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Abstract

O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential human 

glycosyltransferase that adds O-GlcNAc modifications on numerous proteins. However, little is 

known about how OGT recognizes various protein substrates. Here we report GlcNAc 

electrophilic probes (GEPs) to expedite the characterization of OGT-substrate recognition. Data 

from mass spectrometry, X-ray crystallization, and biochemical and radiolabeled kinetic assays 
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support the application of GEPs to rapidly report the impacts of OGT mutations on protein 

substrate or sugar binding and to discover OGT residues crucial for protein recognition. 

Interestingly, we found that the same residues on the inner surface of the N-terminal domain 

contribute to OGT interactions with different protein substrates. By tuning reaction conditions, a 

GEP enables crosslinking of OGT with acceptor substrates in situ, affording a unique method to 

discover genuine substrates that weakly or transiently interact with OGT. Hence, GEPs provide 

new strategies to dissect OGT-substrate binding and recognition.

INTRODUCTION

O-linked β-N-acetylglucosamine transferase (OGT) is an essential glycosyltransferase that 

catalyzes the transfer of monosaccharide N-acetylglucosamine (GlcNAc) from the sugar 

donor uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to serine and threonine 

residues of intracellular proteins.1 This modification, termed O-GlcNAcylation, dynamically 

modulates the activity, stability, and interaction of proteins that participate in various 

biological processes such as signal transduction,2 transcriptional regulation,3 cell cycle,4 and 

apoptosis.5 Genetic knockout of OGT is embryonic lethal6 and severe developmental defects 

have been observed in animal models with tissue-specific targeted deletion of OGT.7 

Dysfunction of OGT gives rise to aberrant protein O-GlcNAcylation, which has been 

detected in diseases such as diabetes,8 cancer,9 neurodegeneration,10 and cardiovascular 

disorders.11 Therefore, OGT is of fundamental importance for both physiological and 

pathological processes. To date, a large number of O-GlcNAcylated proteins have been 

reported.12 However, the recognition mode of OGT towards diverse protein substrates 

remains largely unknown.

Human OGT is a multi-domain protein with an N-terminal tetratricopeptide repeat (TPR) 

domain folded into an extended α-helical tunnel, which has been proposed to be involved in 

protein-protein interactions.13,14 The C-terminal catalytic domain of OGT is responsible for 

sugar transfer.15,16 The crystal structure of a truncated OGT (called OGT4.5) containing 4.5 

of the total 13.5 TPRs of the full-length OGT, as well as its complexed structures with short 

peptide substrates, have been reported.16 While these studies revealed that peptide substrates 

are mainly anchored through interactions with active-site bound UDP-GlcNAc and backbone 

interactions with neighboring TPR residues, no apparent sequence motif has been identified 

in OGT substrates. In addition, although OGT4.5 is fully competent on glycosylating a 

number of peptide substrates, it has minimal activity towards proteins,13,15 indicating that 

the extended TPR domain is crucial for protein binding. However, owing to the flexible 

nature of TPR, full-length OGT has not been amenable for crystallization. This poses a big 

hurdle to investigate the substrate recognition of OGT beyond the active site. Moreover, 

kinetic studies have shown that O-GlcNAcylation follows an ordered bi-bi mechanism,13,15 

in which OGT binds to UDP-GlcNAc prior to protein substrate. Hence, OGT mutation with 

impaired sugar binding also affects protein binding, which presents a great challenge on 

traditional protein-protein interaction methods (e.g., isothermal titration calorimetry (ITC),17 

surface plasmon resonance (SPR),18 and mass spectrometry (MS)19) to identify OGT 

structural features that contribute to specific protein binding. Therefore, new efficient 
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strategies are much needed to decipher the molecular basis for OGT substrate specificity and 

its precise role in physiology and disease.

In this study, we developed a class of GlcNAc Electrophilic Probes (GEPs) that can be 

applied to accelerate the characterization of OGT’s structural features in protein substrate 

binding. We found that GEPs covalently modified OGT and/or O-GlcNAcylated proteins to 

generate distinct labeling patterns as direct readouts of OGT altered ability for sugar binding 

versus protein substrate binding. Applying these probes in click chemistry-based fluorescent 

assays, we rapidly screened a few OGT variants and identified asparagine residues on the 

inner surface of the 10th TPR contributing to OGT interactions with different protein 

substrates. Furthermore, we discovered that by adjusting the reaction conditions, a GEP can 

“lock” OGT with acceptor substrates in situ during the sugar transfer step, affording a 

unique strategy to discover genuine substrates that transiently or weakly interact with OGT. 

These features of GEPs will provide fundamental insights into the substrate specificity of 

full-length OGT and generate new perspectives for inhibitor development.

RESULTS

Synthesis and evaluation of GlcNAc Electrophilic Probes

To characterize OGT-substrate recognition, we rationally designed GlcNAc Electrophilic 

Probes (GEPs) based on the observation of a unique cysteine residue (C917) in close 

proximity (3.6 Å) to the N-acetyl group of UDP-GlcNAc in the OGT active site (PDB 

4GZ5; Supplementary Results, Supplementary Fig. 1).15,20 We hypothesized that a UDP-

GlcNAc analogue containing a suitable electrophilic functionality might be able to react 

with the nucleophilic side chain of C917 and specifically label OGT in the absence of 

protein substrate (Figs. 1a,b). While in the presence of immediately available protein 

substrates, this probe can potentially conduct O-GlcNAcylation similarly as UDP-GlcNAc 

(Fig. 1b). According to the ordered bi-bi mechanism, this probe could potentially 

discriminate OGT’s ability of sugar binding versus protein binding by generating varied 

levels of modification on OGT C917 and the protein substrate, both of which can be easily 

detected using click chemistry-based fluorescent assay (Fig. 1c).

To test this principle, we have synthesized a small panel of UDP-GlcNAc analogues 

containing different electrophiles extended from the N-acetyl group (e.g., GEP1 and GEP2 

in Fig. 1a; see Supplementary Note 1 for detailed compound synthesis and characterization). 

