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Objective: The reasonable classification of a large number of distinct diagnosis codes

can clarify patient diagnostic information and help clinicians to improve their ability to

assign and target treatment for primary diseases. Our objective is to identify and predict

a unifying diagnosis (UD) from electronic medical records (EMRs).

Methods: We screened 4,418 sepsis patients from a public MIMIC-III database

and extracted their diagnostic information for UD identification, their demographic

information, laboratory examination information, chief complaint, and history of present

illness information for UD prediction. We proposed a data-driven UD identification

and prediction method (UDIPM) embedding the disease ontology structure. First,

we designed a set similarity measure method embedding the disease ontology

structure to generate a patient similarity matrix. Second, we applied affinity propagation

clustering to divide patients into different clusters, and extracted a typical diagnosis

code co-occurrence pattern from each cluster. Furthermore, we identified a UD by

fusing visual analysis and a conditional co-occurrence matrix. Finally, we trained five

classifiers in combination with feature fusion and feature selection method to unify the

diagnosis prediction.

Results: The experimental results on a public electronic medical record dataset

showed that the UDIPM could extracted a typical diagnosis code co-occurrence pattern

effectively, identified and predicted a UD based on patients’ diagnostic and admission

information, and outperformed other fusion methods overall.

Conclusions: The accurate identification and prediction of the UD from a large

number of distinct diagnosis codes and multi-source heterogeneous patient admission

information in EMRs can provide a data-driven approach to assist better coding

integration of diagnosis.

Keywords: unifying diagnosis, disease ontology structure, set similarity measure, clustering, electronic medical

records
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INTRODUCTION

In medical practice, clinicians are encouraged to seek a unifying
diagnosis (UD) that could explain all the patient’s signs and
symptoms in preference to providing several explanations for the
distress being presented (1). A UD is a critical pathway to identify
the correct illness and craft a treatment plan; thus, clinical
experience and knowledge play an important role in the science
of diagnostic reasoning. Generally, from a brief medical history
from a patient, clinicians can use the intuitive system in their
brain and rapidly reason the disease types, whereas for complex
and multi-type abnormal results, clinicians must use the more
deliberate and time-consuming method of analytic reasoning to
deduce the UD, raising the risk of diagnostic errors (2).

To increase the accuracy of a UD, enhancing individual
clinicians’ diagnostic reasoning skills and improving health
care systems are regarded as two important approaches
to support clinicians through the diagnostic process. The
former requires professional knowledge training and lifelong
learning, whereas the latter mainly involves the development
of information technology (3). For an individual clinician, an
intelligent clinical decision support system is prone to acceptable
and can help clinicians to improve their unifying diagnostic
decisions (4). Recently, along with the widespread adoption of
electronic medical records (EMRs), an extremely large volume
of electronic clinical data has been generated and accumulated
(5, 6). Meanwhile, artificial intelligence and big data analytic
technology have been successfully applied to clinical diagnostic
procedures and treatment regimen recommendation, which has
resulted in new opportunities for intelligent clinical decision
support systems that use data-driven knowledge discovery
methods (7–10).

From the datamining perspective, a UD aims to classify a large
number of distinct diagnosis codes reasonably according to the
disease taxonomy and attempt to adopt a disease to summarize or
explain various clinical manifestations of the disease. Therefore,
the nature of a UD is diagnosis code assignment along with
disease correlation exploitation. Diagnosis code assignment
refers to the clinical decision process in which supervised
methods are adopted to predict and annotate disease codes based
on patients’ medical history, signs and symptoms, and laboratory
examination (11). According to the number of diagnosis codes
that patients suffer from, diagnosis code assignment can be
divided into single-label (12), multi-class (13), multi-label (14),
and multi-task learning methods (15). However, although many
novel supervised learning models have been proposed and can
achieve high performance in terms of assigning diagnosis codes
for new patients using frontier supervised methods, such as
ensemble learning (16), reinforcement learning (17), and deep

Abbreviations: EMR, Electronic medical record; UDIPM, Unifying diagnosis

identification and prediction method; CDSS, Clinical decision support system;

ICU, Intensive care unit; IC, Information content; LCA, Least common

ancestor; AP, Affinity propagation; SS, Sum of similarities; TDC, Typical

diagnosis code; LCoP, LCA co-occurrence pattern; AOrd, Average order;

TDCCoP, Typical diagnosis code co-occurrence pattern; CCoM, Conditional

co-occurrence matrix; UD, Unifying diagnosis; Hadm-id, Hospital admission

identifier; FM, Fusion method.

learning (18), they cannot further explore disease co-occurrence
relations for UD identification and prediction.

The coexistence of multiple diseases is pervasive in the clinical
environment, particularly for patients in the intensive care unit
(ICU) (19). According to the statistical results of the MIMIC-
III database, which is a freely accessible critical care database,
the average number of diagnosis codes for patients in the ICU is
11. Additionally, diagnosis codes are highly fine-grained, closely
related, and extremely diverse (20). For example, the patient with
admission identifier (ID) 100223 is assigned to 28 ICD-9 codes,
and many diagnosis codes are similar, such as 276.2 (Acidosis,
order: 15), 276.0 (Hyperosmolality and/or hypernatremia, order:
18), and 276.6 (Hyperpotassemia, order: 26). Thus, it is trivial and
difficult for clinicians to make a consistent, accurate, concise, and
unambiguous diagnostic decision reasonably.

Furthermore, although the inter-relation of diagnosis codes
was considered in previous studies, the researchers commonly
used the first three digits of ICD-9 codes to assign diagnosis
codes for patients (21–23); hence, the complexity may increase
and prediction performance may reduce when considering
all digits of the ICD-9 codes. Additionally, in those studies,
reasonable complicated and confused diagnosis codes could
not be classified into a UD using a data-driven method. A
UD is the basic principle of clinical diagnostic thinking. Its
basic idea is that when a patient has many symptoms, if these
symptoms can be explained by one disease, it will never explain
different symptoms using multiple diseases (1). A UD reflects
the integrity of the patient and the professionalism of clinicians;
however, in previous studies, the main focus was on the UD
of a category of diseases from the clinical perspective, such as
mood/mental disorders (24), intracranial mesenchymal tumor
(25), and arrhythmogenic right ventricular cardiomyopathy (26).
In this study, we fully consider the fine-grained diagnosis codes
(i.e., all digits) of patients, identify the UD from a group of patient
diagnostic information using an unsupervised clustering method
and predict the UD for new unseen patients using multi-class
learning methods.

