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Abstract

Foragers whose energy intake rate is constrained by search and handling time should,

according to the contingency model (CM), select prey items whose profitability exceeds or

equals the forager’s long-term average energy intake rate. This rule does not apply when

prey items are found and ingested at a higher rate than the digestive system can process

them. According to the digestive rate model (DRM), foragers in such situations should prefer

prey with the highest digestive quality, instead of the highest profitability. As the digestive

system fills up, the limiting constraint switches from ingestion rate to digestion rate, and prey

choice is expected to change accordingly for foragers making decisions over a relative short

time window. We use these models to understand prey choice in crab plovers (Dromas

ardeola), preying on either small burrowing crabs that are swallowed whole (high profitabil-

ity, but potentially inducing a digestive constraint) or on larger swimming crabs that are

opened to consume only the flesh (low profitability, but easier to digest). To parameterize

the CM and DRM, we measured energy content, ballast mass and handling times for differ-

ent sized prey, and the birds’ digestive capacity in three captive individuals. Subsequently,

these birds were used in ad libitum experiments to test if they obeyed the rules of the CM or

DRM. We found that crab plovers with an empty stomach mainly chose the most profitable

prey, matching the CM. When stomach fullness increased, the birds switched their prefer-

ence from the most profitable prey to the highest-quality prey, matching the predictions of

the DRM. This shows that prey choice is context dependent, affected by the stomach full-

ness of an animal. Our results suggest that prey choice experiments should be carefully

interpreted, especially under captive conditions as foragers often ‘fill up’ in the course of

feeding trials.

Introduction

Prey choice decisions in animals are thought to be the product of natural selection [1]. It is

generally assumed that this has shaped carnivorous in such ways that they select prey that
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maximize their rate of energy gain [1] (but see some recent studies highlighting that predators

also can make dietary decisions based on macro-nutritional composition or toxins [2–5]).

This assumption was used in the optimal diet theory [6] to predict prey-choice decisions. The

original and most frequently used optimal prey-selection model is the so-called ‘contingency

model’ (CM) [1, 7]. CM predicts which prey items should be included in the diet based on

their profitability. Each prey item i has a certain metabolizable energy content (ei) and a certain

handling time (hi). Only prey items whose profitability (ei/hi) exceeds or equals long-term

average energy intake rate should be included in the diet and consequently prey items with a

lower profitability should be rejected.

The CM is supported by many empirical tests on for example birds, mammals and insects

[1, 8, 9]. The CM applies to foragers which are so-called ‘handling-constrained’ [10], i.e. forag-

ers that spend all their time searching and handling prey. Their energy intake is limited by the

rate at which prey items can be found and handled. Problems with the CM arise when foragers

are able to find and handle prey items faster than they can process them internally [11]. These

foragers, instead of being handling-constrained, are ‘digestion-constrained’ [12–14]. Digestive

pauses have to be taken before a new prey item can be ingested [15]. These digestive pauses

cause a digestively constrained forager, obeying CM rules, not to maximise its long-term

energy intake, because time to forage is lost during digestive pauses [14]. In this case, another

optimal diet model should be considered.

The digestive rate model (DRM) [11, 16, 17] is an optimal diet model in which long-term

intake rate is maximised under a digestive constraint. Tests of the DRM have first been

restricted to herbivorous mammals [14, 18] and only relatively recently a few have been con-

ducted on carnivorous birds [17, 19]. In this model, energy intake is limited by the rate of

digestion and prey items are by and large selected on the basis of digestive quality (energy (ei)

per unit of indigestible ballast mass (ki)), rather than profitability [19]. Foragers can use time,

which would otherwise be lost to digestive pauses, to search for high quality (easy-to-digest)

prey items [17]. Whether a forager needs to obey the CM or DRM thus depends on whether

the forager is handling or digestively constrained.

Also the time horizon over which a forager wants to maximise its energy intake is important

when considering optimal prey choice [19]. A forager aiming at maximising long-term energy

intake should obey the rules of the DRM in case it faces, or is expected to face, a digestive con-

straint (i.e. has, or is expected to get, a full stomach). However, a forager aiming to maximise

energy intake over a relatively short time interval [14], should obey the CM at the start of feed-

ing when the stomach is still empty. As its stomach gradually fills up and the constraint

switches from a handling to a digestive constraint, it should be optimal for a short-term rate

maximizing forager to switch from CM-principles to DRM-principles [13, 20, 21].