We first examined the ability of these compounds for covalent labeling of purified OGT4.5 

using intact protein MS analysis and discovered that GEP1, but not GEP2, irreversibly 

reacted with OGT (Supplementary Figs. 2a,b). Hence, our following experiments were 

focused on GEP1. To evaluate the reaction specificity, we employed a similar intact protein 

MS strategy to quantify the stoichiometry of GEP1 modification on OGT cysteines (+245.1 

Da modification in Fig. 2a) in a range of probe concentrations. Remarkably, at 1:2 and 1:10 

ratios of enzyme to GEP1, we only detected a single unit of modification, to an extent of 

60% and 100%, respectively (Fig. 2a). In contrast, we did not detect any modification on the 

serine mutation of C917 of OGT (C917S) (Supplementary Fig. 2c). This suggests that GEP1 

specifically targets C917 over a dozen other cysteines in OGT. To provide unambiguous 

evidence for the site-specific labeling, GEP1 (10-fold excess) was incubated with full-length 
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OGT followed by trypsin digestion and LC-MS/MS analysis. This experiment validated that 

GEP1 exclusively labeled C917 but not other cysteines of OGT (Fig. 2b and Supplementary 

Table 1). Furthermore, the covalent labeling of OGT proceeded rapidly in a few minutes and 

prolonged incubation generated UDP-hydrolyzed modification on C917 in a time-dependent 

manner (Supplementary Figs. 3a,b). This observation is in line with previous reports on 

unproductive hydrolysis of UDP from nucleotide sugars by OGT and other 

glycosyltransferases.16,21 To obtain a more accurate reaction rate for GEP1 with C917, this 

compound was incubated with OGT at different ratios in a time course followed by trypsin 

digestion, dimethyl labeling, and quantitative LC-MS/MS analysis. The relative abundance 

of unmodified C917-containing peptides was applied to calculate the reaction rate as 

previously reported.22 We found that the reaction rate of GEP1 with C917 was time-

dependent (Supplementary Fig. 3c). The initial rate was determined to be around 0.01 s−1, in 

a similar range as the kcat of OGT in the glycosylation of protein substrates measured in our 

lab. Taken together, these results demonstrated that GEP1 is capable of efficiently and 

specifically labeling the C917 of OGT.

GEP1-derived O-GlcNAcylation

We next investigated whether GEP1 can be employed by OGT to conduct O-GlcNAcylation 

in the presence of acceptor substrates. Purified OGT was incubated with GEP1 and α-

crystallin B chain peptide (FPTSTSLSPFYLR), a well-characterized substrate of OGT 

containing a single O-GlcNAcylation site.23 Using LC-MS/MS, glycosylated peptide along 

with the GEP1 fragments as signature ions were detected (Fig. 3a). This result indicates that 

GEP1 is an efficient sugar donor for OGT, and the glycosylation occurs at a rate that exceeds 

the irreversible reaction with C917. To examine if there is any structural perturbation of 

OGT to accommodate GEP1 during sugar transfer, we solved the X-ray crystal structure (2.2 

Å) of OGT4.5 in the presence of GEP1 and a CKII peptide (YPGGSTPVSSANMM) that 

possesses a single O-GlcNAcylation site.24 This structure clearly demonstrated that CKII 

peptide was glycosylated by GEP1 during crystallization (Figs. 3b,c; Supplementary Table 

2), similarly as that reported for the crystallization of OGT4.5 with UDP-GlcNAc and the 

same peptide (PDB 4GYW15). Importantly, these two complex structures are nearly 

identical, in terms of the overall structure of OGT4.5 (RMSD value of 0.21 Å) and the 

binding conformations of UDP and the glycosylated peptides (Fig. 3d). Collectively, these 

data provided compelling evidence supporting that GEP1 does not alter OGT’s 

conformation or substrate specificity, and thus is well suited for O-GlcNAcylation.

Fluorescent assay to characterize substrate recognition

The unique features of GEP1 promoted us to develop a facile assay for rapid elucidation of 

OGT’s substrate binding residues. The principle of this assay is depicted in Figure 1b. We 

predicted that OGT mutations affecting sugar or protein binding would generate distinct 

patterns of labeled OGT and glycosylated protein substrate (Fig. 1c). Varied labeling 

patterns will provide a rapid readout of the impact on OGT’s potentially altered sugar 

binding versus protein binding ability, which is indistinguishable using other O-GlcNAc 

chemical probes or otherwise requires extensive enzyme kinetic characterization. It is our 

expectation that this assay will aid in a better understanding of the substrate-specificity of 

OGT.
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To facilitate detection of probe-modified proteins, an azide handle was introduced to the 6´-

position of GEP1 (GEP1A in Fig. 1a, see Supplementary Note 1 for detailed compound 

synthesis and characterization). The new probe enables detection of modified proteins 

through click chemistry and in-gel fluorescence scanning (Fig. 1c). We anticipated that this 

new probe could be accommodated by OGT, since both GEP1 and reported 

UDP-6AzGlcNAc (Fig. 1a) are effective sugar donors of OGT.25,26 Indeed, we confirmed 

the covalent labeling of GEP1A on OGT C917 by intact protein MS (Supplementary Fig. 

4a) and LC-MS/MS analysis (Supplementary Table 1). More importantly, we also detected 

GEP1A-derived glycosylation on Lamin B1 peptide substrate23 (Supplementary Fig. 4b). To 

examine the application of this probe, we incubated full-length OGT with GEP1A and 

recombinant nuclear pore protein 62 (NUP62), a well-known protein substrate that can be 

extensively glycosylated by OGT.27 Reaction products were coupled to a fluorescent dye 

and separated on SDS-PAGE gel (representative gels in Fig. 4a and Supplementary Fig. 5). 

As expected, we detected a strong fluorescent band corresponding to the glycosylated 

NUP62, along with a marginally labeled OGT band (Fig. 4a). We further examined the 

reaction specificity by control experiments: i) OGT-C917S mutant displayed negligible 

labeling in the absence of protein substrate (Fig. 4a), which was consistent with the expected 

specificity of GEP1A for targeting C917; and ii) GEP1A-labeled NUP62 in the absence of 

OGT was minimal (Fig. 4a), indicating that labeling of NUP62 was attributed to GEP1A-

derived glycosylation by OGT.

Next, we applied known OGT variants to examine if the labeling pattern can be exploited to 

distinguish OGT mutations that alter sugar binding versus protein binding. OGT-K842A 

contains a known mutation in the enzyme active site that abolishes sugar binding.20 

Consistent with our prediction, no significant fluorescent labeling on OGT-K842A or 

NUP62 was detected under the same conditions as mentioned for the wild-type enzyme (Fig. 

4a). To assess protein binding, we tested OGT4.5, which is deficient in protein binding but 

retains the ability for sugar binding.14,16 Compared to the wild-type enzyme, the labeling of 

OGT4.5 was dramatically augmented while the glycosylation of NUP62 was markedly 

reduced (Fig. 4a), which is in excellent agreement with the predicted pattern change for 

compromised protein binding (Fig. 1c). To achieve a more consistent comparison, 

background-fluorescence was subtracted and the signal was normalized to the protein 

amount based on Coomassie Blue staining of the same gel (Fig. 4a). In this way, the level of 

each modification can be relatively quantified (Fig. 4b). To determine the linear detection 

range, a serial dilution revealed that this fluorescent assay reproducibly detected at least a 

16-fold linear dilution of the sample as long as the lowest signal-over-background was 

detected (Supplementary Fig. 6). We found that the ratio of fluorescent signal over 

Coomassie Blue was within 17% deviation range, suggesting that this assay is reliable for 

semi-quantification. To further validate that GEP1A can be efficiently utilized by OGT 

similarly as the native sugar donor, we conducted a competition assay, in which varied 

amounts of UDP-GlcNAc were added into the reaction containing a constant concentration 

of GEP1A, OGT and NUP62. In the presence of excess nucleotide sugars, GEP1A-

glycosylated NUP62 was quantified using in-gel fluorescence scanning. This result tightly 

matched to the theoretical values calculated under the assumption that OGT had no 

preference for either sugar (Supplementary Fig. 7), indicating that GEP1A can be employed 
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similarly as UDP-GlcNAc. Taken together, these experiments validated the principle of the 

fluorescent assay and supported the application of GEP compounds to investigate the 

structural features of OGT for protein substrate recognition.