MATERIALS AND METHODS

Data Collection
We selected a dataset of sepsis patients from the MIMIC-III
database, where sepsis is divided into general sepsis, severe sepsis,
and septic shock (27, 28). Figure 1 shows the detailed processes
of data collection and preprocessing of sepsis patients, including
the identification of sepsis patients, data extraction, data cleaning,
and feature selection. Finally, we screened 4,418 sepsis patients
and extracted their diagnostic information to unify the diagnosis
identification, their demographic information, laboratory
examination information, chief complaint, and history of present
illness information, and obtain a UD prediction.

First, the diagnostic information of 4,418 sepsis patients
mainly contained the patient hospital admission ID (Hadm-
id), ICD-9 diagnosis code, order of diagnosis code, and a brief
definition of the diagnosis codes, where the sum, maximum,
minimum, and average numbers of diagnosis codes were 80501,
39, 3, and 18.3, respectively. Additionally, for the visualization,
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FIGURE 1 | Dataset selection of sepsis patients from the MIMIC-III database.

TABLE 1 | Feature information of the health condition of sepsis patients.

Information Feature Description (Range, Type)

Demographic information Admission type Emergency, elective, urgent (Nominal)

Gender Female, male (Nominal)

Age [18, 89] (Numeric)

Laboratory examination

information

Potassium Level, PO2, serum bicarbonate level, temperature, sodium level, urine out foley, urea

nitrogen, WBC, bilirubin level, GCSmotor, GCSeyes, HR, GCSverbal, NBP, RR, SPO2, hemoglobin,

platelet count, creatimine

Minimum, maximum, median, mean,

and variance value (Numeric)

Symptom information Fever, abdominal pain, shortness of breath, nausea and vomiting, weakness, diarrhea, dizziness,

palpitation, cough, fatigue, discomfort, dysuria, shock, weight change, loss of appetite, and night

sweating

0, 1 (Nominal)

Related indicators AIDS, hematologic malignancy, metastatic cancer 0, 1 (Nominal)

SOFA, SAPS, and SAPS-II Integer (Numeric)

we removed duplicate diagnosis codes and converted the
remaining 3,070 diagnosis codes into digital numbers from
1 to 3,070. The Supplementary Table 1 shows the diagnostic
information of two patients.

Then, for the health condition of patients admitted to
hospital, we used the minimum, maximum, median, mean, and
variance value as the 5-tuple features of each laboratory indicator,
and designed a symptom identification method based on text
analysis of patient discharge reports, including rule setting,
text segmentation, text extraction, abbreviation dictionary
construction, negative word recognition, case unification, word
segmentation, stop word removal, and external symptom
dictionary embedding (Supplementary Figure 1). Additionally,
we added related indicators to measure patients’ severity, such as
AIDS, hematologic malignancy, metastatic cancer SOFA, SAPS,
and SAPS-II. Finally, we obtained 120 features of the health

condition of sepsis patients in the experimental dataset, as shown
in Table 1.

Method
Figure 2 shows the proposed UD identification and prediction
method (UDIPM), which uses four types of information from
EMRs. We adopt diagnostic information to identify the UD,
and use demographic information, symptom information, and
laboratory examination information to predict the UD. First, we
apply a set of similarity measure methods to a large number
of patients by embedding the semantic relation of the ICD
classification system (Task 1 in Figure 2). Second, we apply a
clustering algorithm to the similarity matrix to divide patients
into different groups, and further obtain the exemplar and core
patients of each cluster (Task 2 in Figure 2). Third, we extract
the typical diagnosis code co-occurrence patterns (TDCCoP)
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FIGURE 2 | Research framework for applying the proposed UDIPM to EMRs.

from each cluster by defining a threshold and a sorting function
(Task 3 in Figure 2). Fourth, we combine the visual analysis
and conditional co-occurrence matrix (CCoM) to identify the
UD by selecting the optimal segmentation (Task 4 in Figure 2).
Finally, after obtaining the health condition of the patient
admitted to hospital, we obtain a UD prediction using multi-class
classification methods (Task 5 in Figure 2).

Patient Similarity Measure Method
Many methods exist for measuring patient similarity (29, 30). In
this study, considering the semantic relations of diagnosis codes
in the ICD ontology structure, we adopt a set similarity measure
method. First, we define patient diagnostic information as a series
of ordered diagnosis codes. Then we reconstruct the ontology
structure based on a disease classification system to easily
measure patient similarity. Finally, we describe the process of
the set similarity method, including the information content (IC)
measure of diagnosis codes, diagnosis code similarity measure,
and diagnosis code set similarity measure.

Patient’s Diagnostic Information Representation
Diagnostic information refers to a record of disease diagnosis
made by clinicians based on the health condition of a patient
admitted to hospital. It is stored in the patient’s EMR data in
the form of a diagnosis code (e.g., ICD-9 and ICD-10). Because
of the prevalence of disease complications, a patient’s EMR is

typically annotated using multiple disease codes, and these codes
have a certain priority (i.e., order). The higher the priority of the
diagnosis code is, the more central and important the disease
is for this patient, then the weaker conversely. Thus, patient
diagnostic information can be represented as

D = {(dc1,Ord(dc1)), (dc2,Ord(dc2)), · · · , (dci,Ord(dci)), · · · },
(1)

where dci and Ord(dci) represent the i-th diagnosis code and its
order, respectively.

Ontology Structure Construction
We automatically construct a five-level ICD-9 ontology structure,
shown in Figure 3, in which level-0 is the virtual root node, level-
1 has 19 chapters, level-2 has 129 sections, level-3 has ∼1,300
categories (Supplementary Figure 2), and the last two levels are
expanded to 10 types of sub-nodes under each node. For example,
level-4 contains 550.0, 550.1, 550.2 (virtual code), 550.3 (virtual
code), . . . and 550.9, and level-5 includes 550.10, 550.11, 550.12,
550.13, 550.14 (virtual code), . . . 550.19 (virtual code). More
importantly, the actual diagnosis codes of patients belong to the
ICD-9 ontology structure, whereas the virtual codes are only used
to construct a complete ICD ontology structure and do not play
a role in the actual similarity measure.
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FIGURE 3 | Local ontology structure of ICD-9 codes.