Here we will use both diet models to understand prey choice decisions in crab plovers (Dro-
mas ardeola), a tropical shorebird that primarily consumes crabs, but also consumes fish and

benthic invertebrates [22]. In our study area in the Sultanate of Oman, crab plovers mainly

prey on two types of crabs: small burrowing crabs, Macrophthalmus sulcatus (hereafter Macro-
phthalmus), that are ingested whole and potentially induce a digestive constraint or large

swimming crabs, Portunus segnis (hereafter Portunus) that are opened to consume the flesh

only, potentially inducing a handling constraint. Portunus is opened, since it is physically

impossible to swallow the whole crab. The processing dichotomy between these two species

makes the system ideal to study prey choice in the light of the CM and DRM. We tested, under

captive conditions, the prey choice of crab plovers when offered small Macrophthalmus, small

Portunus and large Portunus. Both a dichotomous prey choice experiment (empty stomach) as

well as a cafeteria experiment have been performed to test for changes in prey choice as the

stomach fills up. We parameterized both the CM and DRM by estimating the energy content

Prey choice in crab plovers
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of the crabs, the ballast mass of the crabs and the handling times of crab plovers on different

crabs. The predictions of the CM and DRM were used to explain the outcomes of our prey

choice experiments.

Methods

Study area & study species

The study was conducted on the relatively pristine mudflats of Barr al Hikman peninsula,

located at the central-east coast of the Sultanate of Oman (20.6˚ N, 58.4˚ E). Barr al Hikman is

one of the largest and most important wetland areas in the Middle East and supports large

numbers of shorebirds [23]. Among them is the crab plover (Dromas ardeola), our study spe-

cies. About 8,000 of these conspicuous black-and-white birds winter in the area, making it the

most important wintering area for this species [24]. Its breeding range covers the north-west-

ern Indian Ocean and the Red Sea, while its wintering range covers most of the Indian Ocean

[25, 26]. Throughout its wintering range the diet of crab plovers mainly consists of crabs, but

other invertebrates and fish are also eaten [27, 28].

Captive birds

The birds to be held in captivity were caught during the night using mistnets, early November

2015. After capture, these birds were housed in an aviary (2.5 m width x 2.5 m length x 1.25 m

height), made out of wood and nets. It took about a week for them to get accustomed to these

new conditions. During this start-up phase they were fed a mixed diet of both crab species to

be used in our experiments in order to prevent them from getting used to a single prey species.

After catching the weight of the birds initially decreased, but stabilized after about a week at on

average 79% (SD ± 4%) of the catching weight. Two birds suffered from leg cramp, presumably

caused by stressful conditions of catching, from which one recovered during the week before

the experiments, leaving us with three birds to be used in our experiments. After this week,

each bird was assigned to a series of feeding trials. To be able to parameterize the CM, we mea-

sured handling time in relation to crab size. To be able to parameterize the DRM, we con-

ducted a maximum intake experiment. Prey choice was tested in a dichotomous prey choice

experiment and a cafeteria experiment. The birds were released by the end of November 2015.

Animal welfare note

All work was performed under full permission by the authorities of the Ministry of Environ-

ment and Climate Affairs (MECA), Sultanate of Oman under permit number 31/2015. No

animal experimentation ethics guidelines exist in The Sultanate of Oman. However, the exper-

iment was carried out in strict accordance with Dutch animal experimentation guidelines. The

NIOZ Royal Netherlands Institute for Sea Research has been licensed by the Dutch Ministry of

Health to perform animal experiments under license number 80200. This license involves

capture and handling of animals, and performing experiments, which nonetheless should be

individually approved by the Animal Experimentation Committee (DEC) of the Royal Nether-

lands Academy of Arts and Sciences (KNAW). The DEC does not provide permits for

experiments in foreign countries, but provided approval for equivalent experiments in the

Netherlands by the same persons under permit number NIOZ 10.05, involving the capture of

birds, performing non-invasive experiments consisting of prolonged diets of natural food

types (i.e. foods that regularly occur in the diet of wild birds) and repeated gizzard size mea-

surements, and includes permission to release healthy animals in the wild after the experiment.