Defining key OGT residues in protein substrate binding

With the assay principle validated, we proceeded to demonstrate the application of GEP1A 

in characterizing key residues of OGT engaged in substrate binding. The labeling pattern for 

a protein-binding-compromised mutant is expected to be significantly different from a sugar-

binding-impaired mutant (e.g., OGT4.5 compared to K842A in Fig. 4a), but it may not be 

distinguishable from a sugar-transfer-impaired mutant (Fig. 1c). To demonstrate the 

performance of GEP1A in these cases, we carried out assays with NUP62 as the acceptor 

substrate and investigated a set of OGT residues across the surface of the TPR, catalytic 

region, and intervening domain (Supplementary Fig. 8). While some mutations did not 

generate any noticeable change on the labeling pattern following the GEP1A fluorescent 

assay (Supplementary Fig. 9), we discovered that mutants of N321A/N322A and D554N 

dramatically reduced the glycosylation of NUP62 while enhancing the labeling of OGT 

compared to the wild-type enzyme (Figs. 4c,d), displaying a featured pattern of protein-

binding-compromised or sugar-transfer-impaired mutants (Fig. 1c).

Since the catalytic base of OGT is still under debate,13,15,28,29 we first examined the role of 

the D554 residue using the D554N mutant. A previous structural study proposed that during 

the GlcNAc transfer step, the negatively charged side chain of D554 shuttles the hydroxyl 

proton of the glycosylating serine/threonine via ordered water molecules away from the 

enzyme active site (Supplementary Fig. 10).15 Thus, the D554N mutant could be defective 

for sugar transfer, which is in excellent agreement with what we detected in the GEP1A 

fluorescent assay (Figs. 4c,d). The radiolabeled kinetic experiments further supported the 

role of this residue and demonstrated that the O-GlcNAcylation turnover number (kcat) of 

D554N dropped to 4%, while the impact on the Michaelis constant (Km) for NUP62 was 

minor (Supplementary Fig. 11, Supplementary Note 2). On the other hand, radiolabeled 

kinetic experiments validated that the double mutation N321A/N322A impaired the binding 

ability of OGT towards NUP62 protein, as the Km (NUP62) significantly increased with 

negligible impact on the kcat (Supplementary Fig. 11, Supplementary Note 2). These kinetic 

results were consistent with our prediction based on the GEP1A fluorescent assay (Figs. 1c; 

4c,d). Collectively, these experiments provided strong evidence supporting the essential role 

of D554 during sugar transfer and the important contribution of N321/N322 to OGT binding 

with NUP62 protein.

To further evaluate the robustness and sensitivity of GEP1A fluorescent assay, we then 

examined the performance of GEP1A on another acceptor substrate protein, O-GlcNAcase 

(OGA). Unlike NUP62 that can be extensively O-GlcNAcylated by OGT on multiple sites, 

OGA is known to be O-GlcNAcylated on a single site (S405) at a low stoichiometry (~10%) 

in cells.30–32 In vitro, with recombinant OGT and a large excess of UDP-GlcNAc, we 

detected only ~20% O-GlcNAcylation on the purified OGA mutant D175N (OGA-D175N) 

that is defective in O-GlcNAc hydrolysis. With this OGA mutant as the acceptor substrate, 

we first performed control experiments to assess the labeling specificity of GEP1A and 
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examined the pattern changes with known OGT variants to discriminate sugar binding 

versus protein substrate binding. Due to the overall weak fluorescent signal (low 

glycosylation stoichiometry), the background labeling of OGA appeared to be stronger than 

that of NUP62 (compare Supplementary Fig. 12a with Fig. 4a). However, in the presence of 

WT OGT, we readily detected the glycosylation of OGA mutant over background 

(Supplementary Fig. 12a). More importantly, the pattern changes induced by OGT variants 

(OGT4.5 and K842A) strongly matched the prediction (Supplementary Fig. 12a), supporting 

the robustness and sensitivity of GEP1A in characterizing OGT substrates with low 

glycosylation levels.

Next, we exploited the GEP1A fluorescent assay to investigate whether the mutants of OGT 

in the TPR domain (e.g., N321A/N322A and E301A in Supplementary Fig. 8) affect the 

binding of different protein substrates equally. With OGA-D175N as the acceptor substrate, 

the E301A mutant exhibited a near identical labeling pattern as the wild-type OGT 

(Supplementary Fig. 12b), similar to when NUP62 was the acceptor substrate 

(Supplementary Fig. 9b). These data indicated that the E301 residue on the outside surface 

of TPR domain is dispensable for binding and glycosylation of these protein substrates. In 

striking contrast, the reaction with the N321A/N322A mutant displayed complete loss of O-

GlcNAcylation on OGA-D175N and significantly increased OGT labeling (Supplementary 

Fig. 12b, Supplementary Note 3), a pattern in line with abolished binding of the acceptor 

substrate. In addition, our radiolabeled kinetic assay did not detect any glycosylation activity 

of this N321A/N322A mutant on OGA-D175N. Taken together, we demonstrated that 

GEP1A could be applied to characterize the binding of OGT with different protein 

substrates, accelerating the discovery of crucial residues for substrate recognition.

Crosslinking of OGT with acceptor substrates in situ

Another challenge with investigating the substrate recognition of OGT has been identifying 

genuine substrates that transiently or weakly interact with this enzyme. A previous study 

revealed that GlcNAc transfer involves limited movement of the sugar moiety from donor 

substrate to acceptor product (Supplementary Fig. 13).15 We hypothesized that if GEP1 

reacted with OGT C917 before glycosylation, it would crosslink OGT with acceptor 

substrate in situ during the sugar transfer step. To test this hypothesis, OGT4.5 was briefly 

incubated with GEP1 before adding each of the biotinylated peptide substrates: RBL2, 

Lamin B1, and IRS1.23 Indeed, we successfully detected crosslinked peptides at the 

molecular weight of OGT4.5 using western blot with streptavidin-HRP (Supplementary Fig. 

14a). Control experiments with the C917A mutant of OGT4.5 or UDP-GlcNAc instead of 

GEP1 did not produce any detectable crosslinking, supporting the remarkable specificity of 

GEP1. To provide unambiguous evidence for GEP1-mediated crosslinking of OGT with 

substrates, we solved a crystal structure of crosslinked OGT:GEP1:CKII complex (2.6 Å) 

following a brief preincubation of OGT4.5 with GEP1 (Fig. 5a and Supplementary Table 2). 

