a serious burden on people in countries and regions around the world. 
According to the “Global Tuberculosis Report” in 20201, 10 million people worldwide were infected with tuber-
culosis in 2019, and China had 840,000 people, ranking third. Although China has done a lot of work on the 
prevention and control of tuberculosis2, there are still many provinces3–5 in areas with a high incidence of tuber-
culosis. It is still necessary to strengthen the prevention and control of the occurrence and spread of tuberculosis.

The factors affecting tuberculosis are diverse6, including meteorological factors7,8, socioeconomic factors9–12 
and so on. The incidence of tuberculosis has a significant seasonal feature13,14 and is closely related to geo-
graphic location6. Studies have analyzed spatial–temporal distribution characteristics of tuberculosis in mainland 
China8,15–17 and some provinces18–21 and other descriptive statistics22, but there are few monthly studies.

This paper studies the influencing factors and spatial–temporal distribution characteristics of tuberculosis 
in mainland China on the basis of existing studies7,8. Meteorological factors and socio-economic factors such 
as temperature, relative humidity, precipitation, sunshine duration, wind speed, air pressure, and monthly per 
capita gross domestic product (GDP) are selected to establish a Bayesian spatial–temporal distribution model 
and use the INLA algorithm to solve it. By analyzing the regression coefficients of influencing factors and relative 
risks in different time and locations, the influencing factors and spatial–temporal distribution characteristics of 
tuberculosis are explored, which provides theoretical basis for applying the INLA algorithm to spatial epidemiol-
ogy and formulating scientific tuberculosis prevention and control measures in the future.

Results
The five provinces with the highest cumulative incidence rate (100,000) in December 2013 were Xinjiang 
(170.349), Tibet (136.346), Guizhou (133.589), Qinghai (104.76) and Guangxi (96.217). The five highest prov-
inces in 2014 were: Xinjiang (173.416), Tibet (145.220), Guizhou (129.173), Qinghai (100.257) and Guangxi 
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(99.910). The five highest provinces in 2015 were: Xinjiang (179.716), Tibet (137.407), Guizhou (132.626), Qing-
hai (122.310) and Hainan (97.113). This article studies the relative risk of tuberculosis in mainland China. The 
results of the study are divided into five aspects: spatial stratified heterogeneity detection, meteorological and 
social factors that affect the risk of tuberculosis, spatial distribution, temporal distribution and spatial–temporal 
distribution of relative risk of tuberculosis.

Spatial stratified heterogeneity detection.  The factors include: location, time, temperature, relative 
humidity, precipitation, duration of sunshine, wind speed, air pressure and per capita GDP. Detecting the spatial 
stratified heterogeneity of the incidence and influencing factors of tuberculosis from 2013 to 2015, the signifi-
cance level is less than 0.1, and the q-statistics of factors are 0.875, 0.061, 0.006, 0.058, 0.021, 0.033, 0.029, 0.218 
and 0.201, respectively. This shows that the factors studied in this article are all significant in explaining the dis-
tribution of tuberculosis, and the spatial effects has the strongest explanatory power. The q-statistics and p-value 
are shown in Table 1.

Meteorological and socioeconomic factors.  The posterior results of the regression coefficients of 
meteorological and social factors are shown in Table  2. The relative risk of each factor is RRfactor = exp(β) . 
The posterior means of the regression coefficients of average relative humidity, monthly average precipitation, 
monthly average sunshine duration, and monthly per capita GDP are 0.018, 0.014, 0.026, and 0.025. The cor-
responding relative risks are 1.018 (95% CI 1.001–1.034), 1.014 (95% CI 1.006–1.023), 1.026 (95% CI 1.014–
1.039), and 1.025 (95% CI 1.011–1.040). These four variables have significant positive effects on the incidence 
of tuberculosis. When the variable increases by one unit, the relative risks increase by 1.8% (95% CI 0.1–3.4%), 
1.4% (95% CI 0.6–2.3%), 2.6% (95% CI 1.4–3.9%) and 2.5% (95% CI 1.1–4.0%).

The posterior means of the regression coefficients of mean temperature and mean air pressure are − 0.045 
and − 0.268. The corresponding relative risks are 0.956 (95% CI 0.942–0.969) and 0.767 (95% CI 0.664–0.875). 
The two have significant negative effects on the incidence of tuberculosis. When the variable increases by one 
unit, the relative risks reduce by 4.4% (95% CI 3.1–5.8%) and 23.3% (95% CI 12.5–33.6%).