Set Similarity Measure

Information Content Measure of Diagnosis Codes
In the ICD-9 ontology structure, each code represents a concept,
and there is semantic similarity between classification concepts.
Additionally, concepts on the same branch are more similar than
those on different branches. Thus, we use the level depth measure
method of the hierarchical tree (29), that is, we assign a value
to each level of the ICD-9 ontology structure; the deeper the
concept level, the larger the value. For an ICD-9 code dci, the IC
is defined as

IC(dci) = level(dci → Root), (2)

where Root is the virtual root node and the function level(.)
denotes the level depth from the ICD-9 code di to the root node.
Intuitively, the IC of the root node (level-0) is 0, the ICs of a
chapter (level-1), section (level-2), category (level-3), subcategory
(level-4), and extension (level-5) are 1, 2, 3, 4, and 5, respectively.

Code-Level Similarity Measure
For the IC of codes, there are several approaches tomeasure code-
level similarity. We use the least common ancestor (LCA) of two
codes to measure the similarity of diagnosis codes, defined as

s(dci, dcj) =
2IC(LCA(dci, dcj))

IC(dci)+ IC(dcj)
, (3)

where dci and dcj are two diagnosis codes, and LCA(dci, dcj) is
the LCA of dci and dcj. If dci = dcj, then LCA(dci, dcj) = dci =
dcj, and IC[LCA(dci, dcj)] = IC (dci) = IC (dcj). If dci 6= dcj and
LCA(dci, dcj)= Root, then IC[LCA(dci, dcj)]= 0.

To make this concept easier to understand, we provide a
simple example in Figure 4A. Thus, LCA(550.12, 550.13) =
550.1, LCA(541, 550.13) = 520–579, s = s1(550.12, 550.13) =
2IC(550.1)/[IC(550.12)+ IC(550.13)]= 2 ∗ 4/(5+ 5)= 0.8.

Code Set-Level Similarity Measure
In the EMR dataset, patient diagnostic information is
typically a set of diagnosis codes. Thus, patient similarity
can be transformed into the similarity of the diagnosis
code set. Generally, for binary code-level similarity, we can
use classical methods, such as Dice, Jaccard, cosine, and
overlap, to calculate set-level similarity. However, these
methods cannot fully embed semantic similarity. Thus,
we use the most similar concept pair’s average value to
measure the set-level similarity (29), and the formula is
defined as

S(D′ i,D
′
j) =

1−
(

∑

dcig∈D′ i
mindcjh∈D′ j (1− s(dcig , dcjh))+

∑

dcjh∈D′ j
mindcig∈D′ i (1− s(dcjh, dcig )))

|D′ i| + |D′ j|
,

(4)
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FIGURE 4 | Example of LCA generation in the ICD-9 ontology structure. (A) Denotes the ICD-9 ontology structure, and (B) denotes the diagnosis codes of two

patients.

where D′i and D′j are the diagnostic information of patient i

and patient j, respectively, which does not consider the order of
diagnosis codes; that is,D′i={dci1, dci2,. . . , dcig,. . . } andD′j={dcj1,
dcj2,. . . , dcjh,. . . }. |D

′
i| and |D′j| are the number of diagnosis

codes for patient i and patient j, and dcig and dcjh are the g-
th diagnosis code of patient i and the h-th diagnosis code of
patient j, respectively. Finally, we obtain the similarity Sij of
the two patients (Figure 4B), and similarity matrix S for all
patients in the EMRs using a set similarity measure method. The
pseudocode of the patient similaritymeasuremethod is presented
in Algorithm 1.

Algorithm 1 | Patient similarity measure method.

Input: D′i={dci1, dci2,. ..,dcig,...}, i = 1, 2,…, N

Output: Similarity matrix SN*N

1. Construct the ICD ontology structure

2. For i = 1: N do
For j = i + 1: N do

Compute IC(dci1, dci2, ...,dcig,...), IC(dcj1, dcj2,..., dcjh,...), and

diagnosis code similarity s(dcig, dcjh) = 2IC(LCA(dcig, dcjh))/(IC(dcig) +
IC(dcjh)) based on the ICD ontology structure, compute set similarity

S(D′i , D
′
j ) using Eq. 4

3. Obtain the similarity matrix SN*N for N patients

Patient Clustering Algorithm
A clustering algorithm aims to divide patients into multiple
groups based on the similarity matrix S, requiring that patients in
the same group are as similar as possible, and patients in different
groups are as dissimilarity as possible (31, 32). In this study,
considering the advantages, such as not predefining the number
of clusters, the real existence of exemplars, and much lower error,
we adopt affinity propagation (AP) clustering (33, 34).

AP clustering determines the number of clusters by
controlling the input exemplar preferences (p), where p is
more robust than K because p monotonically controls the
perception granularity. Generally, p depends on the similarity
matrix SN∗N, number of input patients (N), and p coefficient
(pcoe), which is represented as

p = median(S)− pcoe ∗ N. (5)

After patients are clustered, we identify K clusters (C1, C2,. . . ,
CK), and define the popularity (i.e., support) of each cluster as

Support(Ck) =
∑

j∈{1,2,··· ,N} λ(C(D
′
j),E(Ck))

N
, k=1, 2, · · · ,K,(6)

where C(D′j) represents the cluster to which patient j belongs and

E(Ck) denotes the exemplar of Ck. λ(.) is an indicator function;
if patient j belongs to Ck, then λ[C(D′j), E(Ck)] = 1; otherwise,

λ[C(D′j), E(Ck)]= 0.

Additionally, we obtain the sum of similarities (SS), which is
an important indicator used to evaluate clustering performance.
The SS depends on the similarity matrix SN∗N, number of
input patients (N), number of clusters (K), and corresponding
exemplars, which is represented as

SS(K) =
∑K

i=1

∑

D′ j∈Ci
S(D′j,E(Ci)). (7)

Generally, the larger the SS value, the better the clustering
performance. The pseudocode of the patient clustering algorithm
is presented in Algorithm 2.

TDCCoP Extraction Method
In our previous studies, we proved that defining the core zone of a
cluster is an effective approach to extract stable clustering results
(35). Additionally, considering the complex semantic relations
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Algorithm 2 | Patient clustering algorithm.

