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Background-—Epicardial adipose tissue (EAT) is in immediate apposition to the underlying myocardium and, therefore, has the
potential to influence myocardial systolic and diastolic function or myocardial geometry, through paracrine or compressive
mechanical effects. We aimed to review the association between volumetric EAT and markers of myocardial function and geometry.

Methods and Results-—PubMed, Medline, and Embase were searched from inception to May 2018. Studies were included only if
complete EAT volume or mass was reported and related to a measure of myocardial function and/or geometry. Meta-analysis and
meta-regression were used to evaluate the weighted mean difference of EAT in patients with and without diastolic dysfunction.
Heterogeneity of data reporting precluded meta-analysis for systolic and geometric associations. In the 22 studies included in the
analysis, there was a significant correlation with increasing EAT and presence of diastolic dysfunction and mean e0 (average mitral
annular tissue Doppler velocity) and E/e0 (early inflow / annular velocity ratio) but not E/A (ratio of peak early (E) and late (A)
transmitral inflow velocities), independent of adiposity measures. There was a greater EAT in patients with diastolic dysfunction
(weighted mean difference, 24.43 mL; 95% confidence interval, 18.5–30.4 mL; P<0.001), and meta-regression confirmed the
association of increasing EAT with diastolic dysfunction (P=0.001). Reported associations of increasing EAT with increasing left
ventricular mass and the inverse correlation of EAT with left ventricular ejection fraction were inconsistent, and not independent from
other adiposity measures.

Conclusions-—EAT is associated with diastolic function, independent of other influential variables. EAT is an effect modifier for
chamber size but not systolic function. ( J Am Heart Assoc. 2018;7:e009975. DOI: 10.1161/JAHA.118.009975.)
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E picardial adipose tissue (EAT) has beenwidely studied as a
potential contributor to cardiovascular pathological char-

acteristics. Much of this research has focused on its effect on
coronary atherosclerosis,1 but there are unique properties of
EAT that may lead to an effect on myocardial function. EAT
shares direct anatomic contact with the myocardium without
fascial interruption2 and, therefore, may exhibit local

compressive forces, resulting in alteration of myocardial
function and geometry. In addition, the shared blood supply of
the coronary circulation to both the myocardium and surround-
ing EAT may predispose paracrine effects on the neighboring
myocardium with such inflammatory cytokines as MCP-1
(monocyte chemoattractant), interleukin-b, interleukin-6,
tumor necrosis factor-a, and leptin.2 Persisting inflammation
may lead to collagen deposition and subsequent impaired left
ventricular (LV) relaxation and further effects on diastolic and
systolic function. Furthermore, there is an association between
EAT and release of free fatty acids, as well as their myocardial
consumption.3 The relationship between obesity, visceral fat,
and EAT may also explain effects on myocardial function,
chamber size, and mass.

Several methods have been used for measurement of EAT,
including echocardiography, cardiac computed tomography
(CT), and cardiac magnetic resonance imaging (MRI). Echocar-
diography may overestimate or underestimate total EAT
volume because of single-plane assessment and the effects
of probe angulation on linear measurement. Single-slice area
measurements on CT or MRI are also limited by being only
single-plane measures. Recently, we have demonstrated the
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superiority of volumetric EAT assessment in comparison to 2-
dimensional linear echocardiographic EAT thickness.4 We,
therefore, sought the association of full-volume quantification
of EAT (assessed by cardiac CT or cardiac MRI) with
myocardial function, as assessed by transthoracic echocar-
diography, full R-R interval cardiac CT, or cardiac MRI.

Methods

Search Method
We conducted this systematic review in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement, and the trial was registered with
PROSPERO (CRD 42017038400). The search was conducted in
MEDLINE, EMBASE, and PubMed databases, ending in March
2018. References of eligible articles were hand searched for
additional articles. Searches were restricted to human studies,
andconference abstractswere included. A study searchflowchart
is presented in Figure 1, and the specific search term strategy is
given in Table S1. The data, analyticmethods, and studymaterials
will not be made available to other researchers for purposes of
reproducing the results or replicating the procedure.