The posterior mean of the regression coefficient of average wind speed is − 0.009, and the relative risk is 
0.991 (95% CI 0.980–1.002). The 95% confidence interval for relative risk contains 1, so average wind speed has 
no significant effect on the incidence of tuberculosis. Note that the CI is the one under the assumption of the 
model, rather than the real error, if the assumption of the model is different from the property of a population.

Spatial and temporal distribution.  Spatial distribution.  The relative risk in area is RRspatial = exp(u+ v) . 
The relative risk RRspatial of spatial effects in 31 provinces is shown in Table 3 and Fig. 1. It can be seen from 
Fig. 1 that the regions with relatively high relative risks are the Northwest and South China regions, which means 
that the risk of tuberculosis is higher in these two regions. The five provinces with relatively high relative risk 
are: Xinjiang Uygur Autonomous Region, Guizhou Province, Hainan Province, Guangxi Zhuang Autonomous 
Region, and Hunan Province. The corresponding relative risks are 2.360 (95% CI 2.134–2.592), 2.028 (95% CI 
1.921–2.135), 1.909 (95% CI 1.715–2.127), 1.886 (95% CI 1.733–2.058), and 1.657 (95% CI 1.518–1.814). The 
five provinces with relatively low spatial risk are: Beijing, Ningxia Hui Autonomous Region, Shandong Province, 

Table 1.   Spatial stratified heterogeneity with q-statistic.

Factor q-statistic p-value Factor q-statistic p-value

Location 0.875 0 Sunshine duration 0.033 0

Time 0.061 0 Wind speed 0.029 0

Temperature 0.006 0.085 Air pressure 0.218 0

Relative humidity 0.058 0 Per capita GDP 0.201 0

Precipitation 0.021 0 Location 
⋂

 time 1

Table 2.   Posterior results.

Variable Posterior mean (CI) Standard deviation Relative risk (CI)

Intercept − 0.063 ( − 0.077, − 0.048) 0.007 0.939 (0.926, 0.953)

Average temperature − 0.045 ( − 0.059, − 0.031) 0.007 0.956 (0.942, 0.969)

Average relative humidity 0.018 (0.001, 0.034) 0.008 1.018 (1.001, 1.034)

Monthly average precipitation 0.014 (0.005, 0.023) 0.005 1.014 (1.006, 1.023)

Monthly average sunshine duration 0.026 (0.014, 0.038) 0.006 1.026(1.014, 1.039)

Average wind speed − 0.009 ( − 0.020, 0.002) 0.006 0.991 (0.980, 1.002)

Average air pressure − 0.268 ( − 0.411, − 0.133) 0.071 0.767 (0.664, 0.875)

Monthly per capita GDP 0.025 (0.011, 0.040) 0.007 1.025 (1.011, 1.040)
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Shanghai, and Tianjin. These provinces are mostly in East and Central China, which means that these two re-
gions have a lower risk of tuberculosis. On the whole, the relative risk of tuberculosis has obvious spatial differ-
ences, showing a trend of distribution in the south and light in the north. In the future, attention should be paid 
to the spread of tuberculosis in Xinjiang, Guangxi, Hainan, and Heilongjiang, as well as epidemic monitoring in 
high-risk areas such as Jiangxi, Chongqing, Henan and Anhui.

Temporal distribution.  The relative risk in time is RRtemporal = exp(γ + ϕ) . The relative risk RRtemporal of tem-
poral effects is shown in Figs. 2 and 3. Figure 2 shows the relative risk RRtemporal and its confidence band for 
a total of 36 months from 2013 to 2015. The relative risk of tuberculosis has a seasonal periodicity. It is the 
most frequent period from February to May each year and most significant in March. It decreases from June 
to December. Figure 3 shows the temporal effects line for each year. Overall, the relative risk of tuberculosis 
decreases year by year.

Spatial–temporal distribution.  Interaction detection shows that there is a nonlinear enhancement between 
location and time. q(Location 

⋂
 Time) = 1 is greater than the sum of q(Location) = 0.875 and q(Time) = 0.061. 

The interaction between spatial effect and temporal effect is nonlinearly enhancement. Spatial effect and tempo-
ral effect are not independent of each other. The spatial–temporal effect term δ represents a change that cannot 
be reflected by spatial and temporal effects alone. Figure  4 shows the relative risk in spatial–temporal effect 
RRspatial−temporal = exp(δ) . From the figure, we can see the change of RRspatial−temporal in two adjacent regions 
over time. The temporal trend of the incidence risk in two adjacent regions is random. The temporal trend of the 
regions is also independent of the spatial structure. That is, the impact of unobserved variables on the relative 
risk of disease does not have the time × spatial structure, and can be separated into time effects and space effects. 
It can be seen in the figure that the spatial–temporal effect terms of Tibet and Qinghai increased more from 2013 
to 2015, indicating that unobserved variables have a greater impact on Tibet and Qinghai. For example, the local 
medical conditions are not sufficiently developed.

