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1. Introduction
Parkinson’s disease (PD) is characterized by the 
progressive loss of dopaminergic neurons in the pars 
compacta of the substantia nigra [1,2].  Although the 
pathophysiologic mechanisms remain unclear, PD is 
a neurodegenerative disease that results in decreased 
striatal dopamine production and causes the symptoms 
of parkinsonism (rigidity and bradykinesia) when 60%–
80% of the presynaptic dopaminergic neurons are lost 
[2,3]. The dopamine transporter (DAT) proteins, which 
are found in the membrane of presynaptic endings of 
dopaminergic neurons and responsible for the reuptake 
of dopamine from the synaptic cleft, reflect the degree of 
presynaptic dopaminergic neuron loss and may be used 
as a diagnostic biomarker of PD [1,2,4].  The level of DAT 
expression in the striatum (caudate and putamen) can be 
evaluated by several tropane-based radiotracers, among 
which iodine-123 (123I)-FP-CIT (123I-ioflupane) and 
123I-beta-CIT are the commercially available and the most 
commonly used ones [5–7]. Brain single-photon emission 
tomography (SPECT) is the modality to assess DAT 
expression in the striatum. Positron emission tomography 
(PET) radiotracers for DAT imaging [such as fluorine-18 
(18F)-FP-CIT] are also present, however, none of them are 
commercially available yet [4].

The differential diagnosis of PD involves a mixed group 
of diseases which are collectively called as parkinsonian 
syndromes and may be functionally divided into two 
groups: In the first group are the parkinsonian disorders 
related to a striatal dopaminergic deficiency which 
include the neurodegenerative atypical parkinsonism 
syndromes, namely multiple system atrophy (MSA), 
progressive supranuclear palsy (PSP), cortical-basal 
ganglionic degeneration (CBD), and Lewy body dementia 
(LBD) [4]. The other group involves movement disorders 
that are not related to a striatal dopaminergic deficiency, 
such as essential tremor (ET), adult-onset dystonic 
tremor, secondary parkinsonism (due to dopamine 
receptor blocking drugs and pallidal toxins), vascular 
parkinsonism, normal pressure hydrocephalus and 
psychogenic parkinsonism [4]. Therefore, DAT SPECT 
imaging may be useful for the differential diagnosis of 
parkinsonism by providing evidence for or ruling out the 
presence of striatal dopaminergic deficiency [1,2,4–9]. In 
clinical practice, DAT SPECT imaging may contribute to 
clinical management of patients who do not fully meet the 
diagnostic criteria of PD or who have atypical findings, do 
not give an adequate response to treatment and show mild 
symptoms at an early stage. 

Both presynaptic and postsynaptic functions of the 
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dopaminergic neurotransmitter system can be evaluated 
with nuclear medicine methods. While presynaptic 
dopaminergic imaging is used to investigate the presence of 
a neurodegenerative process in the dopaminergic system, 
postsynaptic dopaminergic imaging is mostly used to make 
a differential diagnosis of PD with the neurodegenerative 
atypical parkinsonism syndromes [1,2,4–10]. However, 
the clinical uses of postsynaptic D2-receptor imaging 
with SPECT or PET are not common today. In addition 
to the limited availability of D2-receptor radiotracers, 
the widely available brain 18F-fluorodeoxyglucose 
(FDG) PET imaging has a higher diagnostic accuracy 
than postsynaptic D2-receptor SPECT imaging in the 
differential diagnosis of PD with the neurodegenerative 
atypical parkinsonism syndromes [11]. Myocardial 
scintigraphy of 123I-metaiodobenzylguanidine (mIBG) 
is another method with high diagnostic accuracy in the 
differential diagnosis of PD with the neurodegenerative 
atypical parkinsonism syndromes (MSA, PSP, and CBD) 
[12]. 

