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Abstract: We theoretically investigate the evolution of the peak height of energy-resolved electronic
wave-packets ballistically propagating along integer quantum Hall edge channels at filling factor
equal to two. This is ultimately related to the elastic scattering amplitude for the fermionic excita-
tions evaluated at different injection energies. We investigate this quantity assuming a short-range
capacitive coupling between the edges. Moreover, we also phenomenologically take into account the
possibility of energy dissipation towards additional degrees of freedom—both linear and quadratic—
in the injection energy. Through a comparison with recent experimental data, we rule out the
non-dissipative case as well as a quadratic dependence of the dissipation, indicating a linear energy
loss rate as the best candidate for describing the behavior of the quasi-particle peak at short enough
propagation lengths.

Keywords: electron quantum optics; interaction effects; relaxation; dissipation

1. Introduction

The possibility to prepare, manipulate, and measure individual electronic wave-
packets propagating along mesoscopic quantum channels opened the way to so-called
electron quantum optics (EQO) [1–7]. In this framework, seminal quantum optics experi-
ments, such as the Hanbury–Brown–Twiss [8] and the Hong–Ou–Mandel [9] interferometry,
have been realized by using ballistic electrons [10–14].

In the integer quantum Hall (QH) regime, due to the external magnetic field, the
electrons propagate chirally along edge states of a two-dimensional electron gas that is
topologically protected [15]. This means that the propagation of the electrons occurs bal-
listically without backscattering and with a very long coherence length. This made it
possible to reach an extremely high level of control of the design and evolution of electronic
wave-packets and provided some hope about the possibility of using electronic excitations
as flying qubits [7,16–18], i.e., as a controlled and trustful way to transport quantum in-
formation over relatively long distances [19]. However, the actual implementation of this
idea in realistic solid-state devices is seriously undermined by the presence of interaction
among the electrons in the system and with the external environment—effects with no
parallel in the photonic case. The role of Coulomb interaction has been extensively dis-
cussed both in order to properly understand the experimental observations achieved for
integer states at filling factor ν = 2 [14,20–24] and to predict new features occurring in
the strongly interacting fractional QH regime [25–30] or in more exotic low-dimensional
systems [31–35]. Conversely, the role of energy dissipation towards external degrees of
freedom of individual electrons is still largely unexplored. However, a deeper under-
standing of the mechanisms associated with the energy leakage and the consequent loss
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of information carried by the electronic wave-packets, which severely compromises the
possibility of using them as qubits [36], is needed in order to implement new and effective
experimental designs that are able to reduce these detrimental effects in the same spirit as
what was proposed for interaction effects in Ref. [22]. This could allow the development of
more refined and robust paths towards quantum computation by exploiting the topological
nature of integer and fractional QH edge states [37].

The preliminary steps in the study of dissipative effects involved the investigation of
the evolution of a non-equilibrium electronic distribution as a function of the interaction
length [38,39], where experiments showed that the signature of important energy losses
towards external degrees of freedom was only included effectively in the theoretical
models [40–42]. Such dissipation effects are crucial in order to properly describe both the
dynamics of integer QH states [43] and the evolution of the peak height of energy-resolved
wave-packets injected into them [44]. Remarkably enough, the predicted functional form
of the dissipation as a function of the energy is different in these two cases; namely, it is
quadratic in the former case and linear in the latter. Therefore, a more detailed analysis is
needed in order to clarify this apparent discrepancy and to improve our understanding
of this topic. Moreover, the possible physical origin of such energy losses has recently
been attributed to the formation of a compressible strip close to the incompressible edge
states due to smooth confining potential [45] or to inelastic non-local Auger-like processes
that redistribute energy between spatially separated parts of the sample [46]. However,
this latter mechanism seems to be relevant at longer propagation lengths than the one
considered in Ref. [44]. Therefore, the subject of the dominant microscopic dissipation
processes at different propagation lengths is still an open issue.

The present paper aims to shed new light on this subject. Assuming a phenomeno-
logical approach, we start from a hydrodynamic model, where the two edge channels are
capacitively coupled through a short-range interaction [47]. In addition, we consider three
possible dissipation regimes: the non-dissipative case, which is used as a reference case,
an ohmic dissipation linear in the injection energy of the electronic wave-packet, and a
quadratic dissipation. We observe that the linear dependence provides the best fit for the
experimental data of the evolution of the experimental peak height at small enough propa-
gation lengths [44]. Conversely, at greater propagation lengths, a dissipation quadratic in
the injection energy dominates [43]. This apparent discrepancy could be related to both
different sample designs and the involvement of more mechanisms of dissipation [45,46].