Table 3.   RRspatial in 31 provinces.

Province Anhui Beijing Chongqing Fujian

RR (95%CI) 1.209 (1.090, 1.344) 0.612 (0.563, 0.666) 1.371 (1.305, 1.441) 0.854 (0.790, 0.924)

Province Gansu Guangdong Guangxi Guizhou

RR (95%CI) 0.745 (0.626, 0.871) 1.470 (1.319, 1.643) 1.886 (1.733, 2.058) 2.028 (1.921, 2.135)

Province Hainan Hebei Heilongjiang Henan

RR (95%CI) 1.909 (1.715, 2.127) 0.850 (0.807, 0.897) 1.591 (1.473, 1.722) 1.275 (1.172, 1.390)

Province Hubei Hunan Jiangsu Jiangxi

RR (95%CI) 1.532 (1.407, 1.672) 1.657 (1.518, 1.814) 0.837 (0.740, 0.947) 1.417 (1.278, 1.575)

Province Jilin Liaoning Inner Mongolia Ningxia

RR (95%CI) 1.057 (0.989, 1.133) 1.073 (0.975, 1.183) 0.748 (0.711, 0.785) 0.589 (0.521, 0.661)

Province Qinghai Shaanxi Shandong Shanghai

RR (95%CI) 0.839 (0.552, 1.198) 0.890 (0.853, 0.927) 0.684 (0.618, 0.760) 0.572 (0.504, 0.651)

Province Shanxi Sichuan Tianjin Xinjiang

RR (95%CI) 0.724 (0.694, 0.755) 0.794 (0.646, 0.957) 0.402 (0.355, 0.455) 2.360 (2.134, 2.592)

Province Tibet Yunnan Zhejiang

RR (95%CI) 0.991 (0.619, 1.474) 0.706 (0.616, 0.801) 1.032 (0.926, 1.153)

Figure 1.   RRspatial distribution.
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Discussion
This article investigates the influencing factors of the risk of tuberculosis and its spatial and temporal distribution. 
In general, the number and incidence of tuberculosis from 2013 to 2015 showed a downward trend as a whole. 
This rough result is satisfactory. The article gives a more rigorous analysis through four aspects. The results are 
expected to be professional for the research and control of tuberculosis in mainland China.

Spatially, the relative risk is different in different provinces. Compared with the existing studies8,15,23, Xinji-
ang, Guizhou, Guangxi and Hunan have been high-risk areas and hot spots. The result in this paper shows that 
the risk in Hainan is also high from 2013 to 2015. This may be because Hainan has a tropical marine climate 
with high humidity throughout the year, high rainfall, and long sunshine hours24. Therefore, it is necessary to 
strengthen the prevention and control of tuberculosis in Hainan Province. Early detection and early treatment of 
tuberculosis patients is necessary. Do a good job of disinfection and sterilization in public places and strengthen 
the popularization of tuberculosis prevention knowledge.

The relative risk of tuberculosis is different in time, season, and month. Studies have shown that the risk of 
Zhejiang Province is highest in April18, and then gradually decreases. The risk of morbidity in Yunnan is also 
highest in spring25. Overall, the relative risk of tuberculosis is higher in spring and lower in autumn and winter, 
so protective measures should be strengthened in spring. Remind the public to ventilate frequently and keep 
indoor air fresh. Strengthen physical exercise and improve immunity.

The existing study23 has shown that average temperature and average air pressure have negative effects on 
tuberculosis and average relative humidity has a positive effect, and the study15 has shown that average precipi-
tation has a positive effect, which are consistent with the results from 2013 to 2015 studied in this article. The 
results of this paper show that precipitation has a positive effect on tuberculosis, which is consistent with the 
conclusions of existing studies7,15. This may be because tuberculosis is a chronic infectious disease caused by 
Mycobacterium tuberculosis26. Mycobacterium tuberculosis is more likely to survive in an environment with high 
humidity and precipitation, but not easy to survive in an environment with high temperature and pressure. The 
monthly average sunshine duration is particularly significant in promoting the risk of tuberculosis. The ultra-
violet light contained in the light can harm human skin and eyes, and may cause a decline in human immunity 

Figure 2.   RRtemporal for 36 months.