All possible efforts were made to minimize physical and mental impact on the experimental

Prey choice in crab plovers
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animals. Each bird was weighed and visually inspected for general condition daily. The reasons

for the experiment to take place in the Sultanate of Oman were purely scientific and by no

means to avoid ethics guidelines. All experimental animals were released in the wild in healthy

condition after the experiment.

Prey species

For all experiments, we used Macrophthalmus and Portunus. As profitability and digestive

quality of Portunus was expected to scale substantially with size, we used two size classes of

these species: a small (carapax width: 30–50 mm) and a large (carapax width: 60–90 mm). For

the interest of this study, we report for both crab species the metabolizable energy content, the

undigestible (inorganic) part and the total mass (undigestible + digestible). Following Zwarts

and Wanink (29) we used ash-free dry mass (AFDM) as our measure of metabolizable energy,

or digestible part of the prey. It is reasonable to assume that the energy value per unit AFDM

does not vary with species and size [29]. Likewise, the ash content of the prey was used as the

undigestible part of the prey. The dry mass (DM) of the prey was used as the total mass, which

was defined as the undigestible + digestible part of the prey. To predict for each crab offered in

the experiments its AFDM, its ash content and DM on the basis of its size, we fitted regression

models relating crab size to AFDM, ash content and DM for individuals of both crab species,

collected in November 2015 and covering the entire size range found in the field. Collected

crabs were stored in formalin and transported to the NIOZ Royal Netherlands Institute for Sea

Research. Here, the width of each crab was measured to the nearest mm. Next, crabs were

dried for three days at 55–60 ˚C in a ventilated oven, after which DM was obtained to the near-

est 0.01 g. Subsequently the crabs were incinerated at 550 ˚C for two hours and the ash mass

was obtained. AFDM was calculated as the DM minus the ash mass. Non-linear regression

models (power function: y = axb; Table 1) were fitted using R-package gnls [30]. Crab plovers

do not eat the carapaxes of large Portunus. Depredated carapaxes were collected and their DM,

AFDM and ash was determined using the same methodology as mentioned above. Regression

models (Table 1) relating crab width to empty carapaxes were made in the same way as the

other regression models and were subtracted from the previous mentioned regression models

to determine the true ingested flesh by crab plovers. We assume that the energy loss due to the

formalin fixation is similar across species and size classes [29, 31].

CM

In order to make predictions based on the CM, we calculated the profitability (ei/hi) of the

prey in a series of feeding trials in which all three birds were offered differently sized prey

items. We used prey items over the entire size range found in the field. Feeding trials were

Table 1. AFDM (mg) versus crab width (mm), ash mass (mg) versus crab width (mm), DM (mg) versus crab

width (mm) and handling time versus crab width (mm) for both crab species. For Portunus we also determined the

carapax AFDM (mg), ash mass (mg) and DM (mg) versus crab width (mm).

model Macrophthalmus Portunus
AFDM ~ Size y = 4.05e-02x2.76 y = 4.20e-02x2.53

Carapax AFDM ~ Size - y = 8.89e-02x1.97

Ash ~ Size y = 3.66e-02x2.78 y = 1.90e-02x2.65

Carapax ash ~ Size - y = 1.58e-02x2.58

DM ~ Size y = 7.19e-02x2.80 y = 5.96e-02x2.58

Carapax DM ~ Size - y = 4.13e-02x2.44

Handling ~ Size y = 0.19x0.91 y = 0.003x2.72

https://doi.org/10.1371/journal.pone.0194824.t001
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conducted during the morning to make sure birds had an empty stomach, so that they had the

same motivation to eat. Furthermore, feeding trials were conducted on single birds to make

sure that interference did not affect our results. All trial were filmed (Canon VIXIA HG21). To

establish the profitability (ei/hi) of crabs, we first calculated the energy content (ei) using the

AFDM of each prey item offered, calculated by using the equations in Table 1. The handling

time (hi) was measured from the moment of attacking the prey till the moment of swallowing

the prey. Pauses during handling were excluded from the handling time. We analyzed the vid-

eo’s using ‘The Observer’ package (v. 5.0, Noldus Information Technology). Profitability was

then calculated by dividing AFDM (ei) by handling time (hi). Linear mixed-effect models with

crab width against profitability were fitted to test for a relation between profitability and crab

width. We used crab width as a fixed effect and bird as a random effect. To compare the profit-

ability between prey species we also used a linear mixed-effect model with crab species as a

fixed effect and bird as a random effect. To fit the profitability versus size curves we used

power functions: (y = axb), using R-package gnls [30].