The paper is organized as follows. In Section 2, we discuss the edge state at ν = 2,
where the two channels are capacitively coupled, in terms of a bosonic hydrodynamic
model. Section 3 describes the edge–magnetoplasmon scattering matrix that connects
the bosonic fields incoming into the interacting region with the outgoing ones. Here,
we also include the effects of energy dissipation towards external degrees of freedom.
In particular, we consider a non-dissipative case and dissipation with a linear and a
quadratic dependence on the injection energy. The elastic scattering probabilities for the
fermionic excitations in the various regimes are reported in Section 4, and a comparison
with experimental data is given in Section 5. Section 6 is devoted to the conclusion, while
we have included technical details of the derivation of the elastic scattering amplitude in
Appendix A.

2. Model

We consider the two edge channels of a QH bar at filling factor ν = 2, assuming a
short-range (δ-like) capacitive coupling between them. Considering the conventional Wen
hydrodynamical approach [47], for this system, one can write the Hamiltonian density
(h̄ = 1) [48]:

H(x) =
v1

4π
(∂xφ1(x))2 +

v2

4π
(∂xφ2(x))2 +

u
2π

∂xφ1(x)∂xφ2(x) (1)



Entropy 2021, 23, 138 3 of 12

where φi (i = 1, 2) are bosonic fields related to the i-th edge particle density through
the condition

ρi(x) =
1

2π
∂xφi(x), (2)

where vi are the bare propagation velocities of the bosonic modes along the two channels
and u is the intensity of their coupling. Without loss of generality, in the following, we will
assume that v1 ≥ v2.

The above Hamiltonian can be diagonalized by means of a rotation in the bosonic
field space of the form

R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
(3)

with a mixing angle satisfying

tan(2θ) =
2u

v1 − v2
. (4)

The above condition naturally leads to two different regimes.

2.1. “Strongly Interacting” Regime

The condition typically indicated in the literature as “strongly interacting” is charac-
terized by

θ =
π

4
, (5)

which can actually be achieved only in the symmetric case v1 = v2 = v. This limit is usually
assumed as a working hypothesis in the majority of the theoretical
papers [20,21,23,40,42,49–51] and leads to the eigenvelocities

vρ,σ = v± u, (6)

where vρ is associated with a charge eigenmode φρ, while vσ corresponds to a dipole
eigenmode φσ. It is worth noticing that the stability condition of the model, namely, the
fact that both eigenvelocities need to be positive, leads to the further constraint v > u. This
implies that the coupling between the channels cannot be arbitrary high, contradicting the
conventional denomination.

Even if frequently used in order to fit experimental data [14,40,43], this approximation
has been revealed to be too restrictive in some cases [52].

2.2. “Moderately Interacting” Regime

In order to relax the above constraints, one can assume, without loss of generality,
v2 = v and v1 = αv, with α > 1. Notice that for α = 1, we recover the previous case. Under
these conditions, the two eigenvelocities of the model become

vρ,σ = v fρ,σ(α, θ) (7)

with

fρ,σ(α, θ) =

(
α + 1

2

)
± 1

cos(2θ)

(
α− 1

2

)
. (8)

The stability condition of the model [48] imposes the constraint

θ ≤ 1
2

arccos
(

α− 1
α + 1

)
<

π

4
, (9)

which is manifestly more restrictive with respect to the “strongly interacting” case (α = 1).
The behaviors of fρ and fσ as a function of θ and at fixed α are shown in Figure 1. In
the following, we will focus on this general case, which seems more realistic in order to
properly describe experimental observations.
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Figure 1. Plot of fρ(α, θ) (full blue curve) and of fσ(α, θ) (full red curve) as a function of θ (in units of

π) for fixed α = 1.1. Vertical dashed lines are placed at θ = 1
2 arccos

(
α−1
α+1

)
≈ 0.242π (“moderately

interacting” regime in blue) and θ = π/4 (“strongly interacting” regime in gray) as references.

3. Edge–Magnetoplasmon Scattering Matrix

The experiment discussed in Ref. [44] involves the injection of an electronic wave-
packet with a Lorentzian profile in energy and its detection after a given propagation length
along the edge. In order to describe this situation, one can proceed as in Refs. [21,40,51],
where the edge channels are divided into three parts: a non-interacting injection region,
an interacting propagating region, and a non-interacting region of detection (see Figure 2).
Notice that this separation is not an oversimplification of the problem. Indeed, chirality
guarantees that the interacting region can be made arbitrarily close both to the injection
and the detection regions without loss of generality. In the following, we will discuss in
detail the dynamics of the edge channels in the various regions.