Our inclusion criteria were as follows: patients undergoing
cardiac CT (CT angiography or calcium score) or MRI with
volumetric assessment of EAT (either volume or mass), with
cardiac imaging for assessment of myocardial function
parameters (full cardiac cycle cardiac CT or MRI or echocar-
diography), or measurement of myocardial geometry (LV
mass, LV volumes, and left atrium size) by validated methods.

Figure 1. Search strategy. EAT indicates epicardial adipose tissue.

Clinical Perspective

What Is New?

• Increasing epicardial adipose tissue volume is associated
with diastolic dysfunction, independent of other markers of
adiposity.

• Epicardial adipose tissue is an effect modifier for left
ventricle chamber geometry.

• Epicardial adipose tissue is not associated with systolic
function.

What Are the Clinical Implications?

• Epicardial adipose tissue may represent an important target
for therapy associated with diastolic dysfunction.
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Assessment of diastolic function was restricted to studies
using echocardiography. Exclusion criteria included the
following: any study with linear measurement of EAT thick-
ness, single-slice area measures of EAT, measures of
myocardial lipid content not differentiated from EAT, and
measurement of paracardial adipose tissue (ie, fat beyond the
parietal pericardium). Two authors (N.N. and R.G.M.) inde-
pendently reviewed the abstracts from the search to meet the
inclusion criteria, and discrepancies were resolved by con-
sensus. Probable overlap of the patient cohort with a similar
study led to exclusion of the smaller study.5

Evaluation of Full-Volume EAT
EAT was regarded as adipose tissue enclosed within the
visceral pericardium, and mean values (indexed and nonin-
dexed) were recorded.

Evaluation of Cardiac Function
Included studies measured myocardial performance based on
echocardiography or MRI. Measures of diastolic function
included the following: transmitral flow for peak early (E) and
late (A) inflow velocities and their ratio (E/A); deceleration time;
septal, lateral, and/or average myocardial annular velocities on
tissue Doppler imaging (e0); early inflow/annular velocity ratio
(E/e0); pulmonary vein flow to calculate the time difference
between the atrial reversal wave and mitral A-wave duration;
and the isovolumic relaxation time. Diastolic class grade was
recorded if reported: normal, grade 1 (impaired relaxation),
grade 2 (pseudonormal), and grade 3 (restrictive). Measures of
systolic performance assessed included LV ejection fraction,
cardiac output, stroke volume, and global longitudinal strain, if
recorded. Measures of cardiac structure included LV mass, LV
end-diastolic and end-systolic volumes, and left atrial size.

Statistical Analysis
Data on univariable correlations are presented because this
was the most consistent measure seen in included studies.
Where multivariable regression was performed, adjusted study
estimates and model covariates are reported. Meta-analysis
was performed for the weighted mean difference in EAT volume
between groups with and without diastolic dysfunction. Meta-
regression of weighted mean difference as an effect size and
the combined mean EAT in included studies were performed
with the moment-based estimate of between-study variance
and a permutation test using 1000 Monte Carlo simulations to
moderate for potentially spurious results, as previously
described.6 Precision of pooled estimates is reported as 95%
confidence intervals, and heterogeneity is reported by the I2

statistic. The Newcastle Ottawa Scale was used to assess risk
of bias (Tables S2 and S3). Statistical analysis was performed
using StataMP 14.0 (StataCorpLP, College Station, TX).

Results

Study Selection
A brief outline summary of the 22 studies (18 published and 4
conference papers) included in this review is presented in
Table 1.3,7–28

Association of EAT With LV Diastolic Function
There were 11 studies that investigated the relationship
between EAT and diastolic parameters, with 5 specifying
adherence to an iteration of the American Society of
Echocardiography diastolic guidelines.29 EAT was associated
with diastolic parameters, including peak mitral annular tissue
Doppler velocities (e0 septal, e0 lateral, or e0 mean) and
transmitral flow (early [E] and late [A] diastolic peak flow
velocities and their ratio [E/A]) (Table 2).9,13–16,18,20–24,29–32

Although some studies did perform comprehensive Doppler
measures, such as isovolumic relaxation times, deceleration
times, and pulmonary vein Doppler, the association with EAT
individually with each parameter was not described. The
classification of patients with diastolic dysfunction was
available in 5 studies. Most patients (26%–38% of total
cohort) had grade 1 diastolic dysfunction, with fewer quali-
fying as grade ≥2 (2%–28%).