DRM

To make predictions based on the DRM, we first experimentally determined whether ash

(undigestible part of the prey), AFDM (digestible part of the prey) or DM (undigestible +

digestible part of the prey) is the ballast mass that sets a digestive constraint in crab plovers, fol-

lowing the same procedure as van Gils et al (15). We assumed that the rate at which digestively

constrained crab plovers can process the ballast mass of a prey will be constant across prey

types [17]. This means that if the ballast mass of a prey item is double compared to the ballast

mass of another prey item, the long term numerical intake rate on the prey item with the high

ballast mass will be twice as low as the long term numerical intake rate on the prey item with

the low ballast mass [15]. The rate at which prey can be consumed is given by the formula:

y ¼ 1

x c (where y is numerical intake rate (IR); x is DM, AFDM or ash content of the prey; and c
is digestive constraint) [15].

Maximum-intake experiment. To determine the digestive constraint of crab plovers we

offered the captive birds ad libitum food, being either Macrophthalmus, small sized Portunus
or large sized Portunus. Each feeding trial lasted two hours and was repeated once, so we con-

ducted (3 birds × 3 diets × 2 repetitions) 18 feeding trials in total. Three feeding trials were

excluded because of camera failure. Trials were filmed (GoPro4) and intake was scored using

‘The Observer’ package (v. 5.0, Noldus Information Technology). Cumulative intake (# prey

items) was plotted versus time (minutes) to estimate the long-term intake rate (slope). We esti-

mated long-term intake rate (IR) using the slope between the point of first saturation (last crab

ingestion before first digestive break) and the end point (last crab ingestion observed) of a

feeding trial [32, 33]. The first saturation point was the point where crab plovers had not eaten

for more than seven minutes which we interpreted as a digestive pause. We also inspected this

graphically to confirm that the starting point was correct. IR of all the trials was then plotted

versus average DM, AFDM and ash content of the crabs that were eaten during the experi-

ment. A line was fitted using a linear mixed-effect model on log-transformed data with bird as

a random effect. We tested whether the slope of this model differed significantly from -1,

because a slope of -1 implies that there is a fixed amount of ballast mass, coined c, a stomach

can process per unit of time [15]. This follows mathematically when log-transforming the for-

mula: y ¼ 1

x c. We did this for DM, AFDM and ash content to determine what constrains the

food intake of crab plovers (the one that does not differ from -1).

The digestive rate model. To parameterize the digestive rate model (DRM) we used the

prey characteristics of both prey species. We plotted profitability (ei/hi) of both species versus

Prey choice in crab plovers
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ballast intake (ki/hi) [17]. In addition, we plotted the digestive constraint. For ki we used ash

content (g), because that is what constrains the food intake of crab plovers (see Results).

Dichotomous prey choice experiment

Crab plovers were offered two different prey items in two separated trays (Fig 1). Prey species

were randomly assigned to different sides (left/right). Crab plovers were brought into the

experimental aviary on the opposite side of the trays to make sure they could see both prey

items when walking towards the trays before making a choice. We conducted several trials per

bird, but all on different days. Trials were conducted during the morning when birds had not

eaten for the whole night to make sure their stomach was empty. We offered each bird three

combinations: Macrophthalmus versus small Portunus (18 trials), Macrophthalmus versus large

Portunus (17 trials) and small Portunus versus large Portunus (18 trials). For crab characteris-

tics of the crabs offered see Table 2. To test prey preference, we used the dichotomous prey test

[34]. We used a generalized linear model with prey choice as our response variable and the dif-

ferent prey types as our predictor variables. A quasibinomial model was used and the cardinal

preference rank was calculated for each prey type. The cardinal preference rank of large Portu-
nus was set to zero (no SE) as we compared Macrophthalmus and small Portunus to large

Portunus.