(1) (2) (3)
φ̃1,in(x,ω)

φ̃2,in(x,ω) φ̃2,out(x,ω)

φ̃1,out(x,ω)

Ŝ(L,ω)

Figure 2. Model for a quantum Hall (QH) edge state at filling factor ν = 2. According to the chirality,
one can identify the incoming (injection) region (1), the interacting region (2) (shaded area of length
L), and the outgoing (detection) region (3). In regions (1) and (3), the dynamics of the bosonic fields
are well described in terms of free equations of motion (u = 0). Moreover, the outgoing fields, written
in the Fourier space (φ̃i,out(x, ω), with i = 1, 2), are connected to the incoming ones (φ̃i,in(x, ω), with
i = 1, 2) through the edge–magnetoplasmon scattering matrix Ŝ(L, ω), which encodes the information
of the inter-channel interaction acting over a length L and at a given frequency (energy) ω.

• Injection region (1):
In this region, one can assume u = 0, and the Hamiltonian density can be simply
written as

H(1)(x) =
v1

4π
(∂xφ1,in(x))2 +

v2

4π
(∂xφ2,in(x))2. (10)

The bosonic fields φ1,in and φ2,in propagate freely according to the equations of motion:

(∂t + vi∂x)φi,in(x, t) = 0. (11)

By moving into a Fourier transform with respect to time, they become

(−iω + vi∂x)φ̃i,in(x, ω) = 0, (12)



Entropy 2021, 23, 138 5 of 12

with φ̃i,in(x, ω) field amplitudes in the frequency space defined as

φ̃i(x, ω) =
∫

eiωtφi(x, t) dω. (13)

• Interacting region (2):
In this region, the Hamiltonian density is the one in Equation (1). According to the
previous discussion, the bosonic fields φ1 and φ2 are no longer eigenstates of the
Hamiltonian, and the system is diagonalized in terms of a charged and a dipole mode,
indicated respectively with φρ and φσ, with the eigenvelocities vρ and vσ, as discussed
above. In this case, the equations of motion are(

∂t + vη∂x
)
φη(x, t) = 0 η = ρ, σ (14)

which, expressed in a Fourier transform with respect to time, become(
−iω + vη∂x

)
φ̃η(x, ω) = 0. (15)

The solution of the equations of motion in this region reads

φ̃η(x, ω) = e
i ω

vη
x
φ̃η(0, ω) (16)

with

φ̃ρ(0, ω) = cos θφ̃1,in(0, ω) + sin θφ̃2,in(0, ω)

φ̃σ(0, ω) = − sin θφ̃1,in(0, ω) + cos θφ̃2,in(0, ω), (17)

and the (possibly frequency-dependent) amplitudes are achieved by imposing the
continuity of the fields at x = 0 (boundary between regions (1) and (2)).

• Detection region (3):
Analogously to what was discussed for region (1), also in this case, inter-channel
interaction is negligible and the equations of motion are written as in Equation (11)
(H(1) = H(3)). Here, imposing the continuity of the fields at x = L (boundary between
regions (2) and (3)), we observe that the outgoing field amplitudes are related to the
incoming ones through the relations

φ̃1,out(L, ω) = cos θφ̃ρ(L, ω)− sin θφ̃σ(L, ω)

φ̃2,out(L, ω) = sin θφ̃ρ(L, ω) + cos θφ̃σ(L, ω). (18)

3.1. Dissipative Effects

Experimental observations [39,43,44] suggest a relevant role played by energy dissi-
pation towards additional degrees of freedom in the transport along QH edge channels.
The simplest way to include this effect is by adding a real frequency-dependent energy
loss rate γ(ω) (assumed here to be equal for both channels for the sake of simplicity) at the
level of the equations of motion in the interacting region (see Equation (15)). According to
this, they become [

−iω + γ(ω) + vη∂x
]
φ̃η(x, ω) = 0. (19)