In the 5 studies that measured differences in EAT between
groups, EATwas significantly greater in thediastolic dysfunction
group compared with patients with normal diastolic function
(weighted mean difference, 24.4 mL; 95% confidence interval,
18.5–30.4 mL; P<0.001; I2=28%) (Figure 2).15,16,20,21,23,26

Meta-regression, performed evaluating the weighted mean
difference (effect size) against the mean EAT volume, demon-
strated a nominally increasing presence of diastolic dysfunction
with increasing EAT values (b=0.17, SEE=0.09, P=0.06). This
was statistically significant after Monte Carlo permutation
testing, P=0.001 (Figure 3).

Mean E/e0 values were positively correlated with EAT
(r value range, 0.21–0.34; P<0.05), and mean e0 values were
inversely correlated (r value range, �0.26 to �0.44; P<0.05);
in all but one study, no consistent association was seen with
the E/A ratio (r value range, �0.40 to 0.08). Increasing EAT
was an independent predictor of diastolic dysfunction, e0 and
E/e0 independent of age, sex, and measures of adiposity
(Table 2). No independent association was identified with the
E/A ratio. In 6 studies, hypertension was also an adjusted
covariate in the model, and increasing EAT remained a
predictor of altered diastolic parameters.

Association of EAT With Systolic Function
Of 10 studies describing the association of EAT with systolic
parameters, LV function was evaluated with MRI in 5 and
echocardiography in 4 (Table 3).3,10,11,16,18,19,22,27 One study
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reported associations between EAT and global longitudinal
strain, a subclinical measure of myocardial function.24 Only
one described an independent effect of EAT on LV ejection
fraction (LVEF) by echocardiography.19 No univariable corre-
lation with LVEF was reported in the MRI studies.10–12 Of the
6 studies reporting multivariable regression analysis, an
independent association with LVEF was observed in 2 studies:
one study was performed in patients with established
coronary artery disease (CAD) stratified by LVEF and
compared with normal controls (hazard ratio, 0.48; 95%
confidence interval, 0.28–0.68; P<0.01),11 and the other
study was performed in patients undergoing investigation for
suspected CAD with reduced LVEF compared with normal
LVEF (values not reported).19

The only consistent feature across all studies appeared to
be a relative decrease in EAT as LVEF decreased. In studies
that included control groups (ie, normal LVEF), no association
of EAT with EF was identified in the control group. One study
demonstrated a significant inverse correlation with EAT
(normalized to LV mass) with cardiac output and stroke
volume (but not LVEF)3 in obese patients (r value, �0.46) but
not in corresponding controls.

In studies focusing specifically on patients with reduced
LVEF, EAT was reduced compared with those with preserved
LVEF. Doesch et al11 demonstrated that patients with CAD
and preserved LVEF had greater EAT (36�11 g/m2) than
normal controls without CAD (31�8 g/m2), and both had
greater EAT than patients with CAD with LVEF <50%
(28�8 g/m2; P<0.01). A population with presumed ischemic
cardiomyopathy (CAD with reduced LVEF) also reported a
stepwise decrease in EAT volume with reducing grades of
LVEF.19 This stepwise decrease was not found in a different
study by Doesch et al12 in patients with dilated cardiomy-
opathy against normal controls, although EAT was reduced
overall compared with normal controls.

In the study related to strain analysis,24 there was a positive
correlation with EAT and impaired 3-dimensional global longi-
tudinal strain (r=0.601, P<0.001) that remained significant on
multivariable regression (standardized b=0.512, P<0.001),
independent of markers of obesity and diabetes mellitus.

Association of EAT With Chamber Measures
There were 14 studies with data relating to a measure of
myocardial geometry. All modalities of echocardiography, CT,
and MRI were represented, with most values indexed to body
surface area, unless otherwise specified. Some studies
avoided indexation because body weight or other adiposity
measures were used in regression models and, therefore, raw
measures were used to prevent collinearity.