Fig 1. Crab plover facing two different prey items in two separated trays. The left tray contains a small Portunus
and the right tray a Macrophthalmus.

https://doi.org/10.1371/journal.pone.0194824.g001

Table 2. Crab characteristic of the crabs offered in the dichotomous prey choice experiment. The number of crabs offered (n) as well as the average crab size (± SD) is

shown. Average (± SD) AFDM (mg), handling time (s) and ash (mg) was calculated based on the crab sizes of each individual crab using the formulas in Table 1. Average

(± SD) profitability (ei/hi) was calculated by dividing AFDM (mg) by handling time (s) for each individual crab. Average (± SD) digestive quality (ei/ki) was calculated by

dividing AFDM (mg) by ash (mg) for each individual crab.

n Size (mm) AFDM (mg) Handling time (s) Profitability (ei/hi) Ash (mg) Digestive quality (ei/ki)

Macrophthalmus 35 19.1 ± 2.4 145 ± 51 2.8 ± 0.3 50.75 ± 11.94 139 ± 50 1.04 ± 0.00

small Portunus 36 42.6 ± 4.0 420 ± 108 82.6 ± 21.2 5.08 ± 0.00 145 ± 38 2.90 ± 0.01

large Portunus 35 68.4 ± 5.2 1490 ± 314 297.1 ± 63.9 5.03 ± 0.02 534 ± 117 2.80 ± 0.02

https://doi.org/10.1371/journal.pone.0194824.t002
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Cafeteria experiment

Because prey choice might differ depending on the internal state (fullness of the stomach) of

the crab plovers, we offered them ad libitum food of all three prey types, i.e. Macrophthalmus
(on average 17 crabs), small Portunus (on average 9 crabs) and large Portunus (4 crabs), with

each prey type in a separated tray. For crab characteristic of the crabs offered see Table 3.

Each feeding trial lasted approximately two hours and was filmed to determine the exact

moments of ingestion in time (GoPro4). From these videos the cumulative numeric intake

was scored using ‘The Observer’ package (v. 5.0, Noldus Information Technology). We also

scored which prey type was ingested. After each feeding trial we counted the crabs that were

left to calculate the number of crabs the crab plover had eaten. Two of the three birds were

used (the third was not used because of time limitation) on which we both conducted two

feeding trials, so we had four trials in total. Trials were conducted on four different days and

for each bird there was a day in between each trial. Birds that entered the trials had not eaten

for at least four hours to make sure their stomach was empty. For the purpose of this study,

two trials could not be used because in trial 3 the crab plover had eaten all Macropthalmus
before reaching its digestive constraint and in trial 4 the crab plover stopped eating after the

camera failed. This left us with two successful trials on two different birds. Trial 2 suffered

from unfortunate camera failure after 15 minutes. Within this time period the experimental

bird had reached its digestive constraint, and by counting the crabs that were left at the end

of the trial we could calculate the number of crabs that were eaten after the camera failed.

These crabs were included in the results but we do not know when these crabs were eaten

and in which order.

Results

Feeding behaviour

As anticipated, the crab plovers swallowed the Macrophthalmus always whole, while Portunus
was always stripped from the carapax, legs and pincers, and only the flesh was eaten.

CM

Macrophthalmus had a higher profitability than Portunus (df = 96, t-value = -14.81, p< 0.001;

Fig 2c) which was mainly caused by the short handling times on Macrophthalmus. Handling

times were much larger for Portunus ranging from 50 to 500 seconds versus 2 to 5 seconds for

Macrophthalmus (Fig 2b). So following the CM crab plover should always choose the more

profitable Macrophthalmus. We found a positive exponential relation between profitability

and crab size in Macrophthalmus (df = 24, t-value = 3.59, p = 0.002). Crab size did not affect

profitability in Portunus (df = 68, t-value = 0.13, p = 0.897).

Table 3. Crab characteristic of the crabs offered in the cafetaria experiment (2 trials). The number of crabs offered (n) as well as the average crab size (± SD) is shown.