In the following, we will focus on three possible behaviors for γ(ω): a non-dissipative
case γ = 0, a linear dissipation case γ(ω) = γ1ω (γ1 real adimensional parameter) [48], and
a dissipation quadratic in the energy γ(ω) = γ2ω2 (γ2 real parameter with the dimension
of a time) [43]. Notice that this additional dissipation parameter is phenomenologically
accounted for by adding an imaginary term to the edge–magnetoplasmon velocities [53].
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Due to this additional contribution, the solution of the equations of motion in
Equation (16) acquires a frequency-dependent damping

φ̃η(x, ω) = e
i[ω+iγ(ω)] x

vη φ̃η(0, ω). (20)

3.2. General Form of the Scattering Matrix

According to the previous considerations and proceeding as in Ref. [51], we obtain
the edge–magnetoplasmon scattering matrix connecting the incoming (injected) and the
outgoing (detected) bosonic fields, namely:(

φ̃1,out(L, ω)
φ̃2,out(L, ω)

)
= Ŝ(L, ω)

(
φ̃1,in(0, ω)
φ̃2,in(0, ω)

)
, (21)

with

Ŝ(L, ω) =

 cos2 θei[ω+iγ(ω)]τρ + sin2 θei[ω+iγ(ω)]τσ sin θ cos θ
(

ei[ω+iγ(ω)]τρ − ei[ω+iγ(ω)]τσ

)
sin θ cos θ

(
ei[ω+iγ(ω)]τρ − ei[ω+iγ(ω)]τσ

)
sin2 θei[ω+iγ(ω)]τρ + cos2 θei[ω+iγ(ω)]τσ

. (22)

In the above equation, we have introduced the short-hand notation τρ,σ = L/vρ,σ
for the times of flight associated with the propagation velocity of the charge and dipolar
eigenmodes along the interacting region.

In the following, we will focus only on the top left entry of the scattering matrix in
Equation (22), which represents the amplitude probability for the edge–magnetoplasmon
to be transmitted along the first channel (assumed as the injection/detection channel),
namely:

t(ω) = cos2 θei[ω+iγ(ω)]τρ + sin2 θei[ω+iγ(ω)]τσ (23)

= pρ(θ)ei[ω+iγ(ω)]τρ + pσ(θ)ei[ω+iγ(ω)]τσ . (24)

4. Elastic Scattering Amplitude

As discussed in Ref. [54], assuming a very peaked (ideally δ-like) injected wave-
packet in energy, the relative height of this peak as a function of the energy is given, at zero
temperature, by

V(ε) = |Z(ε)|
2

|Z(0)|2 (25)

with

Z(ε) =
∫ +∞

−∞
dτeiετ exp

{∫ +∞

0

dω

ω

[
t(ω)e−iωτ − 1

]
e−ω/ωc

}
, (26)

which is the elastic scattering amplitude (see Appendix A for more details of the calculation).
Here, we introduced a converging factor ωc corresponding to the greatest energy scale in
the systems, and it will be sent to ωc → +∞ at the end of the calculation [55]. Notice that
this picture can also be used to describe more realistic wave-packets in the energy domain
as long as their width (energy dispersion) is not too large with respect to the average energy
injection, a condition that is typically fulfilled in experiments [11,14,44].

In the following, we will consider the behavior of V as a function of the energy for the
various possible dissipations.

4.1. Non-Dissipative Case

In absence of energy losses towards external degrees of freedom, the edge–magnetoplasmon
transmission amplitude is

tnd(ω) = pρeiωτρ + pσeiωτσ . (27)

This leads, in the time domain, to
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Znd(t) = exp
{

pρ

∫ +∞
0

dω
ω

[
e−iω(t−τρ) − 1

]
e−ω/ωc

}
exp

{
pσ

∫ +∞
0

dω
ω

[
e−iω(t−τσ) − 1

]
e−ω/ωc

}
= −i

ωc
1

(t−τρ− i
ωc )

pρ(t−τσ− i
ωc )

pσ .
(28)

Its Fourier transform reads

Znd(ε) = −i
ωc

∫ +∞
−∞ dt eiεt

(t−τρ− i
ωc )

pρ(t−τσ− i
ωc )

pσ

= 2π
ωc

e
i ε

ε0 fρ 1F1

[
pρ, 1;−i ε

ε0

(
1
fσ
− 1

fρ

)]
Θ(ε)

(29)

with
ε0 =

v
L

, (30)

in which Θ(...) the Heaviside Theta function and where 1F1 indicates the Kummer confluent
hypergeometric function.