The asymmetric unit of the crystal contained two molecules of OGT4.5. While GEP1-derived 

O-GlcNAcylation of CKII peptide was observed in one molecule, the other molecule 

depicted the GEP1-induced crosslinking of OGT4.5 with CKII. This crosslinking was clearly 

defined by the continuous electron density observed from the OGT C917 side chain to GEP1 

and further extended to the glycosylating serine of the CKII peptide (Fig. 5b). Notably, when 
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superimposed with the reported OGT:UDP:O-GlcNAcylated CKII complexed structure 

(PDB 4GYW), the crosslinked OGT:GEP1:CKII complex displayed identical binding 

conformations of the sugar and peptide substrates (Fig. 5c), supporting that GEP1 

preincubation can capture OGT-substrate complexes in situ.

To examine the potential of GEP1 crosslinking OGT with protein substrates, we incubated 

full-length OGT with NUP62 following a similar preincubation strategy. The putative 

crosslinked complexes were detected as shifted bands on a SDS-PAGE gel (Supplementary 

Fig. 14b). In-gel tryptic digestion and LC-MS/MS analysis verified that the shifted bands 

were indeed OGT and NUP62 crosslinked complexes (Supplementary Table 3). Moreover, 

we demonstrated by western blot that GEP1 was capable of crosslinking full-length OGT 

with a number of proteins in MCF7 nuclear extracts (Supplementary Fig. 14c). Further 

quantitative LC-MS/MS analysis identified 102 potential OGT substrates from the extracts 

that were significantly enriched by wild-type but not C917S mutant of OGT following the 

preincubation with GEP1. Notably, 72 of these proteins (71%) have been reported as O-

GlcNAcylated proteins (Supplementary Fig. 14d and Supplementary Table 4).33–39 Hence, 

the crosslinking method opens a new avenue for identifying genuine substrates that 

transiently or weakly interact with OGT.

DISCUSSION

The lack of complete structural information of full-length OGT with bound protein 

substrate, and the paucity of efficient approaches for functional characterization of OGT-

substrate recognition has hindered the investigation of OGT substrate specificity. We 

reported here the development of GEPs that can O-GlcNAcylate proteins or specifically 

label a unique active-site cysteine of OGT in vitro, depending on the relative reaction rates. 

OGT mutation-induced changes, as quantified by click chemistry-based fluorescent 

detection, has been exploited to report the impacts on sugar binding or protein substrate 

binding in an accelerated process to discover OGT residues crucial for protein recognition. 

Notably, we discovered that the N321/N322 residues localized on the inner surface of the 

10th TPR of OGT (Supplementary Fig. 8) made significant contributions to the interaction 

with NUP62 and OGA protein substrates. These asparagine residues are distant from the 

active site that was occupied by short peptide substrates,15,16,23 implying an unusual 

recognition mode in which the flexible region of the protein substrate could penetrate part, if 

not all, of the super-helical TPR domain of OGT for efficient binding and glycosylation.14,40 

Since the TPR domain of OGT comprises over 500 amino acids, the GEP1A fluorescent 

assay provides a rapid screen of OGT mutants to identify important residues for more 

detailed characterization (e.g., kinetic assays). Therefore, this new method is expected to 

substantially accelerate the discovery of key residues of OGT for protein substrate 

recognition.

As the N321A/N322A mutation impaired OGT binding with NUP62 and OGA substrates 

(Fig. 4c and Supplementary Fig. 12b), we propose that the asparagine residues on the inner 

surface of TPR domain are a generic binding region contributing to OGT interactions with 

different acceptor substrates. Since this OGT mutant retained partial glycosylation activity 

towards NUP62 but not OGA (Fig. 4c and Supplementary Fig. 12b), the significance of 
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N321/N322 residues appears to depend on the substrate, which may confer the substrate 

specificity of OGT. Moreover, these experiments highlighted a notable feature of GEP1A 

that is complementary to the conventional activity-based assays: even when no glycosylation 

is detected, GEP1A fluorescent assay can potentially still discriminate the impact of the 

mutated OGT residues on sugar binding versus protein substrate binding.

Furthermore, we discovered that preincubation of GEP1 induced crosslinking of OGT with a 

variety of acceptor substrates. When optimized, the crosslinking strategy is expected to 

afford more specific and straightforward detection of OGT substrates than many established 

methods in the field, such as antibody-,41 lectin-,42 or click chemistry-based methods.43 In 

fact, it has been reported that sequence unrelated eOGT can O-GlcNAcylate a number of 

membrane proteins44,45 and the commonly used metabolic labeling approach with 

Ac4GlcNAz not only enriches O-GlcNAc but also S-GlcNAc46 and O-GalNAc47 modified 

proteins. Hence, the novel crosslinking method will be invaluable for identifying genuine 

substrates that transiently or weakly interact with OGT. We note that the allyl chloride group 

might be suboptimal for some protein substrates and that future work will be required to 

determine its generality and to evaluate additional analogues. In summary, GEPs provide a 

set of powerful innovative strategies to accelerate the characterization of OGT-substrate 

binding and recognition, which will promote drug discovery in this up-and-coming field.

METHODS

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper.

ONLINE METHODS

Compound synthesis

Compound synthesis is described in the Supplementary Note.

NUP62 protein expression and purification

Human NUP62 expression plasmid in pET21a vector (a kind gift from Dr. Suzanne Walker’s 

lab) was transformed into E. coli BL21(DE3) competent cells and expressed as a fusion 

protein containing a C-terminal His6-tag. The transformant was grown at 37 °C in LB 

medium. After OD600 reached 0.4, the culture was then induced with 0.2 mM isopropyl β-

D-1-thiogalactopyranoside (IPTG) for 3 h. Cells were pelleted and resuspended in lysis 

buffer (50 mM Tris pH 8.0, 10 mM EDTA, 0.5 M NaCl, and 1 mM PMSF). The cell 

suspension was lysed with ultra-high-pressure cell disrupter Emulsiflex-C5 (Avestin) 

followed by centrifugation at 20,500 g at 4 °C for 30 min. The collected pellets containing 

the inclusion body of NUP62 were then washed twice with 30 mL detergent solution (1.1 M 

urea, 2% Triton X-100) and resuspended in 30 mL denaturing buffer (8 M urea, 50 mM Tris 

pH 8.0, 1 mM EDTA, 2 mM DTT) and incubated at room temperature (RT) to dissolve the 

inclusion body. The lysate was then centrifuged at 16,100 g at 20 °C for 20 min to remove 

the unbroken pellets. The supernatant was centrifuged at 50,000 g at 20 °C for 15 min to 

further clear up the lysate. Proteins were dialyzed against 2 M urea in 20 mM Tris pH 7.5 for 

4 h followed by 20 mM Tris pH 7.5 overnight at 4 °C. Following dialysis, samples were 
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centrifuged at 16,100 g at 4 °C for 20 min, the supernatant containing NUP62 was collected, 

concentrated, and stored at −80 °C until use. The purity of NUP62 protein was examined by 

SDS-PAGE gel.