Input: SN*N, pcoe, step size ε

Output: Optimal clustering number K*, E(Ck ), support (Ck ), SS(K*)

1. Initialize µ = 1, pcoe (µ) = pcoe=0, ε

2. Run the AP clustering algorithm with SN*N and p (p = median(S)-pcoe (µ)*N)

3. Return the clustering number K(µ)

4. While K(µ) < N and K(µ) > 1 do
µ = µ+1, pcoe (µ) = pcoe (µ – 1) +ε

p = median(S) – pcoe (µ) * N

Run the AP clustering algorithm with SN*N and p

Return the clustering number K(µ) and pcoe (µ)

5. Compute the distance dpcoe(K) = max [pcoe (µi )] – min [pcoe (µj )] for

the same K

6. Return the maximum dpcoe(K) and the optimal clustering number K*

7. Set pcoe=0.5 * {max [pcoe (µi )] + min [pcoe (µj )]} for K*

8. Run the AP clustering algorithm with SN*N and p (p = median(S) – pcoe* N)

9. Return E(Ck ), support (Ck ) using Eq. 6, and SS(K*) using Eq. 7

among different diagnosis codes, the feature of a cluster cannot be
fully described when the diagnostic information (cluster center
or exemplar) of only one patient is used. Thus, we also define
the core zone of each cluster to select a group of patients (i.e.,
core patients) using the k-nearest neighbor method, and further
extract typical diagnosis codes (TDCs). For cluster Ck, the core
zone is defined as

Corek =
{

D′j|S(D′j,E(Ck)) ≥ τ
}

, (8)

where E(Ck) is the exemplar of cluster Ck and τ is a similarity
threshold defined in advance, which aims to determine the
number of core patients.

Then, for cluster Ck, the occurrence probability of the
diagnosis code dch can be represented as

Probk(dch) =
∑

D′ j∈Corek λ(dch, D
′
j)

|Corek|
, h = 1, · · · ,H, (9)

where |Corek| denotes the number of core patients in
cluster Ck. λ(.) is an indicator function; if the diagnostic
information D′j of patient j contains diagnosis code

dch, then λ (dch, D′j) = 1; otherwise, λ (dch, D′j) = 0.

H is the number of all diagnosis codes after duplicates
are deleted.

After we calculate the probability of all diagnosis codes in the
cluster Ck, we define the TDC as

Tdch =
{

dch|Probk(dch) > δ1
}

, (10)

where δ1 is a threshold defined in advance to differentiate high-
frequency and low-frequency diagnosis codes.

Based on all TDCs of the cluster Ck, we further analyze
the priority of TDCs by embedding the order of the patient

diagnostic information, that is, for patient j, Dj= {[dcj1,
Ord(dcj1)], [dcj2, Ord(dcj2)], [dcjh, Ord(dcjh)], . . . } and Dj

′ =
{dcj1, dcj2, dcjh, . . . }. Thus, the average order (AOrd) of TDC
Tdchis defined as

AOrd(Tdch) =
∑

D′ j∈Corek,Tdch∈D′ j OrdDj (Tdch)λ(Tdch, D
′
j)

∑

D′ j∈Corek,Tdch∈D′ j λ(Tdch, D
′
j)

,

h = 1, · · · ,H′, (11)

where H′ is the number of TDCs in cluster Ck and OrdDj(Tdch)
denotes the order of TDC Tdch in the diagnostic information Dj

of patient j. Generally, the smaller the AOrds of typical diagnostic
codes, the more likely they are to be primary diseases.

Finally, after obtaining TDCs and their AOrds, we define a
sorting function to determine TDCCoP, which is represented as

TDCCoPk = Sort((Tdc1,AOrdk(Tdc1)), · · · , (TdcH′ ,AOrdk(TdcH′ )))
={(Tdc1,Ord′(Tdc1)), · · · , (TdcH′ ,Ord′(TdcH′ ))}, (12)

where Ord′ (Tdch) is the new order of Tdch. For example, if
cluster Ck has only three TDCs (e.g., Tdc1, Tdc2, and Tdc3) and
its AOrds are 5.3, 7.8, and 3.8, respectively, then after sorting, the
TDCCoPk is {(Tdc3, 1), (Tdc1, 2), (Tdc2, 3)}. The pseudocode of
the TDCCoP extraction method is presented in Algorithm 3.

Algorithm 3 | TDCCoP extraction method.

Input: Ck , E(Ck ), Corek , Dj , D
′
j , H, k = 1, 2 …, K

Output: TDCCoPk , k = 1, 2, …, K

1. Initialize k = 1, τ , h = 1, δ1, i = 1

2. For k = 1: K do
Corek= {D′j |S(D

′
j , E(Ck )) ≥ τ }

For h = 1:H do
Probk (dch) =

∑

Dj′ǫCorekλ(dch, D
′
j )/|Corek |

If Probk (dch) > δ1 then
Tdch ←dch

i = i + 1

H′ i

For h = 1:H′ do
AOrdk (Tdch) =

∑

TdchǫDj’Ord(Tdch)/|D
′
j |

TDCCoPk= Sort ((Tdc1, AOrdk (Tdc1)),…, (Tdc′H, AOrdk (Tdc
′
H)))

3. Return TDCCoPk , k = 1, 2,…, K

UD Identification Method
To identify a UD, categorizing the TDCCoP of each cluster
reasonably according to the disease taxonomy is a critical step.
In this study, we propose a UD identification method, as
shown in Figure 5. Specifically, for the TDCCoPkof cluster k,
we first visualize all TDCs in the reconstructed ICD ontology
structure, and mark their orders. Then we use the LCA
method to categorize these codes, and define their LCA and
the corresponding orders. Furthermore, we calculate the CCoM
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FIGURE 5 | Proposed UD identification method.

using patient diagnostic information to select the optimal
segmentation between primary diseases and complications.
Finally, we regard the identified primary diseases as the UD.

First, we define the LCA co-occurrence pattern (LCoP) of the
TDCCoPk using visual analysis of the ICD ontology structure as

LCoPk=
{

di|di = LCA{Tdc1 ,Tdc2 ,··· }∈TDCCoPk(Tdc1,Tdc2, · · · ),
di 6= Root

}

. (13)

Then we calculate the order of each diin LCoPk as

Ord(di)=mindi=LCA(Tdc1 ,Tdc2 ,··· ,Tdcm)
(Ord′(Tdc1),Ord

′(Tdc2), · · · ,Ord′(Tdcm)), (14)

wherem is the number of TDCs in LCoPk whose LCA is di.
Additionally, considering the causal relation between di and

djin LCoPk, we define the conditional co-occurrence probabilities
pk(dj/di) and pk(di/dj) as

pk(dj/di) = Freqk(dj, di)/Freqk(di)
pk(di/dj) = Freqk(di, dj)/Freqk(dj)

, (15)

where Freqk (di, dj) and Freqk (dj, di) denote the number of co-
occurrences of di and dj, respectively, and Freqk(di) denotes the
number of occurrences of diin the cluster Ck.