Average (± SD) AFDM (mg), handling time (s) and ash (mg) was calculated based on the crab sizes of each individual crab using the formulas in Table 1. Average (± SD)

profitability (ei/hi) was calculated by dividing AFDM (mg) by handling time (s) for each individual crab. Average (± SD) digestive quality (ei/ki) was calculated by dividing

AFDM (mg) by ash (mg) for each individual crab.

n Size (mm) AFDM (mg) Handling time (s) Profitability (ei/hi) Ash (mg) Digestive quality (ei/ki)

Macrophthalmus 34 20.0 ± 2.3 162 ± 47 2.9 ± 0.3 54.79 ± 11.17 156 ± 46 1.04 ± 0.00

small Portunus 18 44.3 ± 4.3 470 ± 117 92.5 ± 22.9 5.08 ± 0.00 163 ± 41 2.89 ± 0.01

large Portunus 8 73.4 ± 5.5 1803 ± 357 360.4 ± 72.8 5.01 ± 0.02 650 ± 133 2.78 ± 0.02

https://doi.org/10.1371/journal.pone.0194824.t003
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DRM

Maximum intake experiment. The slope of the relationship between the log-transformed

IR and the different ballast weights was not significantly different from -1 for ash (slope =

-0.94, p = 0.737; Fig 3), marginally significantly different from -1 for DM (slope = -0.75,

Fig 2. (a) AFDM (ei) plotted versus crab width (mm) (note the logarithmic axes). Grey triangles represent

Macrophthalmus and blue dots represents Portunus. Non-filled rhombs represent the amount of AFDM (ei) that was

left in depredated carapaxes of Portunus. The amount left in the carapaxes in terms of AFDM (ei) was subtracted from

the AFDM (ei) of intact Portunus, yielding the amount of AFDM (ei) obtained by crab plovers, superimposed with a

red line. For formulas see Table 1. (b) Handling time (hi) plotted versus crab width (mm) (note the logarithmic axes).

Handling time does not increase significantly with size for Macrophthalmus (superimposed with a grey line), while for

Portunus handling time significantly increases with size (superimposed with a blue line). For formulas see Table 1. (c)

Profitability (AFDM (ei) / handling time (hi)) plotted versus crab width (mm) (note the logarithmic axes). Grey

triangles represent Macrophthalmus and blue dots represent Portunus. Profitability significantly increases with size for

Macrophthalmus (y = 0.22x1.85; superimposed with a grey line), while for Portunus profitability does not significantly

increase with size (y = 5.46x0.03; superimposed with a blue line).

https://doi.org/10.1371/journal.pone.0194824.g002
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p = 0.053) and significantly different from -1 for AFDM (slope = -0.64, p = 0.004). This means

that the variation in numerical intake rate between prey items can best be explained by the ash

content of the prey: i.e. if a prey item contains twice as much ash compared to another prey

item, the numerical intake rate on the prey item with the high ash content will be twice as low

as the numerical intake rate on the prey item with the low ash content. Therefore, ash content

(ki) appears to constrain the long-term intake rate of crab plovers. Using the intercept of the

obtained relationship (10log(IR) = -3.80–0.94 × 10log(ash)), we found crab plovers to have a

digestive constraint of (10−3.80) 0.16 mg of ash per second.

The digestive rate model. While Macrophthalmus had a higher profitability than Portu-
nus, this was the other way around for digestive quality (slope (ei/ki)). We found the digestive

constraint (c) to be on the left side of graph (see inset Fig 4), which means that ki/hi > c for all

prey types. Thus, crab plovers that face a digestive constraint should always choose the better

digestible Portunus.

Dichotomous prey choice experiment

Macrophthalmus was preferred over large Portunus (t-value = 3.480, p = 0.001; Fig 5). Also

small Portunus was preferred over large Portunus (t-value = 3.135, p = 0.003; Fig 5). We found

no difference in preference between Macrophthalmus and small Portunus (t-value = -0.587,

p = 0.560; Fig 5).

Cafeteria experiment

In both feeding trials, there was an initial preference for Macropthalumus, i.e. in both feeding

trials the crab plovers started eating a number of Macrophthalmus. The preference switched to

Fig 3. Intake rate (prey/s) plotted versus ash content of that prey (g/prey) in the ad libitum experiment. The line

represents the relation: 10log(IR) = -3.80 – 10log(ash).

https://doi.org/10.1371/journal.pone.0194824.g003
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Portunus in the course of the feeding trial after crab plovers had reached their digestive con-

straint (two out of two; Fig 6). In the two trials that did not succeed we also observed the initial

preference to be Macrophthalmus.