OGT4.5 protein purification for crystallization

The OGT4.5 expression plasmid was a kind gift from Dr. Suzanne Walker’s lab. Briefly, the 

OGT4.5 construct (spanning residues 313–1031 based on the numbering of the full-length 

human protein) was cloned into a pET24b vector. The plasmid was transformed into E. coli 
BL21(DE3) competent cells, and the transformant was grown at 37 °C in LB medium. After 

OD600 reached 1.0, the culture was induced by 0.2 mM IPTG at 16 °C for 16 h. The cells 

were pelleted, re-suspended in TBS buffer (20 mM Tris pH 8.0, 150 mM NaCl) 

supplemented with 1 mM PMSF, and lysed with ultra-high-pressure cell disrupter. After 

centrifugation, the supernatant was subjected to Ni-NTA column for affinity purification. 

The recombinant protein was subsequently eluted with buffer containing 20 mM Tris (pH 

8.0), 150 mM NaCl, 250 mM imidazole and 0.5 mM Tris(3-hydroxypropyl)phosphine 

(THP). The N-terminal His6-tag was cleaved by HRV3C protease. Further purification was 

performed by size-exclusion chromatography (Superdex 200 increase 10/300, GE 

Healthcare) in the buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl, and 0.5 mM THP. 

The purified protein was concentrated to 8 mg/mL for crystallization.

Crystallization

All crystals were generated by mixing 1 μL of protein with 1 μL of reservoir solution and 

were equilibrated against 160 μL of reservoir solution using the hanging-drop vapor-

diffusion method at 20 °C. For the glycosylated OGT:GEP1:CKII complex, OGT4.5 was 

incubated with 1 mM GEP1 and 2 mM CKII peptide for 1 h on ice. Crystals were obtained 

in the reservoir solution containing 0.08 M BIS-TRIS propane (pH 7.0), 0.02 M sodium 

cacodylate trihydrate (pH 6.5), 2.8 M sodium formate, 0.04 M ammonium sulfate, and 6% 

w/v polyethylene glycol 8,000. For the crosslinked OGT:GEP1:CKII complex, OGT4.5 was 

preincubated with 1 mM GEP1 for 30 min at RT before adding 2 mM CKII peptide and 

incubated for another 2 h on ice. Crystallization condition contains 0.08 M Tris (pH 8.5), 

0.02 M sodium cacodylate trihydrate (pH 6.5), 1.24 M ammonium sulfate, and 6% w/v 

polyethylene glycol 8,000. All crystals were transferred into cryoprotectant solution 

containing their respective mother liquor plus 10% (v/v) glycerol, before being flash-frozen 

in liquid nitrogen for storage.

Data collection and X-ray structure determination

All X-ray data were collected on the Life Sciences Collaborative Access Team (LS-CAT) 

beamline 21-ID-D at Advanced Photon Source, Argonne National Laboratory, IL. The 

wavelength for data collection was 0.9785 Å. Datasets were processed using HKL2000 

package.48 The crystal of glycosylated OGT:GEP1:CKII belongs to the space group of F222 

and contains one molecule per asymmetric unit, with cell parameters: a = 139.1 Å, b = 152.7 

Å, c = 199.4 Å, α = β = γ = 90°. The crystal of crosslinked OGT:GEP1:CKII complex 

belongs to the space group of C2221 and has two molecules per asymmetric unit. The 

structures were solved by molecular replacement, using OGT as a search model (PDB 3PE3, 

ref.16). Iterative model building was performed in COOT49 and refinement was completed in 
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PHENIX50 and CCP4.51 Final statistics were summarized in Supplementary Table 2. All 

structural figures were prepared using the program PyMOL (DeLano Scientific, http://

www.pymol.org/). The coordinates and structure factors have been deposited with PDB 

codes 5VIF and 5VIE.

Mutagenesis and purification of OGA mutant

OGA-D175N and various OGT mutants were generated using the QuikChange II XL Site-

Directed Mutagenesis Kit (Agilent) according to the manufacturer’s instructions. Human 

OGA and full-length OGT (plasmids were kind gifts from Dr. Suzanne Walker’s lab) were 

used as the DNA templates along with the primers listed in Supplementary Table 5. The 

DNA sequences were verified by sequencing. Wild-type full-length OGT and mutant 

proteins were expressed and purified similarly as OGT4.5 as mentioned above. For OGA-

D175N, the mutant plasmid was transformed into E. coli Rosetta (DE3) competent cells, and 

the transformant was grown at 37 °C in LB medium. After OD600 reached 0.6, the culture 

was induced by 0.3 mM IPTG at 16 °C for 16 h. The cells were pelleted, lysed, and purified 

by Ni-NTA column followed by size-exclusion chromatography as mentioned above. The 

purified protein was concentrated to 5 mg/mL and stored at −80 °C before use.

Intact protein MS to detect the covalent modification of GEP1/GEP1A on OGT

A typical reaction was set up as below: purified OGT (20 μM wild-type OGT4.5 or mutant) 

was incubated in a 25 μL reaction containing 200 μM of GEP1/GEP1A in the reaction buffer 

(10 mM Tris, pH 8.0, 75 mM NaCl, 0.5 mM THP, 200 U/mL CIP alkaline phosphatase, and 

30 mM MgCl2) at RT for 6 h followed by C8 StageTip52 desalting. Samples were SpeedVac 

dried and re-dissolved in 20 μL 0.1% formic acid. Mass measurement of intact protein was 

performed on Q-TOF Maxis 4G (Bruker) or Impact II (Bruker) coupled with an ACQUITY 

UPLC (Waters). Samples were loaded onto a 2.1 × 100 mm BEH C4 column (1.7 μm, 300 

Å, Waters). The injection volume was 9 μL with a flow rate of 300 μL/min. The mobile 

phases consisted of 0.1% formic acid (solvent A) and 0.1% formic acid in 95% acetonitrile 

(ACN) (solvent B). LC program: 5% B for 10 min, 5–60% B for 15 min, 60–90% B for 1 

min, 90% B for 5 min, and 90–5% B for 1 min. MS analysis was operated in positive mode 

with electrospray voltage of 3.8 kV. The end plate offset and nebulizer pressure were −500 V 

and 2.1 bar, respectively. The interface heater temperature was set at 220 °C with the dry gas 

flow rate 10 L/min. Data was acquired using one full MS scan (m/z 700–3,000) with the 

scan rate at 1 Hz. Funnel 1 RF and multiple RF were set to 400 eV for ion transfer. The ion 

energy of quadrupole was 3 eV, the collision energy was 6 eV, the transfer time was 120 μs, 

and the pre pulse storage time was 25 μs. Time-course experiments were performed 

similarly as above by incubating the reactions at 37 °C in two replicates for each indicated 

time points. Dose-dependent experiments were carried out with 40 or 200 μM of GEP1 in a 