Thus, for all diagnosis codes in LCoPk, we generate a CCoM
CCoMk, where CCoMk (i, j) = pk(dj/di), CoMk (j, i) = pk(di/dj),
and the diagonal entry CCoMk (i, i)= pk(di)= Freqk(di)/|Corek|.
If CCoMk (i, j) >> CCoMk (j, i) or CCoMk (i, i) >> CCoMk (j,
j) exist, then dj is more prone to occur after the occurrence of
di; thus, diis more likely to be a primary disease, whereas dj will
become a complication, and vice versa.

After analyzing the precedence relation of all diagnosis codes
in LCoPk using CCoMk, we obtain the optimal segmentation

between primary diseases and complications, and define the UD
of cluster k as

UDk=
{

di|di ∈ LCoPk, di 6= Complication
}

, (16)

where UDk is a set of primary diseases. The pseudocode of the
UD identification method is presented in Algorithm 4.

Algorithm 4 | UD identification method.

Input: TDCCoPk , Corek , Dj , Dj
′, k = 1, 2, …, K, ICD ontology structure

Output: UDk , k = 1, 2, …, K

1. Initialize i = 1, call the ICD ontology structure

2. For k = 1: K do
While Tdcε TDCCoPk do

di= LCA (Tdc1, Tdc2,…)

Ord(di ) = min (Ord′(Tdc1), Ord′(Tdc2),…)

i = i + 1

I← i

For i1 = 1:I do
For i2 = i1 + 1:I do

pk (di1) =
∑

di1=LCA(Tdc1,...Tdcg)λ(Tdcg, D
′
j )/|Corek |

pk (di2) =
∑

di2=LCA(Tdc1,...Tdch)λ(Tdch, D
′
j )/|Corek |

pk (di2/di1) = (
∑

di1=LCA(...Tdcg),di2=LCA(...Tdch)λ(Tdcg, Tdch, Dj
′)/|Corek |)/pk (di1 )

pk (di1/di2) = (
∑

di1=LCA(...Tdcg),di2=LCA(...Tdch)λ(Tdcg, Tdch, Dj
′)/|Corek |)/pk (di2 )

If pk (di1) >> pk (di2) || pk (di2/di1) >> pk (di1/di2) || Ord(di1) << Ord(di2) then
UDk ←di1

Else
UDk ←di2

3. Return UDk , k = 1, 2,…, K

UD Prediction Method
After identifying the UD, we further study the prediction task
based on the health condition of a patient admitted to hospital,
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FIGURE 6 | Proposed UD prediction method.

exploring the important features to assign the most possible UDs
to new patients. Figure 6 shows the proposed UD prediction
method. First, we extract three categories of features using time
series feature representation and text analysis methods, and fuse
them in structured data for further prediction. Then after data
pre-processing and feature selection, we label all patients with a
UD. Finally, we adopt classical prediction models to perform the
UD prediction task.

Patient’s Health Condition Representation
The health condition of a patient admitted to hospital includes
demographic information, symptom information, and laboratory
examination information, which play crucial roles for clinicians
in diagnosing disease types, evaluating disease severity, and
designing a treatment regimen.

Demographic Information
Demographic information mainly includes the date of birth, age,
gender, admission type, marital status, occupation, and residence,
defined as

De =
{

DeAge,DeGender ,DeAdmission Type,DeMarital Status, · · ·
}

.(17)

Symptom Information
Symptom information is recorded in the chief complaint and
history of present illness in the form of text, where the chief
complaint is the most painful part of the disease process,

including the main symptoms and onset time. The history
of present illness describes the entire process for the patient
after suffering from diseases, including occurrence, development,
evolution, diagnosis, and treatment. Thus, the patient’s symptom
information can be represented as.

Sy =
{

SyFever , SyWeakness, SyDiarrhea, · · ·
}

. (18)

Laboratory Examination Information
Laboratory examination refers to an indirect judgment of the
health condition as a result of measuring specific components of
blood and body fluids using instruments. Laboratory indicators
typically have the characteristics of a time series, particularly for
patients in the ICU. Thus, we use the minimum value, maximum
value, median value, mean value, and variance of laboratory
indicators to represent the time series, defined as

LE = {{(min(LEWBC),max(LEWBC),med(LEWBC),

mean(LEWBC), var(LEWBC)}, · · · } (19)

Finally, we obtain the health condition of a patient admitted to
hospital using a feature fusion method, that is, X = {De; Sy; LE}.

Information Gain-Based Feature Selection
Before predicting the UD, to remove noisy data, reduce the
complexity and dimensionality of the dataset, and achieve
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accurate results, it is essential to apply feature selection methods
to identify useful features. Therefore, feature selection is an
important step that improves the clarity of the data and decreases
the training time of prediction models (4). In this study, we use
the information gain (IG) method to measure the importance
of features and eliminate some irrelevant features. Then we
compute the IG of feature xi as

IG(xi) = H(Y)−H(Y/xi)

= −
K

∑

k=1
P(yk) log P(yk)+

K
∑

k=1
P(yk/xi) log P(yk/xi),

(20)

where feature xiǫX, Y = {UD1,. . . , UDk,. . . , UDK}, ykǫY, H(Y),
and H(Y/xi) denote the information entropy and conditional
information entropy given feature xi for a UD classification, and
P(yk) and P(yk/x) denote the probability of yk and condition
probability of yk given feature xi, respectively.

Thus, we obtain the important features as

X′ =
{

xi|IG(xi) > δ2
}

, (21)

where δ2 is a threshold defined in advance to differentiate the
important and unimportant features using the IG method.

Prediction Model Establishment
After obtaining the feature representation and UD result of each
patient, we generate a standard dataset (Y and X′) and establish
a prediction model [Y = f (X′)]. In this study, we apply five
classifiers to achieve a UD prediction: logistic regression, decision
tree, random forest, SVM, and extreme gradient boosting
(XGBoost). In the prediction process, we adopt the Z-fold cross-
validation (CV) method, which randomly partitions the initial
dataset into Z mutually exclusive subsets, and perform training
and testing Z times. We set Z to 5 or 10. Then we compute the
average CV error to determine the prediction model as

CVErrorZ =
1

Z

Z
∑

z=1
Lz=

1

Z

Z
∑

z=1

1

mz

mz
∑

j=1
(ŷj − yj)

2, (22)

where Lz andmz are the average CV error and number of the z-th
testing dataset, and yj and ŷj are the real and predicted UDs of the
j-th patient, respectively.