The most often reported univariable correlation coefficient
was for EAT and LV mass or indexed mass and was alwaysTa
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statistically significantly positively correlated in the diseased
patient group (not controls), with ranges from r=0.19 to
r=0.42 (P<0.05). Only studies by Doesch et al11,12 measured
LV end-diastolic diameter and found a consistent association
with EAT (r value range, 0.22–0.42; P<0.05). Similar findings
were seen for LV end-diastolic and end-systolic volume. Left
atrial size was measured either as volume or diameter and
demonstrated significant univariable associations with EAT
(Table 4).*

An inconsistent association was seen with measures of
adiposity in relation to EAT and cardiac structure. In patients
with reduced LVEF, indexed EAT appears to be associated with
indexedLVend-diastolicmass independentofBMI (Table 4).10–12

One study assessing patients with suspected CAD and normal
LVEF demonstrated that EAT correlated best with LV mass
(nonindexed) in the nonobese cohort only (b=0.23, P<0.001).8

Finally, in 2 observational studies, an independent association
of EAT with LV mass (nonindexed), adjusted for body weight,
was only seen in women (Table 4).17,22

Discussion
This review of 21 studies has demonstrated the emerging
body of work relating EAT to myocardial structure and

function. Increasing EAT is associated with the following:
(1) an increasing prevalence of diastolic dysfunction; (2) a
concomitant increase in LV mass; and (3) no consistent
association with markers of systolic function. However, these

Figure 2. Mean difference of epicardial adipose tissue (EAT) volume in patients with and without diastolic
dysfunction. Forest plot demonstrates the weighted mean difference (WMD; in mL) of EAT in studies with
and without diastolic dysfunction, according to a random-effect model. Those with diastolic dysfunction
have significantly greater EAT volumes. There is mild heterogeneity, as seen by the I2 statistic of 28%. CI
indicates confidence interval.

Figure 3. Meta-regression of the effect of increasing epicardial
adipose tissue (EAT) volume on the weighted mean difference
(effect size) of EAT in patients with and without diastolic
dysfunction. Meta-regression bubble plot depicts increasing
differences in mean EAT volume in patients with diastolic
dysfunction as EAT increases. Circles represent the weight of
each study. b coefficient is from meta-regression with associated
SEE; P value is from Monte-Carlo testing (1000 simulations) and
demonstrates a significant association (P=0.001).*References 3, 7–12, 17, 18, 20, 22, 24, 25, 28.
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correlations were no more than moderate; no coefficient
exceeded 0.50.

Protective Functions of EAT

EAT has a high fatty acid content and can both release and
scavenge excess free fatty acids to regulate myocardial

energy production.2 In addition, EAT secretes anti-inflamma-
tory cytokines, such as adiponectin, adrenomedullin, and
omentin, which have antiatherogenic effects; EAT also
regulates vascular tone and cardiac remodelling.33 There is
a thermogenic role for EAT in providing heat for the
myocardium in times of hypoxic or ischemic stress.33

However, the presence of numerous proinflammatory

Table 3. EAT and Systolic Function

First Author Method Group EAT Value
Systolic
Measure

r Value
(Univariate) Multivariable Regression Comment

Doesch11 MRI CAD and EF >50% (n=44)
CAD and EF <50% (n=114)
Combined CAD (n=158)
Controls (n=40)

36�11 g/m2

26�8 g/m2

29�10 g/m2

31�8 g/m2

LVEF 0.171
0.137
0.574*
Not specified

On multivariable regression adjusted for
BMI, NYHA classes I and III, atrial
fibrillation, LV-EDVI, LV-ESVI, LV-EDD,
LVRI, and LGE%, LVEF was an
independent predictor of indexed
EAT (HR, 0.478 [0.28–0.675]; P<0.01)†

Doesch12 MRI Control (n=48)
DCM (n=112)

31.7�5.6 g/m2

24�7.5 g/m2
LVEF
LVEF

0.069
0.085

No correlation with LVEF and
EAT (P=0.37)

Fontes-
Carvalho16

Echocardiography LVEF �0.07

Hachiya18 Echocardiography LVEF 0.22* Significant association on multivariate
regression models adjusted for
hypertension, diabetes mellitus,
dyslipidemia, previous CAD or
revascularization, and medication use
(standardized b range,
0.16–0.22; all P<0.05) but not
adjusted for age, sex, or BMI
(standardized b, 0.13; P>0.05)