10 μL reaction for 6 h at 37 °C. LC-MS data were processed and analyzed using Compass 

Data Analysis software (version 4.1, Bruker). The major LC peak corresponding to highest 

UV signal was selected for deconvolution performed by maximum entropy algorithm. The 

parameters of maximum entropy include mass range 50,000–100,000 Da, auto data point 

spacing, and the resolving power of 10,000. The increased mass resulting from labeling of 

GEP1/GEP1A was determined by subtracting the original protein mass from the 

deconvoluted protein mass.
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Sample preparation for detection of GEP1/GEP1A-modified peptides

To detect GEP1/GEP1A-labeled OGT peptides, purified full-length OGT protein (70 μM) 

was incubated in a 10 μL reaction containing 350 or 700 μM of GEP1/GEP1A in the 

reaction buffer (10 mM Tris, pH 8.0, 75 mM NaCl, 0.5 mM THP, 200 U/mL CIP alkaline 

phosphatase, and 30 mM MgCl2) at RT. The reaction was stopped at 6 h or other indicated 

time points by 10 mM DTT and 8 M urea. For trypsin digestion, the protein sample was 

diluted to 0.5 μg/μL in denature buffer (8 M urea and 10 mM Tris, pH 8.0). After reduction 

by 10 mM DTT for 30 min at RT and carbidomethylation with 55 mM iodoacetamide in the 

dark for 30 min at RT, alkylated proteins were seven-fold diluted using 25 mM NH4HCO3 

and then digested by Trypsin/Lys-C mix (protein:protease = 40:1) (Promega) at RT for 18 h. 

Formic acid was added to the sample to reach final 0.5% for enzyme inactivation and sample 

acidification. Peptides were SpeedVac dried after SDB-XC StageTip desalting. To measure 

the irreversible reaction rate of GEP1 with C917, peptides (5 μg) from each reaction were re-

dissolved in 50 μL of 0.1 M triethylammonium bicarbonate (TEAB) for dimethyl labeling.53 

The peptide samples prepared from the reactions of OGT with GEP1 at concentration ratios 

of 1:5 and 1:10 were mixed with 2 μL of 4% formaldehyde-H2 (Sigma-Aldrich) and 4% 

formaldehyde-D2 (Sigma-Aldrich), respectively. Each sample was then mixed with freshly 

prepared 0.6 M sodium cyanoborohydride (2 μL) and then incubated for 1 h at RT. The 

reaction was quenched by addition of 8 μL of 1% NH4OH. Formic acid (10%, 10 μL) was 

added to further stop the reaction and acidify the samples. Finally, the H- and D-labeled 

samples were combined at 1:1 ratio followed by SDB-XC StageTips desalting and SpeedVac 

dry. To detect the GEP1/GEP1A-glycosylated peptides, α-crystallin B chain peptide (200 

μM, peptide sequence: 38–50, FPTSTSLSPFYLR, synthesized by Biomatik) or Lamin B1 

peptide (200 μM, peptide sequence: 389–401, KLSPSPSSRVTVSK-biotin, synthesized by 

Biomatik) was incubated with 20 μM purified OGT in a 5 μL reaction containing 1 mM 

GEP1/GEP1A in the reaction buffer (10 mM Tris, pH 8.0, 75 mM NaCl, 0.5 mM THP, 200 

U/mL CIP alkaline phosphatase, and 30 mM MgCl2) at RT for 6 h. Peptide samples were 

then purified by SDB-XC StageTips and dried by SpeedVac. All peptide samples were 

stored at −80 °C until LC-MS/MS analysis.

nanoLC-MS/MS analysis

Peptide samples were dissolved in 0.1% formic acid for LC-MS/MS analysis on an Orbitrap 

Q-Exactive (Thermo Scientific) equipped with a nanoAcaquity UPLC system (Waters). 

Peptides were loaded onto a 75 μm × 15 cm 1.7 μm BEH C18 column at a flow rate of 300 

nL/min. Mobile phase A consisted of 0.1% formic acid, and solvent B was 0.1% formic acid 

in ACN. A linear gradient of 0–4% B for 0.1 min, 4–35% B for 30 min, 35–75% B for 0.1 

min, 75% B for 9.5 min, 75–95% B for 0.1 min, 95% B for 9.5 min, 95–0% B for 0.5 min, 

and 0% B for 9.5 min was employed throughout this study. Mass spectra from full scans 

were acquired in a data-dependent mode (m/z 200–2,000). The resolution of survey scan 

was set to 17,500 at m/z 400 with an automated gain control (AGC) value of 106. The top 15 

most-intense precursor ions were selected from the MS scan for subsequent higher energy 

collisional dissociation (HCD, normalized collision energy 30 eV) MS/MS scan. Peptide 

identification was performed by Mascot (v2.4, Matrix) and MaxQuant (v1.5.6.5 or 

v1.5.8.3)54,55 against a composite target-decoy protein sequence database containing 

Uniprot database (release 2015_04, subset human, 20,265 protein entries).56 The search 
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criteria used in this study include trypsin specificity allowing up to 2 missed cleavages, and 

variable modifications of GEP1 (C10H15NO6) on Cys, GEP1A (C10H14N4O5) on Cys, GEP1 

glycosylation (C10H14ClNO5) on Ser/Thr, GEP1A glycosylation (C10H13ClN4O4) on Ser/

Thr, carbamidomethyl on Cys, and oxidation on Met. The precursor mass tolerance and the 

fragment ion tolerance were set at ± 10 ppm and ± 0.6 Da, respectively. Peptide was 

considered identified based on the posterior error probability with a false discovery rate of 

1%. The spectra of peptides were manually inspected.

To determine the reaction rate of GEP1 with OGT, raw MS spectra from two biological 

samples were processed using MaxQuant and precursor intensities was calculated. The 

search criteria and database were set up as described above. Peptide abundance was 

normalized to the total protein intensity of OGT detected in the same sample. Based on the 

previous report,22 the reaction rate (k) of GEP1 with C917 of OGT in a second-order 

reaction can be calculated using eq. 1.

[eq. 1]

Where [P0] is the initial abundance of unmodified C917 peptide, [X0] is the initial 

concentration of GEP1, [P] is the abundance of unmodified C917 peptide at time t, [X] is the 

concentration of GEP1 at time t, which can be estimated using eq. 2.