Additionally, we identify distinctive features of different
unifying diagnoses by analyzing the feature importance
ranking results.

Parameter Setting
In our experiment, we set 5 parameters in advance. First, we set
pcoein Eq. 5 to select the number of clusters, and then τ in Eq. 8,
which is a similarity threshold to determine the number of core
patients (i.e., |Core|). We discuss both parameters based on the
stability of the experimental results. We set δ1 in Eq. 10 to 0.3 to
obtain TDCs, and δ2 in Eq. 21 to 0.005 to select the important
features. We set the last parameter Z in Eq. 22 to 10 to perform
the 10-fold CV method. In particular, before UD prediction, we

FIGURE 7 | Distribution of the number of clusters for different values of pc.

used data pre-processing methods, that is, data normalization
and smoothing for imbalanced classes.

RESULTS

Selection of the Cluster Number
After obtaining the set similarity measure based on the ontology
structure for 4,418 sepsis patients, we obtained the similarity
matrix S and used the AP clustering algorithm to divide all the
patients into multiple groups. Figure 7 shows the distribution of
the number of clusters under different values of pc. Generally,
the number of clusters decreased as the preference coefficient
increased. The most stable number of clusters was two when pc
ranged from 0.018 to 0.032. Thus, we selected two clusters (pc =
0.025) to identify TDCs and extract TDCCoPs from each cluster.

Stability Analysis of TDCs
After applying the AP clustering algorithm, we first divided the
4,418 sepsis patients into two clusters, where cluster 1 and 2
contained 1,391 and 3,027 patients with a support of 31.48% and
68.52%, respectively. Then we analyzed the stability of the TDCs
in Eq. 10 using a set of different numbers of core patients in Eq.
8 (|Core|=100, 200, 400, 500, 800, and all patients), as shown in
Figure 8, Supplementary Figure 3.

From the distribution of TDCs in Figure 8,
Supplementary Figure 3, the results showed that the stable
range of core patients was from 400 to 800 (five codes in
cluster 1 and 12 codes in cluster 2) because the number of
TDCs and their distributions were approximately coincident.
Specifically, compared with the stable TDCs, more TDCs were
identified when the number of core patients was set to 100
and 200 (14 codes in cluster 2), such as the digital number
71 (276, disorders of fluid electrolyte and acid-base balance)
and digital number 490 [V58.610, long-term (current) use of
anticoagulants] (Supplementary Figures 3A,B). Digital number
99 (995.91, sepsis) was identified in cluster 1, and another three
codes (486, 276.2, and 250) were not identified in cluster 2
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(Supplementary Figure 3E) when we used all patients in the two
clusters to extract TDCs. Thus, in the next experiment, we set
the number of core patients to 800 to extract the TDCCoPs.

TDCCoP Extraction From Each Cluster
Using the clustering results, we finally determined two clusters,
selected 800 core patients from each cluster, and set δ to 0.3 in Eq.
10 to identify TDCs and extract TDCCoPs. Figure 9 shows the
co-occurrence relation and AOrd of all TDCs in two TDCCoPs,
and Table 2 provides a detailed description of all TDCs in the
two TDCCoPs.

To summarize, the experimental results indicated that there
were 12 types of TDCs in the two TDCCoPs, where TDCCoP1
and TDCCoP2 had 5 and 12 codes, respectively. Specifically,
the two TDCCoPs had similarities and differences. There were

FIGURE 8 | Distribution of TDCs for 800 core patients.

three similarities: (1) Five types of TDCs were the same, that
is, 518.81, 38.9, 785.52, 584.9, and 995.92. (2) The AOrds of
all TDCs in the same TDCCoPs were similar, for example, the
AOrds of four TDCs in TDCCoP1 were all below 6, whereas
those of the TDCs in TDCCoP2 were over 7. (3) The TDCs 38.9
(septicemia), 785.52 (septic shock), and 995.92 (severe sepsis) had
the highest occurrence probability in the two TDCCoPs. There
were also three differences: (1) TDCCoP2 identified more TDCs
than TDCCoP1. (2) The occurrence probabilities of TDCs in
TDCCoP1 were larger than those in TDCCoP2. (3) The AOrds of
the same TDC were different in the two TDCCoPs, for example,
518.81 (acute respiratory failure) in the two TDCCoPs was 4.145
and 7.665, respectively. Additionally, septicemia (38.9) was a
high-frequency and primary disease in sepsis patients, which
is a life-threatening complication that can occur when bacteria
from another infection enters the blood and spreads throughout
the body.

Furthermore, using Eq. 12 and Algorithm 3, we extracted
the TDCCOPs of the two clusters described in Table 2, that
is, TDCCOP1 = {(38.9, 1), (785.52, 2), (518.81, 3), (584.9, 4),
(995.92, 5)} and TDCCOP2 = {(584.9, 1), (38.9, 2), (518.81,
3), (599.0, 4), (428.0, 5), (486.0, 6), (401.9, 7), (785.52, 8),
(276.2, 9), (995.92, 10), (427.31, 11), (250.0, 12)}. Thus, from
a reordering perspective, acute kidney failure, septicemia, and
acute respiratory failure were probably the primary diseases in
the two TDCCOPs.

UD Identification Based on TDCCOPs
After obtaining TDCCoPs, we visualized all the TDCs in the
ICD-9 ontology structure. First, we categorized them using the
LCA method to identify LCoPs using Eq. 13. Consider TDCCoP2
as an example. The visualization result is shown in Figure 10.
Clearly, we identified LCoP2 with seven types of diseases, which
are light green color, and computed the order of the new diseases
using Eqs 13, 14: diseases of the genitourinary system (580–629,
order: 1), septicemia (38.9, order: 2), diseases of the respiratory

FIGURE 9 | Co-occurrence relation and AOrd of all TDCs. (A) Co-occurrence relation. (B) AOrd.
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TABLE 2 | Detailed description of three TDCs.