Khawaja19 Echocardiography Normal (n=321)
EF <55% (n=60)
EF 35%–55% (n=43)
EF <35% (n=17)

114.5�98.5 cm3

83.5�67.1 cm3

96.0�73.9 cm3

52.2�29.7 cm3

Multivariate analysis revealed LVEF and
triglyceride levels predicted EAT (values
and covariates not reported)

Liu22 Echocardiography Women
Men

LVEF
LVEF

�0.04
0.03

Not significant on multivariable
regression in either sex (adjusted
for age, height, smoking, alcohol, blood
pressure, eGFR, hemoglobin, total
physical activity score, medications,
VAT, and weight: regression coefficient,
�0.3�0.4
[P=0.51] in women and 0.2�0.6
[P=0.72] in men). Note: described as
pericardial fat volume.

Ruberg3 MRI Obese CO
SV
LVEF

�0.46*
Inverse*
Not correlated

Values are normalized to LV mass (mL/g)

Control CO
SV
LVEF

Not correlated
Not correlated
Not correlated

Wu27 MRI LVEF Not correlated

Values are mean�SD or r value correlation coefficients, unless otherwise stated. BMI indicates body mass index; CAD, coronary artery disease; CO, cardiac output; DCM, dilated
cardiomyopathy; EAT, epicardial adipose tissue; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HR, hazard ratio; LGE%, percentage of late gadolinium enhancement; LV,
left ventricular; LV-EDD, LV end-diastolic diameter; LV-EDVI, LV end-diastolic volume index; LV-ESVI, left ventricular end-systolic volume index; LVRI, LV remodeling index; MRI, magnetic
resonance imaging; NYHA, New York Heart Association; SV, stroke volume; VAT, visceral adipose tissue.
*P<0.05.
†Directly quoted values from source article.
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cytokines within EAT may lead to a potential imbalance of
harmful versus protective cytokines and disruption of myocar-
dial function. Higher levels of these molecules (eg, tumor
necrosis factor-a, interleukin-6, interleukin-1, and MCP-1) are
seen in patients with CAD or heart failure. It is uncertain
whether the trigger for the imbalance of cytokines is a cause
of the pathological characteristics or a consequence, and a
potential reciprocal or bidirectional role has been proposed.2

EAT and Diastolic Dysfunction
Adipose tissue can modulate the cardiovascular system by
mechanisms including sympathetic activation, adipokine
secretion, and myocardial oxidative stress.34,35 EAT is
regarded as a visceral fat depot. Visceral fat is metabolically
active and is a determinant of diastolic function.36 The
adipokines within EAT can all affect diastolic function through
persistent inflammation and subsequent collagen turnover,37

impaired microvascular relaxation, or a direct toxic effect on
the myocardium.38,39 The loss of protective effects of
adiponectin can also modify diastolic function.40

Mechanical effects may arise from myocardial compression
of EAT because it lies within a fixed pericardial sac,17 inducing a
similar mechanism as pericardial constriction. Hachiya et al
demonstrated an independent correlation of EAT with aortic
pulse pressure as another mechanism of diastolic dysfunction
that may be mediated by the association of EAT with aortic
stiffness and, therefore, increased pulse wave velocity and early
wave reflection.18 Increased pressure in late systole may cause
slower LV relaxation and subsequent diastolic dysfunction, as
well as compromise coronary perfusion, especially if there is
underlying CAD leading to impaired LV relaxation.41

EAT is associated with obesity, which itself is independently
associated with diastolic dysfunction.42 Obese patients often
have elevated EAT volumes,17 and indexed EAT has modest
incremental value for diastolic dysfunction over traditional
covariates, such as metabolic syndrome, subclinical CAD, and
LV mass index.9 Although the results from our analysis
demonstrate that EAT had an independent effect on diastolic
function parameters over adiposity measures, adiposity mea-
sures varied considerably and included BMI, bioimpedence
testing, area of visceral adipose tissue or subcutaneous adipose
tissue, or indexed EAT, which accounts for body weight. This
heterogeneity needs further explanation to adequately isolate
the effect of obesity and EAT on diastolic function. The lack of an
association of EAT with E/A ratio may be confounded by the
effects of age, proportion of patients with CAD, measurement in
patientswith normal LVEF, and theU-shaped relationship of E/A
ratio with diastolic function that makes it difficult to assess
without the addition of other variables.43

The evaluation of diastolic function is challenging and
influenced by a patient’s filling status, the presence of CAD,

diabetes mellitus, obesity, as well as “normal” changes seen
in the ageing patient. Although most studies aim to account
for these factors in multivariable regression models, no more
than association can be interpreted, and causality cannot be
proved. Statistically, there may be implications of collinearity
of obesity measures and EAT in multivariable models.