[eq. 2]

GEP1A fluorescent assay

To detect the modification of GEP1A on OGT and NUP62 protein substrate, purified OGT 

(1 μM of OGT4.5, full-length OGT, or mutants) was incubated with NUP62 (5 μM) and 

GEP1A (25 μM) in a 12 μL reaction containing buffer (20 mM Tris pH 8.0, 150 mM NaCl, 

and 0.5 mM THP) and incubated at 37 °C for 30 min. For competition assay, different doses 

of UDP-GlcNAc ranging from 0–50 μM were added into the reaction mixture together with 

GEP1A. The reactions were quenched by boiling at 95 °C for 5 min. SDS (1%) was added 

and incubated at RT for 5 min to help dissolve precipitated proteins. The samples were 

further diluted to final 0.1% SDS with TBS buffer. Click chemistry reagents at the final 

concentration of 1 mM CuSO4, 0.1 mM Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

(TBTA), 50 μM fluor 488-alkyne and 1 mM sodium ascorbate were sequentially mixed and 

immediately added to each sample. Click chemistry reaction was performed at RT for 1 h in 

the dark. Proteins were precipitated in ice-cold methanol for 2 h at −80 °C followed by 

16,000 g for 10 min to pellet the proteins. The protein pellet was washed by methanol and 

then re-dissolved in TBS buffer (20 mM Tris pH 8.0 and 150 mM NaCl) containing 4% 

SDS. The dissolved protein samples were separated on SDS-PAGE gel, followed by 

fluorescence detection and Coomassie Blue staining for relative quantification. Both in-gel 

fluorescence scanning and Coomassie Blue stained gels were detected using ChemiDoc-It 2 

imager equipped with BioLite MultiSpectral light source (UVP) and quantified using ImageJ 

(v1.6.0_24).57 The levels of GEP1A-modified proteins were normalized to the protein 
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amount and relatively quantified. For the detection of GEP1A modification on OGT and 

OGA-D175N protein substrate, purified OGT (0.35 μM of OGT4.5, full-length OGT, or 

mutants) was incubated with OGA-D175N (16 μM) and GEP1A (25 μM) in a 12 μL reaction 

buffer (TBS with 0.5 mM THP) and incubated at 37 °C for 15 min. Subsequent click 

chemistry reactions were performed following the same protocol mentioned above. The 

reaction mixtures were then boiled with SDS loading buffer at 95 °C for 5 min without 

protein precipitation. In-gel fluorescence scanning and relative quantification were 

performed as mentioned above.

Radiolabeled kinetic analyses of OGT mutants

Purified OGT (45 nM for wild-type or N321A/N322A mutant, or 150 nM for D554N 

mutant) was incubated with 100 μM UDP-3H-GlcNAc (92 mCi/mmol, PerkinElmer) at 

indicated concentrations of NUP62 protein in the reaction buffer (20 mM Tris pH 8.0, 150 

mM NaCl, 0.5 mM THP) at 37 °C for 0.5 or 1 h. Reactions were quenched by transferring 

the samples onto the nitrocellulose membrane, air-dried, and washed 5 min for four times in 

PBS buffer. The radioactivity on each nitrocellulose membrane was counted using Tri-Carb 

2900TR liquid scintillation analyzer (PerkinElmer). A reaction in the absence of OGT was 

set up as negative control. Another reaction without the washing step was used to calculate 

the levels of enzymatic conversion. Three independent experiments were conducted for each 

condition. Data were analyzed using GraphPad Prism v5 (GraphPad Software).

MCF7 nuclear extracts

The MCF7 cell line was purchased from American Type Culture Collection (ATCC). The 

cell line has been authenticated following the guidelines from ATCC and was tested to be 

free of mycoplasma contamination. We periodically analyzed the growth curve and checked 

the morphology under microscopy to ensure the culture consistency and no adverse effect on 

cell behavior. MCF7 cells were maintained in Dulbecco’s Modified Eagle Medium with 

10% fetal bovine serum (FBS) at 37 °C in a 5% CO2 incubator. Cells were plated at 70% 

confluence and starved in 2% FBS medium without glucose for 24 h before harvesting. Cell 

pellets were washed by PBS and lysed in buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 

and 10 mM KCl). The sample was centrifuged at 10,000 g for 20 min at 4 °C to pellet 

nucleus. The nuclear proteins were extracted by resuspending the nuclear pellet in buffer (20 

mM HEPES, pH 7.9, 25% (v/v) glycerol, 0.42 M NaCl, 1.5 mM MgCl2, and 0.2 mM EDTA) 

and incubated at 4 °C for 1 h. Cell debris was then removed by centrifugation at 16,000 g for 

10 min at 4 °C. The nuclear extracts were stored at −80 °C in aliquots before use.

GEP1 preincubation-induced crosslinking of OGT with substrates

To detect the crosslinking of OGT with substrates, purified OGT (1 μM) was preincubated 

with 100 μM GEP1 in the reaction buffer (10 mM Tris, pH 8.0, 75 mM NaCl, 1 mM THP, 

100 U/mL CIP alkaline phosphatase, and 30 mM MgCl2) for 30 min at 37 °C, followed by 

adding 5 μM of NUP62 protein or 100 μM of biotinylated peptides to react at 37 °C for 

another 3 h. The reactions were analyzed by SDS-PAGE gel or western blot. Biotinylated 

peptide RBL2 (410–422, KENSPAVTPVSTAK-biotin), Lamin B1 (389–401, 

KLSPSPSSRVTVSK-biotin), and IRS1 (982–994, VPSSRGDYMTMQMK-biotin) were 

custom synthesized at Biomatik. For OGT crosslinking with proteins from the MCF7 
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nuclear extracts, full-length OGT (0.2 μM) and 50 μM GEP1 were prepared similarly as 

described above and reacted with 40 μg of nuclear extracts at 37 °C for 5.5 h before western 

blot analysis. Nitrocellulose membrane (Life Technology) was blocked with 0.9% bovine 

serum albumin for 1 h and then probed with streptavidin-HRP (Sigma-Aldrich 

#GERPN1231) or anti-OGT antibody (Proteintech #11576-2-AP). All primary antibodies 

were used at 1:5,000 dilution. Secondary anti-lgG-HRP antibody (Proteintech #SA00001-2) 

was used at 1:50,000 dilution. Crosslinked peptides and proteins were detected using an 

enhanced chemiluminescence detection kit (Life Technology) on ChemiDoc XRS+ imager 

(Bio-Rad).

In-gel tryptic digestion of OGT-NUP62 crosslinked complexes

Each of the two major crosslinking bands (labeled as “1” and “2”) in the Coomassie Blue 

stained gel (Supplementary Fig. 14b) was excised into 1 mm3 pieces for in-gel tryptic 

digestion. After de-staining and extensive wash steps using 50% ACN in 50 mM NH4HCO3, 

proteins were reduced by 10 mM DTT for 1 h at RT and alkylated by 55 mM iodoacetamide 

at RT for 1 h. Samples were then dehydrated by 100% ACN, vacuumed dried, rehydrated in 

25 mM NH4HCO3, and digested with 0.05 μg/μL trypsin/Lys-C at RT for 18 h. The 

digestion was quenched by 0.5% formic acid. The tryptic peptides were recovered by 80% 

ACN/0.1% formic acid and subjected to SDB-XC StageTip desalting. Peptides were then 

vacuum dried and stored at −80 °C until use. nanoLC-MS/MS analysis and peptide 

identification were conducted as mentioned above.