TDCCOP Digital

number

TDC Definition of

diagnosis code

Occurrence

frequency

Average

order

Re-order

TDCCOP1 1 518.81 Acute respiratory failure 0.604 4.145 3

(1391) 2 38.9 Septicemia 0.769 2.411 1

4 785.52 Septic shock 0.669 4.090 2

5 584.9 Acute kidney failure 0.534 4.956 4

14 995.92 Severe sepsis 0.824 7.816 5

TDCCOP2 1 518.81 Acute respiratory failure 0.526 7.665 3

(3027) 2 38.9 Septicemia 0.608 7.545 2

4 785.52 Septic shock 0.729 7.813 8

5 584.9 Acute kidney failure 0.554 7.377 1

12 427.31 Atrial fibrillation 0.593 8.038 11

14 995.92 Severe sepsis 0.941 8.031 10

30 428.0 Congestive heart failure 0.729 7.703 5

46 486.0 Pneumonia organism 0.334 7.805 6

58 599.0 Urinary tract infection 0.389 7.701 4

62 401.9 Essential hypertension 0.343 7.807 7

63 276.2 Acidosis 0.360 7.875 9

77 250.0 Diabetes mellitus without complication 0.383 8.062 12

FIGURE 10 | LCoP2 identified using the visualization of TDCoP3 in the ontology structure.

system(460–519, order: 3), diseases of the circulatory system
(390–459, order: 5), septic shock (785.52, order: 8), endocrine,
nutritional, and metabolic diseases, and immunity disorders
(240–279, order: 9), and severe sepsis (995.92, order: 10).

Then we calculated the CCoM2 of the LCoP2 based on
the diagnostic information of 800 core patients in cluster 2,
as described in Table 3. First, the conditional probabilities

p({390–459, 995.92}/{580–629, 38.9, 460–519}) colored red were
significantly larger than the values p({580–629, 38.9, 460–
519}/{390–459, 995.92}) colored blue, which indicates that
diseases of the genitourinary system (580–629, order: 1),
septicemia (38.9, order: 2), and diseases of the respiratory system
(460–519, order: 3) were more likely to be primary diseases,
whereas diseases of the circulatory system (390–459, order: 5) and
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severe sepsis (995.92, order: 10) were probably complications.c
Second, the orders of septic shock (785.52, order: 8) and
endocrine, nutritional, and metabolic diseases, and immunity
disorders (240–279, order: 9) were also larger than those of the
first three diseases. Thus, diseases of the respiratory system (460–
519, order: 3) and diseases of the circulatory system (390–459,
order: 5) were likely to be the optimal segmentation between
primary diseases and complications, and the first three diseases
were considered to be the UD (UD2) of cluster 2.

UD Prediction Based on Patient Admission
Information
After we applied feature fusion and feature selection using the
IG method, we further performed five classifications to predict
a UD based on patient admission information and identify
important features for the constructed prediction models.
Figure 11 shows the classification performance of the proposed
UDIPM, including the area under the ROC curve (AUC),
accuracy (Acc), precision (Pre), recall (Rec), and F1-score (F1),
and Figure 12 presents the 10 most important features identified
using the random forest method (Supplementary Figure 4).

TABLE 3 | CCoM2 of the LCoP2.

Values in brackets are the orders of the seven diseases, bold values on themaster diagonal

denote the occurrence probabilities of the seven diseases, and values in red and blue are

conditional probabilities for distinguishing between primary diseases and complications.

The experimental results indicated that the proposed UDIPM
achieved better prediction performance, where the AUC values
were all above 0.8, except for the decision tree method. Similarly,
the best Acc, Pre, Rec, and, F1 among all classifications
was XGBoost, at ∼80%, followed by random forest, SVM,
and logistic regression, whereas the decision tree was last,
at ∼66%. Consider the random forest as an example. We
obtained the feature importance results to better understand the
prediction model. First, we found that demographic information
(i.e., age) and laboratory examination information were more
important than symptom information. Then some disease
severity indicators were very important, such as SAPS and
SAPS-II. Finally, the variance distribution (i.e., Var) of the
laboratory examination indicators was more important than the
mean, median, minimum, and maximum values. To summarize,
the proposed UDIPM not only identified a UD from patient

FIGURE 12 | Ten most important features using the random forest method.

FIGURE 11 | Classification performance of the proposed UDIPM. (A) AUC. (B) Acc, Pre, Rec, and F1.
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TABLE 4 | Evaluation methods and metrics used in our experiment.

Method name Set similarity measure Clustering Classification

The proposed method (UDIPM) Set similarity based on ontology AP clustering Logistic regression

Fusion method 1 (FM1) Dice = 2
∣

∣A
⋂

B
∣

∣ / |A| + |B| Decision tree

Fusion method 2 (FM2) Jaccrd =
∣

∣A
⋂

B
∣

∣ /
∣

∣A
⋃

B
∣

∣ Random forest

Fusion method 3 (FM3) Cosine =
∣

∣A
⋂

B
∣

∣ /
√
|A| � |B| SVM

Fusion method 4 (FM4) Overlap =
∣

∣A
⋂

B
∣

∣ /min{ |A| , |B| } XGBoost

AUC

Acc = (TP + TN)/N

Metric SS (Eq. 7) Pre = TP/(TP + FP)

Rec = TP/(TP + FN)

F1 = 2Pre*Rec/(Pre + Rec)

A and B are the diagnosis code sets of two patients, the Dice method is the same as the proposed UDIPM when we do not consider the disease ontology structure and replace the

code similarity with s = (dci ,dcj ) =
{

1, if dci = dcj
0 otherwise

, true positive (TP) and true negative (TN) measure the ability of classifier models to predict the UD, false positive (FP) and false

negative (FN) identify the number of false predictions generated by the models, and we used FM to determine the prediction performance.

FIGURE 13 | Similarity measure and clustering results of different fusion

methods.

diagnostic information but also predicted a UD based on the
health condition of a patient admitted to hospital.

DISCUSSION

In this study, we conducted various experiments to demonstrate
the efficiency of the proposedUDIPMwhen compared with other
methods. Specifically, the proposedUDIPM fused threemethods:
a set similarity measure method, clustering, and classification
algorithms. For the set similarity measure method, we selected
Dice, Jaccard, cosine, and overlap as comparative methods, and
used SS in Eq. 7 as a performance metric based on the AP
clustering results. For the classification algorithms, we selected
logistic regression, decision tree, random forest, SVM, and
XGBoost. Additionally, we used AUC, Acc, Pre, Rec, and F1
as performance metrics to measure the effectiveness of the
classification algorithms. The evaluationmethods andmetrics are
described in detail in Table 4.

The detailed experimental results are shown in Figure 13,
Table 5. Specifically, for the set similarity measure, we first

TABLE 5 | Classification results of different fusion methods.