Figure 3.   RRtemporal for each year.
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and tuberculosis infection. The results of this study indicate that the duration of sunlight is an important factor 
affecting the risk of tuberculosis, so when studying the risk of tuberculosis, the duration of sunlight should be 
considered. The research in this paper shows that monthly GDP per capita has a positive effect on tuberculosis. 
This may be because the improvement of the economic level has made medical treatment more convenient, which 
is helpful for the diagnosis of tuberculosis. As GDP continues to increase, treatment levels and medical systems 
become more complete, the incidence of tuberculosis may decrease8.

Tibet is relatively remote, with large temperature differences between day and night and relatively long periods 
of sunlight. Although the results of this study show that Tibet is not in the five provinces with the high risk of 
tuberculosis from 2013 to 2015, more attention is still needed.

The meteorological factors selected in this paper are comprehensive, but there are still some shortcomings 
in this paper. First, this article only collected data for a total of 36 months from 2013 to 2015 and data for longer 
periods can be collected in future research. Second, this article only selects per capita GDP as a socio-economic 
factor, which can take into account hidden factors such as medical resources.

In summary, this article gives the influence of meteorological and economic factors on the relative risk of 
tuberculosis from 2013 to 2015 and analyzes the spatial and temporal distribution characteristics of the relative 
risk of tuberculosis. It is hoped that this will provide a certain theoretical basis for the prevention and control 
of tuberculosis.

Methods
Study area.  The regions studied in this article are 31 provinces in mainland China, including Anhui, Beijing, 
Chongqing, Fujian, Gansu, Guangdong, Guangxi Zhuang Autonomous Region, Guizhou, Hainan, Hebei, Hei-
longjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Inner Mongolia Autonomous Region, Ningxia 
Hui Autonomous Region, Qinghai, Shandong, Shanghai, Shanxi, Shaanxi, Sichuan, Tianjin, Xinjiang Uygur 
Autonomous Region , Tibet Autonomous Region, Yunnan and Zhejiang Province. In this article, the province is 
used as the research unit for the spatial–temporal analysis of tuberculosis.

Data source.  Tuberculosis surveillance data in 31 provinces from 2013 to 2015 came from the Chinese 
Center for Disease Control and Prevention, including the number and incidence of tuberculosis.

The meteorological data from 2013 to 2015 came from the China Meteorological Data Network, which 
included six variable meteorological data of 826 stations across the country for 36 months. The monthly mete-
orological data of 31 provinces from 2013 to 2015 were obtained by ordinary kriging interpolation method. Then 
the total monthly precipitation in the monthly meteorological data was converted into monthly average pre-
cipitation, and the total monthly sunshine duration was converted into the monthly average sunshine duration.

Figure 4.   RRspatial−temporal distribution.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6274  | https://doi.org/10.1038/s41598-021-85781-7

www.nature.com/scientificreports/

The quarterly GDP data for 2013–2015 came from the National Bureau of Statistics.First, the quarterly GDP 
was converted into monthly GDP, and then the monthly GDP of each province was converted into monthly per 
capita GDP.

Model.  Bernardinelli et al.27 proposed a Bayesian model to study spatial–temporal distribution of disease, 
also known as a Poisson log-linear model. This model studies the impact of spatial and temporal differences on 
the relative risk of a specific disease. That is the deviation from the overall relative risk in a region. The model 
include spatial effect and linear time effect terms, and the spatial effect and its corresponding time trend are 
random effects to reflect the overall relative risk level of a specific region. It also includes a separable space-time 
effect term, reflecting the temporal trends among regions. Knorr et al.28 changed the linear time effect term in 
the Poisson log-linear model to non-linear, including structured time effect and unstructured time effect, and 
changed the spatiotemporal effect interaction term to non-separable to adapt to more universal disease research. 
This spatial–temporal distribution model can better study and explain the spatial and temporal distribution 
characteristics of relative risk. In the studies7,23 of tuberculosis in mainland China, the time effect term is linear, 
and the spatiotemporal effect interaction term is not considered. The study of temporal and spatial–temporal 
distribution is not thorough enough.

The study of the spatial–temporal distribution of disease requires data from multiple regions, multiple times, 
and multiple influencing factors, and the amount of data is large. Compared with the MCMC method, the 
INLA algorithm proposed by Rue29 in 2009 has more powerful computing capabilities without losing the accu-
racy. Therefore, applying INLA algorithm to the study of the spatial–temporal distribution of diseases30,31 is 
an important method in epidemiology. In the paper, INLA algorithm was used to estimate the parameters of 
spatial–temporal distribution model.