Discussion

We found crab plovers to switch their prey preference depending on their stomach fullness.

When offering crab plovers all prey types in ad libitum quantities, crab plovers switched their

preference from the highly profitable Macrophthalmus to the high-quality Portunus after their

stomach filled up to full capacity, which we assumed to be indicated by the observed breaks

(Fig 6). This suggests that crab plovers integrate their decisions over a relatively short time

window. Hence, on an empty stomach they obeyed the CM, while they obeyed the DRM with

a full stomach.

In addition, we also found that prey choice depends on the expected future prey items.

When crab plovers with an empty stomach were offered two prey items only, they preferred

Macrophthalmus over large Portunus (Fig 5), which is according to the CM. However, when

offering them Macrophthalmus and small Portunus, we did not find a preference for the more

profitable Macrophthalmus (Fig 5) which is against the predictions of the CM. This result dif-

fers from our cafeteria experiment, where we found that crab plovers with an empty stomach

always choose Macrophthalmus. This discrepancy might be explained by the fact that in our

dichotomous choice experiment we only offered two prey items. Crab plovers did not know

Fig 4. The digestive rate model. Energy intake rate (ei/hi) (mg/s) was plotted versus ballast (ash) intake rate (ki/hi)

(mg/s) for both crab species. The grey triangle represents Macrophthalmus (n = 28), the light blue square represents

small Portunus (n = 23) and the blue dot represents large Portunus (n = 43). Arrows represent the standard error of the

mean. The inset gives a more detailed view of the Portunus size classes. The long solid black line represents the slope in

terms of energy per ballast (ei/ki) for Macrophthalmus, whereas the short solid black line on the left represents the slope

for Portunus. The solid red line represents the digestive constraint (c) (0.16 mg/s ash). For both prey species ki/hi > c,

which means that the highest long-term energy gain can be obtained by choosing the prey with the highest slope (in

this case Portunus).

https://doi.org/10.1371/journal.pone.0194824.g004
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Fig 5. Dichotomous prey choice experiment. The cardinal preference rank is plotted against prey type. A higher

cardinal preference rank (y-axis) indicates a higher preference over the other prey species. Arrows represent the

standard error of the mean. Large Portunus is set to zero (no SE) as we compared Macrophthalmus and small Portunus
to large Portunus. We found crab plovers to prefer Macrophthalmus over large Portunus (t-value = 3.480, p = 0.001).

We also found crab plovers to prefer small Portunus over large Portunus (t-value = 3.135, p = 0.003). We found no

difference in preference for Macrophthalmus versus small Portunus (t-value = -0.587, p = 0.560).

https://doi.org/10.1371/journal.pone.0194824.g005

Fig 6. Cafeteria experiment. Cumulative intake (# prey) has been plotted on the y-axis and time (min) on the x-axis.

Each point represents a crab that has been eaten. For trial 1 we obtained the whole video. For trial 2 the camera failed

after some time. The vertical line represents the moment of camera failure. We know the number of crabs that were

eaten after camera failure based on the number of crabs that were left after the feeding trials. These crabs have been

plotted on the right side of the vertical line. Note that we do not know when these crabs were eaten and in which order.

For simplicity, we plotted them in constant intervals to the end of the feeding trial. The birds had an initial preference

for Macrophthalmus. In both trials the crab plover switched its prey choice from Macrophthalmus to small Portunus to

the end of the feeding trial. The trials were conducted on two different birds.

https://doi.org/10.1371/journal.pone.0194824.g006
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what was coming after these two preys and might decide to take the one that yields the most

energy first in spite of a longer handling time, i.e. the small Portunus, to minimize the risk of

starvation [35, 36]. This suggests that crab plovers anticipate future energy gains within a cer-

tain time-horizon and this might aid in shaping prey choice decisions.