In this case, the relative height of the wave-packet evolves as

Vnd(ε) =

∣∣∣∣1F1

[
pρ, 1;−i

ε

ε0

(
1
fσ
− 1

fρ

)]∣∣∣∣2Θ(ε). (31)

In the strongly interacting limit (α = 1 and, consequently, θ = π/4), due the peculiar
functional identities between hypergeometric and the zeroth-order Bessel function J0, the
above expression reduces to [54]

Znd,strong(ε) =
2π

ωc
e

i ε
2ε0

(
1
fρ
+ 1

fσ

)
J0

[
ε

2ε0

(
1
fσ
− 1

fρ

)]
Θ(ε), (32)

with the visibility

Vnd,strong(ε) = J2
0

[
ε

2ε0

(
1
fσ
− 1

fρ

)]
Θ(ε). (33)

4.2. Linear Dissipation

The analytic expressions in this case can be obtained from the non-dissipative case by
taking into account the substitution

ω → ω + iγ1ω (34)

at the level of the first integral. This leads to

Zl(ε) =
2π

ωc
e

i ε
ε0 fρ e

− γ1
fρ

ε
ε0 1F1

[
pρ, 1;−γ1

ε

ε0

(
1
fσ
− 1

fρ

)
+ i

ε

ε0

(
1
fσ
− 1

fρ

)]
Θ(ε) (35)

and

Vl(ε) = e
−2 γ1

fρ
ε

ε0

∣∣∣∣1F1

[
pρ, 1;−γ1

ε

ε0

(
1
fσ
− 1

fρ

)
+ i

ε

ε0

(
1
fσ
− 1

fρ

)]∣∣∣∣2Θ(ε). (36)

4.3. Quadratic Dissipation

In this case, the elastic scattering amplitude can be written, in the time domain, as

Zq(t) = exp
{
Wρ(t)

}
exp{Wσ(t)}

= exp
{

pρ

∫ +∞

0

dω

ω
[e−iω(t−τρ−iγ2ωτρ) − 1]e−ω/ωc

}
exp

{
pσ

∫ +∞

0

dω

ω
[e−iω(t−τσ−iγ2ωτσ) − 1]e−ω/ωc

}
.

(37)
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This first integration can be done analytically, and the exponents Wρ,σ(t) take the
following form:

Wρ,σ(t) = 2pρ,σ

{
γ− log(γ2τρ,σω2

c ) + iπ Erf
[

i + (τρ,σ − t)ωc

2
√

γ2ωc

]
+

−
(i + (τρ,σ − t)ωc)2

2γ2τρ,σω2
c

2F2

[
1, 1;

3
2

, 2;−
(i + (τρ,σ − t)ωc)2

4γ2τρ,σω2
c

]}
,

(38)

where γ ≈ 0.577 is Euler’s constant and Erf is the error function. Unfortunately, it is not
possible to obtain an analytical solution for the Fourier transform Zq(ε), and a numerical
integration is needed.

5. Comparison with Experiments

The results obtained in the previous section are shown in Figure 3, where the relative
peak height V(ε) is plotted versus the injection energy ε for two different cases that are
compatible with experiments: a sample with length L = 0.75µm (left panel) and one with
L = 0.48µm (right panel). In both panels, the parameters for the three different dissipative
regimes are fixed in order to compare the theoretical expressions with the experimental
data (light-blue diamonds). In the absence of dissipation along the channels (dash-dotted
green line), the curve stays above the experimental data due to the absence of exponential
overall decay. The observed behavior is better explained through a linear dissipation
model (blue full line). The quadratic dissipation cases considered strongly deviate from the
experimental situation because the decay of the relative peak height is more pronounced
than the linear one. The discrepancy with the experimental data is more evident for strong
dissipation (brown dashed curve) than with weak dissipation (red dotted line). According
to these observations, the linear dissipation model can be considered the best candidate
for describing the experimental data, at least in this case of relatively short propagation
lengths (L < 1 µm).

It is worth remarking that different experiments [43] that consider a regime of longer
propagation lengths (L > 3 µm) require one to assume a quadratic dissipation to properly
reconcile theory and experiments.

Figure 3. Relative peak height as a function of the injection energy (measured in µeV) for two samples
of different lengths: L = 0.75µm (left panel) and L = 0.48µm (right panel). The non-dissipative
case (green dash-dotted curve); the linear dissipative case (blue full curve) with γ1 = 0.13 for the
left panel and γ1 = 0.43 for the right panel; quadratic dissipation with γ2ε0 = 0.03 for both panels
(red dotted curve) and with γ2ε0 = 0.13 for the left panel and γ2ε0 = 0.23 for the right one (bronze
dashed curve). Other parameters are: α = 2.1, θ = 0.17 π (left panel) and α = 1.6, θ = 0.16 π (right
panel). Light-blue diamonds indicate the experimental data taken from Ref. [44].