Fusion

method

Classification

algorithm

Metric

Acc Pre Rec F1 AUC

FM1 Logistic regression 0.725 0.739 0.725 0.721 0.782

(Dice) Decision tree 0.682 0.683 0.682 0.682 0.682

FM2 Random forest 0.779 0.782 0.779 0.778 0.851

(Jaccard) SVM 0.722 0.763 0.722 0.711 0.778

XGBoost 0.804 0.818 0.804 0.802 0.860

FM3 Logistic regression 0.734 0.743 0.734 0.732 0.804

(Cosine) Decision tree 0.682 0.683 0.682 0.682 0.682

Random forest 0.786 0.790 0.786 0.785 0.859

SVM 0.736 0.752 0.736 0.732 0.801

XGBoost 0.813 0.821 0.813 0.812 0.884

FM4 Logistic regression 0.465 0.437 0.421 0.411 0.628

(Overlap) Decision tree 0.388 0.370 0.371 0.369 0.529

Random forest 0.467 0.434 0.400 0.371 0.620

SVM 0.471 0.384 0.404 0.350 0.626

XGBoost 0.481 0.451 0.423 0.404 0.629

UDIPM Logistic regression 0.733 0.740 0.733 0.732 0.806

Decision tree 0.662 0.663 0.662 0.662 0.662

Random forest 0.782 0.784 0.782 0.781 0.854

SVM 0.734 0.743 0.734 0.732 0.800

XGBoost 0.795 0.803 0.795 0.794 0.866

Bold values denote the first and second-highest performance using the UDIPM.

selected the optimal number of clusters using AP clustering
algorithms, and then computed the SS value based on the
clustering results (Algorithm 2). The experimental results
indicated that the optimal numbers of clusters for four FMs
were 2, 2, 2, and 3 (Supplementary Figure 5), and the proposed
UDIPM achieved the second-highest SS value of 1997.86; it was
only below FM4 (Figure 13). The reason is that the SS value
increased as the cluster number increased. Interestingly, although
the similarities of FM1 and FM2were different, they had the same
clustering results.
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For the classification results obtained using the 10-fold CV
method in Table 5, the proposed method achieved the second-
highest performance using logistic regression, random forest, and
SVM, and the third-highest performance using the decision tree
and XGBoost. More importantly, all metrics of the proposed
UDIPM were higher than those of FM4. Therefore, from the
overall performance evaluation in combination with the set
similarity measure, clustering, and classification, the UDIPM
was an effective method for identifying and predicting a UD
from EMRs.

Further, for all fusion methods, the results of performance
comparison indicated that both XGBoost and random forest
were superior to other classification algorithms in terms of
the Acc, Pre, Rec, F1, and AUC. The main reason is that
XGBoost and random forest are ensemble learning algorithms
by combining multiple classifiers, which can often achieve
more significant generalization performance than a single
classifier. Specifically, XGBoost is an improved algorithm based
on the gradient boosting decision tree, which can efficiently
construct boosted trees and run in parallel. XGBoost works
by combining a set of weaker machine learning algorithms to
obtain an improved machine learning algorithm as a whole
(36). XGBoost has been shown to perform exceptionally well
in a variety of tasks in the areas of bioinformatics and
medicine, such as the lysine glycation sites prediction for Homo
sapiens (37), the chronic kidney disease diagnosis (38), and
the risk prediction of incident diabetes (39). Also, random
forest classifier is an ensemble algorithm, which combines
multiple decorrelated decision tree prediction variables based
on each subset of data samples (40). In general, random forest
shows better performance in disease diagnosis than many single
classifiers (41).

CONCLUSION

In this study, we proposed a UDIPM embedding the disease
ontology structure to identify and predict a UD from EMRs
to assist better coding integration of diagnosis in the ICU. We
discussed many critical issues, including a formal representation
of multi-type patient information, symptom feature extraction
from an unstructured discharge report, ICD ontology structure
reconstruction for semantic relation embedding, multi-level set
similarity measure for generating a patient similarity matrix,
number of cluster selections using AP clustering, stability of
the extracted TDC and TDCCoP from each cluster, optimal
split line determination for identifying a UD based on
visual analysis and the CCoM of LCoP, feature fusion and
selection using the IG-based method, and the performance
evaluation of UD prediction using five classifiers. We verified
the proposed UDIPM on 4,418 sepsis patients in the ICU
extracted from the MIMIC-III database. The results showed
that the highest stability cluster number and largest range of
TDCs were 2 and 400–800, respectively, the UD of cluster
2 was diseases of the genitourinary system (580–629, order:
1), septicemia (38.9, order: 2), and diseases of the respiratory
system (460–519, order: 3), and the best AUC and Acc, Pre,

Rec, and F of the UD prediction were 0.866, 0.795, 0.803,
0.795, and 0.794, respectively, which were better than those
of other fusion methods from the overall view of SS and
prediction performance.

STUDY LIMITATIONS

The proposed UDIPM can identify and predict a UD from
EMRs; however, there remain several topics for future work.
First, the order of diagnosis codes should be considered in the
patient similarity measure by way of different weights because
of the importance of primary diseases. Then some state-of-
the-art feature selection and classification models should be
implemented to improve the prediction accuracies of the UD.
Additionally, we hope to make progress on many of the valuable
suggestions made by clinicians regarding our implemented
method and experimental results.
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NOTATION

dci i-th diagnosis code

Ord(dci) Order of dci

LCA(dci, dcj) Least common ancestor of dci and dcj

s(dci, dcj) Similarity of diagnosis code dci and dcj

S(Di
′, Dj

′) Similarity of diagnostic information of patients i and j

S Patient similarity matrix based on diagnostic information

pc p coefficient to control the input exemplar preferences

K Number of clusters

Ck k-th cluster, k = 1, 2,…, K

E(Ck) Exemplar of cluster Ck

Corek, |Corek | Core zone and the number of patients in Ck

Probk (dch) Occurrence probability of the diagnosis code dch in Ck

AOrdk (Tdch) Average order of the typical diagnosis code dch in Ck

Ord’ (Tdch) New order of the typical diagnosis code dch

TDCCoPk k-th typical diagnosis code co-occurrence pattern

LCoPk k-th least common ancestor co-occurrence pattern

CCoMk Conditional co-occurrence matrix for all diseases in TDCoPk

UDk k-th unifying diagnosis

IG(xi) Information gain of feature xi

CVErrorZ Average error using Z-fold cross-validation
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