EAT and Systolic Dysfunction
Our study noted weak and inconsistent associations of EAT and
systolic parameters. In the single study that evaluated EAT and
longitudinal strain as a marker of subclinical myocardial
dysfunction, there was a strong association noted independent
of confounders, such as obesity and diabetes mellitus.24 This is
a notable finding; however, causality remains unproved and
requires further assessment in larger-scale studies as a
possible marker of the syndrome of heart failure with preserved
ejection fraction. Various hypotheses have been developed to
relate EAT and systolic function. In studies of patients with
ischemic and dilated cardiomyopathy, there has been a
consistent signal of reducing EAT with reducing LVEF, with
less EAT also seen compared with normal controls or those with
normal LVEF.10–12,19 As myocardium becomes progressively
dysfunctional, the role of EAT as a source of energy or cytokine
homeostasis may become less necessary, contributing to EAT
depletion. Conversely, in obese patients, there was no asso-
ciation with EAT (normalized to cardiac mass) and LVEF, and
there was a negative correlation with MRI-derived cardiac
output as EAT increased.3 The proposed mechanism is from
mechanical restriction of myocardial expansion from EAT in
diastole that may lead to less ventricular filling and, therefore,
reduced cardiac output.3 A further mechanism may involve the
effects of a direct cytokine release, as seen in patients with
decompensated heart failure, but no studies have applied this in
the context of EAT volume.

EAT and Chamber Measures
Postmortem and experimental studies44,45 have demon-
strated a constant ratio of epicardial fat/ventricular myocar-
dium, regardless of underlying pathological characteristics of
hypertrophy, ischemia, or normal muscle. Furthermore, the
increase in fat mass parallels LV hypertrophy, although
healthy controls have higher quantities of EAT.10 Similar
findings are seen when evaluating the LV remodeling index
(ratio of mass/end-diastolic volume), where an inverse
correlation is noted with LVEF and the EAT/LV remodeling
index ratio. LVEF is inversely correlated with EAT and linearly
correlated with LV remodeling index, suggesting that remod-
eling is not compensated by an adequate increase in EAT.10

Obesity has shown a positive relationship with increased
LV mass and EAT, yet the impact of obesity on myocardial
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geometry may outweigh the local effects of ectopic fat
because associations attenuated after adjustment for other
adiposity measures, including body weight.17 From a mech-
anistic perspective, the association of EAT with central
obesity and visceral adipose tissue might result in greater
LV afterload and subsequent increased LV output, therefore
leading to LV remodeling.8 As LV remodeling progresses, LV
diameter, volume, and mass increase, which may then deplete
EAT stores12 and result in a vicious cycle of reduced
protective benefits on the heart and further dysfunction.
However, the independent association of EAT with LV mass is
limited to nonobese subjects.8 Associations of EAT with the
incidence of CAD have been described in nonobese people46

and could contribute to the so-called obesity paradox.47

Limitations
We acknowledge several limitations in our study. EAT
measurement by different modalities may lead to differences
between studies. Some reported EAT indexed to Body Surface
Area (BSA) (therefore accounting for weight), and some
reported raw values using weight as a covariate in multivari-
able models. Such normalization, as opposed to normalization
to height, may obscure the contribution of obesity to
differences in chamber volumes and mass, which are
associated with EAT. Not all studies adjusted for hypertension
in multivariable models, which is also associated with obesity
and diastolic function. Variations in the reference literature on
measures of diastolic function also lead to difficulties with
comparing studies. The differences in regional location of EAT
were not available in most studies and, therefore, the effect of
EAT distribution was not assessable. The level of heterogene-
ity and variable study end points precluded detailed
meta-analysis.