Quantitative LC-MS/MS analysis of GEP1 preincubation-induced crosslinking of OGT with 
nuclear proteins

For crosslinking, purified His-tagged WT or C917S mutant of OGT (7.5 μM) was 

preincubated with 1 mM GEP1 in the reaction buffer for 10 min at RT, followed by reacting 

with 1 mg of MCF7 nuclear extracts (1 mg/mL) for another 12 h at RT. The samples were 

then subjected to affinity purification by Ni-NTA column as described above. The eluents 

containing OGT and its crosslinked complexes were precipitated by methanol and 

chloroform, and then re-dissolved in 8 M urea/50 mM TEAB. Proteins were subjected to in-

solution digestion, desalting, and dried as described above. For dimethyl labeling, peptides 

were re-dissolved in 40 μL TEAB. The C917S and WT samples were first mixed with 1.6 

μL formaldehyde-H2 (light) and 4% formaldehyde-D2 (heavy), respectively. Freshly 

prepared 0.6 M sodium cyanoborohydride (1.6 μL) (Sigma-Aldrich) was then added to each 

sample to mix well and incubated at RT for 1 h. The reactions were quenched by adding 6.4 

μL of 1% NH4OH followed by 8 μL of 10% formic acid as mentioned above. H- and D-

labeled samples were mixed and subjected to SDB-XC StageTips for desalting. Peptides 

were vacuumed dried and stored at −80 °C until use. nanoLC-MS/MS and data analysis 

were performed as described above. Two biological samples (S1 and S2) and two technical 

repeats were applied for reliable quantitation. Precursor intensities were recalculated by 

MaxQuant using the “match between runs” option. All data were normalized to OGT 

intensity (OGT[WT/C917S] = 1). Identified proteins with the relative ratios of [WT/C917S] > 

1.5 in both biological samples were considered as potential substrates of OGT in the 

crosslinked complexes.
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Statistical analysis

All of the data are shown as mean values with error bars representing ± s.d. Statistical 

significance was determined using Student’s t-test. Significance is indicated as *P < 0.01.

Data availability

The data that support the findings of this study are available in the Supplementary 

Information, Supplementary Notes, and from the corresponding author upon reasonable 

request. X-ray crystallographic data that support the findings of this study have been 

deposited in the Protein Data Bank with the accession codes 5VIF and 5VIE for 

glycosylated OGT:GEP1:CKII and crosslinked OGT:GEP1:CKII complexes, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The strategy of GlcNAc Electrophilic Probes (GEPs) for discerning altered OGT ability of 

sugar binding versus protein substrate binding. (a) The chemical structures of UDP-GlcNAc, 

UDP-6AzGlcNAc, and GEPs. (b) The reaction model of OGT and GEP in the presence or 

absence of protein substrate suggests generating differential modifications on OGT and the 

protein substrate. Modifications derived from GEP1A can be readily detected using click 

chemistry and in-gel fluorescence scanning. (c) OGT and its mutants are predicted to 

generate distinct levels of each modification following the reaction with GEP1A and a 

protein substrate. These pattern changes can be exploited to discriminate altered OGT ability 

of sugar binding versus protein substrate binding.
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Figure 2. 
MS data showed that GEP1 specifically labeled the C917 residue of OGT. (a) Overlay of the 

deconvoluted intact protein MS spectra from reactions of OGT4.5 with GEP1 at 

concentration ratios of 1:2 and 1:10. (b) MS/MS spectrum mapped the modification site of 

GEP1 on C917 residue (highlighted in red) of full-length OGT. The carbamidomethylated 

cysteine residue was marked as c.
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Figure 3. 
LC-MS/MS and X-ray crystallography demonstrated GEP1-derived O-GlcNAcylation on 

peptide substrates of OGT. (a) MS/MS spectrum illustrated that GEP1 can be used by OGT 

to glycosylate α-crystallin B chain peptide. (b) X-ray crystal structure of the glycosylated 

OGT:GEP1:CKII complex with ligands highlighted in spheres. (c) Stick representation of 

GEP1-glycosylated CKII peptide and UDP in the active site of the glycosylated 

OGT:GEP1:CKII complex. The allyl chloride group of GEP1 was labeled as Cl. (d) Overlay 

of ligands from the glycosylated OGT:GEP1:CKII complex (yellow sticks) and 

OGT:UDP:O-GlcNAcylated CKII complex (cyan sticks) (PDB 4GYW) showed that GEP1-

glycosylation displayed a similar conformation as regular O-GlcNAcylation and that the 

extended allyl chloride (labeled as Cl) can be tolerated by OGT.
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Figure 4. 
Principle validation of GEP1A fluorescent assay and its application to characterize 

additional OGT mutants with altered ability on sugar binding versus protein substrate 

binding (or sugar transfer). (a, c) The reactions of OGT variants with GEP1A and NUP62 

protein were coupled to an alkyne fluorescent dye and detected by in-gel fluorescence 

scanning (top panels). To normalize the protein amount, the fluorescent gels were further 

stained with Coomassie Blue (middle panels). The initial loading amounts were shown in the 

bottom panels (Coomassie Blue gels). Except OGT4.5, all other OGT variants were full-
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length proteins. WT, wild-type OGT; NN/AA, N321A/N322A double mutant of OGT. (b, d) 

Quantification of the relative intensities of GEP1A-modified OGT and NUP62 protein 

following normalization to the corresponding protein amounts as shown in the middle panels 

of (a) and (c). Similar reactions in the absence of OGT served as negative controls 

(background labeling). Full gels scans are available in Supplementary Figure 5. Statistical 

analysis was performed by Student’s t-test (n = 3). Error bars represent ± s.d. *P < 0.01.
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Figure 5. 
Crystal structure of the crosslinked OGT:GEP1:CKII complex. (a) Superposition of crystal 

structures of OGT:UDP:O-GlcNAcylated CKII complex (PDB 4GYW, grey) with 

crosslinked complex of OGT:GEP1:CKII (orange). Ligands are shown in spheres. (b) 

Highlighted electron density of crosslinked complex of OGT:GEP1:CKII demonstrated that 

GEP1 bridged C917 of OGT and the glycosylating serine of CKII peptide (2Fo-Fc density 

map is shown at 1 σ). (c) Superposition of the ligands from the above two complexes: PDB 

4GYW (cyan sticks) and crosslinked OGT:GEP1:CKII (magenta sticks) demonstrated that 

the ligands were crosslinked in a similar conformation as O-GlcNAcylation.
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