Alternatively, the importance of the nutritional and toxic composition of the prey species

might play a role. Stephens and Krebs (1) assumed that the diet of carnivorous animals mainly

consists of prey with approximately the right balance of nutrients and that carnivorous animals

make dietary decisions solely based on energy content, but recent studies showed some verte-

brate and invertebrate predators to make dietary decisions based on macro-nutritional compo-

sition, rather than energy content [2, 4, 5]. Also the presence of toxins in certain prey types can

affect prey choice decisions of foragers [3]. The observed switch in prey choice could thus

potentially also be explained by foragers aiming at achieving nutritional targets, or foragers

being limited by toxic constraints. However, given that maximum intake rates in terms of ash

were equal for both prey species, we don’t expect one of our prey species to be toxic [37]. Fur-

thermore, studies showing that carnivores balance their diet based on nutrients do not report

sudden shifts, as we observed in crab plovers, but rather show a balanced mixed diet [38, 39]

or a switch over relatively long time periods, i.e. days or seasons, for instance to prepare for

breeding [21]. We thus believe that the observed diet switch in crab plovers is primarily driven

by energy and shaped by stomach fullness. That crab plovers may encounter digestive prob-

lems can be expected as 47% (SD ± 8%) of Macrophthalmus consists of inorganic mass.

It is important to note that prey choice in the field may differ from our results, as conditions

in the field differ from the conditions in our experiment. Problems in testing optimal prey

choice in the field may arise because these models often fail when using mobile prey items, for

example due to escape behaviour of prey [9]. In our experiment, both species were readily

available (same densities) and catchable (search time = 0), but this is certainly not true in the

field where Macrophthalmus are known to escape into their burrows when a predator is near,

which may be a much more effective escape behaviour than hiding in the sand near the surface

like Portunus do. This may negatively affect searching efficiency on Macrophthalmus, which in

turn potentially affects prey choice, especially when crab densities are low and/or when search-

ing for Macrophthalmus and searching for Portunus are mutually exclusive. Furthermore, prey

choice could differ in case crab plovers in the field are not energy maximisers, as assumed

here, but instead are time minimisers [40]. I.e. if crab plovers aim to minimise time foraging

(searching and handling) and take digestion for granted, we could expect that crab plovers

should again switch to the more profitable prey, i.e. Macrophthalmus. In our experiment, the

birds had lost weight during the pre-experimental period which might have turned them into

energy maximisers in order to recover. Finally, in the field the optimal prey choice might also

be affected by the interaction with the social environment, with other crab plovers foraging on

crabs [41]. This can result in crab plovers preferring prey items with short handling times, i.e.

Macrophthalmus, in order to minimize the chance for kleptoparasitism. It could also influence

the searching time on Macrophthalmus, as the presence of a lot of crab plovers might make

them escape into their burrows and as a result makes Macrophthalmus a less attractive prey.

Detailed observations should give insight in which strategy is adopted by crab plovers in the

field.

In conclusion, we show that under captive conditions, when crab plovers are in handling

constrained circumstances, the CM predicts their prey choice well when offering ad libitum
prey (initial phase in Fig 6). However, when offering only two prey items, the CM only par-

tially predicts prey choice, as time-horizon and anticipation effects come into play. When crab

plovers become digestively constrained, the prey choice decisions are in line with the DRM

(end phase in Fig 6). Our results indicate that prey choice is not necessarily dependent on the
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CM (handling constraint) or the DRM (digestive constraint) alone, but is context dependent

in terms of stomach fullness. This follows the predictions of Whelan and Brown (20) stating

that food choice is dynamic and depends on an animal’s digestive state. Based on our results it

could be expected that stomach fullness is an important parameter for understanding prey

choice. This has been shown in several experiments when offering differently sized prey items

of the same species [42, 43]. Yet we could only find one study with experimental data [21] to

substantiate, and one with field data [44] to suggest a switch of prey species based on stomach

fullness as we found here. Thus, the generalization of how stomach content effects prey choice

needs to be further studied.

That the stomach fullness affects prey choice might have serious implications when con-

ducting prey choice experiments in captivity. Several laboratory studies have tested optimal

diet theory on foragers having an empty stomach [17, 45, 46] or do not mention the context

(i.e. stomach fullness) under which prey choice was tested [47, 48]. Optimal diet theory has

sometimes failed [9], which, as we argue, could result from not taking into account the stom-

ach fullness of a forager. Thus, precaution in terms of (changes in) stomach fullness should be

taken when conducting lab experiments on prey choice decisions.
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