Conclusions
Despite small and heterogeneous studies, there is clear
evidence of a consistent effect of volumetric EAT on
myocardial diastolic function and chamber measurements;
however, robust data are lacking to make causal inferences.
These findings are observed despite adjustment for common
confounders, such as adiposity. No consistent effect is seen
with respect to systolic parameters. Further longitudinal
studies are necessary to generate quantitative summary
measures as well as develop potential targets for treatment.
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Table S1. Example MEDLINE search strategy. 

 

# Searches Results 

1 exp Adipose Tissue/ or epicardial fat.mp. 79789 

2 epicardial adipose tissue.mp. 417 

3 epicardial fat volume.mp. 56 

4 pericardial adipose tissue.mp. 58 

5 pericardial fat.mp. 242 

6 pericardial fat volume.mp. 31 

7 1 or 2 or 3 or 4 or 5 or 6 79916 

8 exp Myocardial Contraction/ or exp Heart Failure/ or exp Heart Ventricles/ or 

exp Echocardiography, Doppler/ or exp Ventricular Dysfunction, Left/ or exp 

Diastole/ or exp Ventricular Function, Left/ or diastolic function.mp. 

260853 

9 diastolic dysfunction.mp. 6262 

10 systolic function.mp. 9152 

11 exp Myocardial Contraction/ or myocardial function.mp. 75943 

12 myocardial performance.mp. 2269 

13 mitral annular velocities.mp. 154 

14 ejection fraction.mp. 44097 

15 8 or 9 or 10 or 11 or 12 or 13 or 14 282014 

16 exp Tomography, X-Ray Computed/ or cardiac ct.mp. 337987 

17 coronary calcium score.mp. or exp Tomography, X-Ray Computed/ 337983 

18 exp Multidetector Computed Tomography/ or ccta.mp. 4630 

19 16 or 17 or 18  338169 

20 exp Magnetic Resonance Imaging/ 346308 

21 cardiac mri.mp. 1739 

22 ectopic fat.mp. 396 

23 7 or 22 80055 

24 20 or 21 346580 

25 15 and 19 and 23 53 

26 15 and 23 and 24 78 

27 25 or 26 122 

 



 

Table S2. Newcastle - Ottawa Scale for Assessment of Cross-sectional Studies. 

 

First Author Year 

Selection Comparability  Outcome 

Total Representativeness 
of the sample 

Sampl
e size 

Ascertainment 
of exposure 

Non - 
respondent

s 

Outcome 
groups 

comparable 

Assessment 
of outcome 

Correct 
statistical test  

Bakkum1 2015 * - ** * * * * 7 

Cavalcante2 2012 * - ** * ** ** * 9 

Ede3 2014 * - ** * ** ** * 9 

Faustino¥4 2011 * - ** - ** * * 7 

Fernando5 2015 * - ** - ** * * 7 

Fontes-carvalho6 2014 * - ** * ** ** * 9 

Fox7 2009 * * ** * ** ** * 10 

Hachiya8 2014 * - ** * * * * 7 

Khawaja9 2011 * - ** - ** ** * 8 

Konishi10 2012 * - ** * - * * 6 

Lai11 2015 * - ** * ** * * 8 

Liu12 2011 * * ** * ** * * 10 

Longenecker13 2016 * - ** * ** * * 8 

Ng14 2016 * - ** * ** * * 8 

Ruberg15 2010 * - ** * * ** * 8 

Wu16 2015 * - ** * * ** * 8 

Yamashita17 2012 * - ** * ** * * 8 

 

 

 

 

  



 

Table S3. Newcastle - Ottawa Scale for Assessment of Case Control Studies. 

 

First 
Author 

Year 

Selection Comparability  Exposure Total 

Representativen
ess of the 

sample  

Adequate 
case 

definition? 

Selection of 
controls 

Definition 
of 

controls 

Controls and 
cases 

comparable  

Ascertainment 
of exposure 

Same method of 
ascertainment for 
cases and controls 

Non-
response 

rate 

 

Chekakie18 2010 * * * * ** * * * 9 

Doesch19 2012 * * * * ** * * * 9 

Doesch20 2013 * * * * ** ** * * 10 

Doesch21 2010 * * * * ** ** * * 10 

Vanni22 2015 * * * * * * * * 8 

Vural23 2014 * * * * ** ** * * 10 
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