Build the following spatial–temporal distribution model:

where i = 1, 2, . . . , 31 , t = 1, 2, . . . , 36 , k = 1, 2, . . . , 6 . Yit is the number of tuberculosis cases in the month t, fol-
lowing the Poisson distribution with the mean value of �it . �it represents the average onset level on the area i. Eit is 
the expected number of tuberculosis cases in the area i and month t, which is equal to the product of the number 
of people in area i and the national incidence rate in the month t, which represents the average national incidence. 
θit is the relative risk, which represents the risk of the area i compared to the overall risk of tuberculosis in the 
country. b0 is the average log relative risk. ui is the spatial structured effect of the area i, which represents that the 
undefined features in the area i have a spatial structure and follow the conditional autoregressive distribution. vi 
is the spatial unstructured effect of the area i, which means that the undefined features in the area i do not have a 
spatial structure and follow a normal distribution. ui and vi can be regarded as hidden variables of area i32, which 
are related and unrelated to the location of the area, respectively. Xkit is the value of the kth influencing factor 
in month t of area i. βk represents effect of the kth influencing factor. γt is the structured effect of the month t, 
which means that the undefined features of the month t have a temporal structure and follow the second-order 
walking model. ϕt is the unstructured effect of the month t, which means that the undefined features of the 
month t do not have a temporal structure and follow a normal distribution. γt and ϕt can be regarded as hidden 
variables of the month t, which are related to and irrelevant to the position of month t. δit is the spatial–temporal 
interaction effect in the area i and month t. δ follows the normal distribution and the precision matrix is κδKδ . Kδ 
is the structure matrix, Kδ = Kv ⊗ Kϕ . The spatiotemporal interaction effect here represents that the unobserved 
variables in the area i and month t have no structure in the time × space. That is, the temporal incidence trend 
in two adjacent areas is random. The specific distribution of the above variables is as follows:

where, Ni = #N(i) , s2i =
1

τuNi
 . Where Ni is the number of neighbors in the area i. N(i) is the neighbors of the 

area i. If area i is adjacent to area j, aij is equal to 1. Otherwise, aij is 0. aii is set to 0. τu is the precision parameter 
of the spatial structured effect and τv is the precision parameter of the spatial unstructured effect.

Spatial stratified heterogeneity detector.  China is huge and diverse in both environmental and socio-
economic determinants of TB prevalence. When analyzing the influence of factors on tuberculosis, it is neces-
sary to detect spatial stratified heterogeneity. This article uses q-statistic33 to detect the spatial stratified hetero-
geneity of tuberculosis and the interaction of spatial and temporal effects. The q-statistic formula is as follows:

(1)

{
Yit ∼ Poisson(�it)
�it = Eitθit
log(θit) = b0 + ui + vi +

∑
kβkXkit + γt + ϕt + δit

(2)






ui|u−i ∼ Normal
�

1
Ni

�n
j=1aijuj , s

2
i

�

vi ∼ Normal
�
0, 1

τv

�

γt |γt−1, γt−2 ∼ Normal(2γt−1 + γt−2, σ
2)

ϕt ∼ Normal
�
0, 1

τϕ

�

δit ∼ Normal
�
0, 1

τδ

�
,

(3)q = 1−

∑L
h=1 Nhσ

2
h

Nσ 2
,
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where, h is stratum and h = 1, . . . , L . Nh and N are the number of units in stratum h and the whole area, 
respectively; σ 2

h  and σ 2 are the variances of the Y value of stratum h and the whole area, respectively. The value 
range of the q-statistic is [0,1]. The larger the value of q, the stronger the explanatory power of the factor to the 
dependent variable, otherwise the weaker. If q is equal to 0, it means that there is no relationship between the 
factor and the dependent variable. If q is 1, it means that the factor completely controls the spatial distribution 
of the dependent variable.

Ethics declarations.  This study does not involve human experiments, and uses public data from the China 
Centers for Disease Control and Prevention, so it was not approved by the Ethical Committee.

Data availability
Tuberculosis surveillance data generated during the current study are available in the Chinese Center for Disease 
Control and Prevention (http://​www.​phsci​enced​ata.​cn/​Share/). The meteorological data are available in China 
Meteorological Data Network (http://​data.​cma.​cn/). The quarterly GDP data are available in National Bureau of 
Statistics (http://​www.​stats.​gov.​cn/​tjsj/). The software used in this paper is R: A Language and Environment for 
Statistical Computing, version 3.6.3 (https://​www.R-​proje​ct.​org/).
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