6. Conclusions

In this paper, we have investigated the evolution of the relative peak height of elec-
tronic wave-packets well resolved in energy and ballistically propagating along QH edge
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channels at ν = 2 as a function of the injection energy. As long as the wave-packet is nar-
row enough—namely, when its width is smaller with respect to the injection energy—this
behavior is well described by the elastic scattering probability of the electronic excitations.
In order to be close to experimental observations, we considered a wave-packet crossing
an interacting region of variable length where the two edges are capacitively coupled.
We assumed a short-range interaction and phenomenologically included a dissipative
contribution in the model, taking into account the energy dissipation towards external
degrees of freedom. According to what has been discussed in the literature, together with
the conventional non-dissipative case, we considered a dissipation that is both linear and
quadratic in the energy. In particular, we observed that the comparison with the experimen-
tal results discussed in Ref. [44] allows us to rule out the non-dissipative case as well as a
quadratic dependence of the dissipation as a function of the injection energy, and indicates
a linear energy loss rate as the more probable candidate for describing the behavior of
the wave-packet for these set-ups at short enough lengths (L < 1 µm). This seems to
contradict what was discussed in Ref. [43], where a quadratic dissipation was indicated
as the dominant contribution in the regime of long propagation length (L > 3 µm). This
discrepancy can be interpreted in two ways: (i) a strong sample dependence of the energy
dissipation rate or (ii) more involved dissipation mechanisms, leading to different energy
dependences at longer propagation lengths [46].

The present analysis has the aim of shedding new light on the behavior of electronic
wave-packets propagating along ballistic mesoscopic channels and will help both theorists
and experimentalists to identify new strategies for mitigating detrimental relaxation and
dissipation effects.
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Appendix A. Calculation of the Elastic Scattering Amplitude Z
We start by considering an electron injected into channel 1 in such a way that

|in〉 =
∫ +∞

−∞
dyϕ(y)Ψ†(y)|F〉1 ⊗ |F〉2, (A1)

where |F〉i (i = 1, 2) is the Fermi sea associated with the i-th channel, Ψ† is the electronic
creation operator, and ϕ(y) is its wave-packet.

In the following, we will focus on an energy-resolved wave-packet with

ϕ(y) =
eiεy
√
T

, (A2)

where the normalization T represents the longest time scale in the system and ε represents
the energy.
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According to the hydrodynamic approach discussed in the main text, one can write the
fermionic operator acting on the Fermi sea as a coherent state of edge–magnetoplasmons
(up to a Klein factor that plays no role in what follows) [47]. This leads to

|in〉 =
∫ +∞

−∞
dy

eiεy
√
T

(⊗
ω>0
| − λω(y)〉1

)
⊗
(⊗

ω>0
|0ω〉2

)
, (A3)

where
λω(y) = −

1√
ω

eiωy (A4)

and 0ω is the edge–magnetoplasmon vacuum.
The analogous expression

|out〉 =
∫ +∞

−∞
dy′

eiεy′

√
T

(⊗
ω>0
| − λω(y′)〉1

)
⊗
(⊗

ω>0
|0ω〉2

)
(A5)

holds for the state in the outgoing region.
Expressing the incoming edge–magnetoplasmons in terms of the outgoing ones re-

quires one to take into account the entries of the matrix Ŝ in Equation (22) in such a
way that

|in〉 → |in〉′ =
∫ +∞

−∞
dy

eiεy
√
T

(⊗
ω>0
| − S11(ω)λω(y)〉1

)
⊗
(⊗

ω>0
| − S12(ω)λω(y)〉2

)
. (A6)

The elastic scattering amplitude is then given by

Z(ε) = 〈out|in〉′ (A7)

where, taking into account the general relation for coherent states

⊗
ω>0
〈αω |βω〉 = e−

1
2
∫ +∞

0 |αω−βω |2dωei
∫ +∞

0 =(α∗ω βω)dω, (A8)

with =(...) representing the imaginary part, leads (in the limit T → +∞) to

Z(ε) =
∫ +∞

−∞
dτeiετ exp

{∫ +∞

0

dω

ω

[
t(ω)e−iωτ − 1

]}
, (A9)

which is the expression considered in the main text.
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