DAT SPECT studies were carried out in the Gazi 
University Hospital for the first time in our country within 
the scope of the multicenter ENC-DAT project launched 
in 2009 by the European Association of Nuclear Medicine 
(EANM) neuroimaging committee. The project aimed to 
create a normative 123I-ioflupane SPECT database [13–
17]. Then, the first clinical routine DAT SPECT studies 
in our country were carried out in our center. Today, as 
the clinicians’ awareness of this practice is increasing, 
DAT SPECT studies are becoming widespread in our 
country. Therefore, we aimed to share our experience and 
summarize the practical aspects and the clinical role of 

DAT SPECT imaging in the evaluation of patients with 
parkinsonism in this review. 

2. Practice of DAT imaging
2.1.  Radiotracers   
The basic structure of a radiotracer is composed of a 
bioactive molecule that binds to the molecular target 
and a radionuclide that can be detected by the SPECT 
or PET camera. The most commonly used radionuclides 
for SPECT imaging are 123I and technetium-99m 
(99mTc) that both emit gamma rays of low-energy and 
have physical half-lives of approximately 13 and 6 h, 
respectively. Due to the higher target binding ratios and 
the presence of quantitative analysis tools that include 
normal reference data, the DAT radiotracers that are 
labeled with 123I, especially 123I-ioflupane, are generally 
preferred for presynaptic dopaminergic imaging [5–9]. 
The PET radiotracers for dopaminergic imaging are 
radiolabelled with 18F or carbon-11 (11C) that have 110 
and 20 min of physical half-lives, respectively. Since the 
physical half-lives of PET radiotracers are relatively short 
and the production costs are higher when compared to 
SPECT radiotracers, their use is mostly limited to research 
centers with cyclotron facilities.

In vivo measurement of DAT availability is possible by 
using several DAT specific SPECT and PET radiotracers 
(Table 1) [5–9]. DAT is among the several targets in the 
striatal dopaminergic system that can be studied with 
nuclear medicine methods. The alternative radiotracers 
target the aromatic-L-amino acid decarboxylase (AADC) 
enzyme in the presynaptic dopaminergic neuron and the 
vesicular monoamine transporter protein 2 (VMAT2) 

Table 1. The SPECT and PET radiotracers used for the evaluation of striatal dopaminergic neurotransmission in PD and parkinsonian 
disorders [4–8, 10].

Molecular target in the striatum SPECT radiotracers PET radiotracers Common indications
Presynaptic dopaminergic terminal

 DAT

99mTc-TRODAT,
123I-altropane,
123I-beta-CIT,
123I-FP-CIT 
(ioflupane)

18F-FP-CIT,

11C-PE2I,

18F-FE-PE2I
Evaluation of functional integrity of striatal 
dopaminergic neurons in patients with clinically 
uncertain parkinsonian syndromes

 VMAT2
11C-DTBZ,

18F-FP-DTBZ
 AADC 18F-fluorodopa
Postsynaptic dopaminergic nerve

 D2 receptors 123I-IBZM
11C-raclopride,
18F-fallypride,
18F-DMFP

Differential diagnosis of parkinsonian syndromes (PD 
vs. MSA, PSP and CBD)
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in the membrane of presynaptic dopaminergic neuron’s 
storage vesicles. Dopamine is produced as a result of a 
two-step synthesis using L-tyrosine in the presynaptic 
dopaminergic neuron: In the first step, L-dopa is formed 
by hydroxylation of L-tyrosine and in the second step 
dopamine is formed by the effect of AADC on L-dopa. 
This dopamine is then stored in vesicles at the presynaptic 
neuron terminal via the VMAT2. When the presynaptic 
dopaminergic neuron is stimulated, the dopamine in the 
vesicles is discharged into the synaptic space. Dopamine 
in the synaptic space can be taken back into the cell by 
the DAT in the membrane of the presynaptic neuron. 
For the imaging of postsynaptic dopaminergic neurons, 
several radiotracers that target dopamine receptors (D1-
, D2-receptors) are also available [10]. Since more than 
90% of D2-receptors are found in the postsynaptic cell, 
radiotracers that bind to D2-receptors are used to evaluate 
the functions of these cells [10].

Among the various SPECT and PET radiotracers 
for the functional imaging of the dopaminergic system, 
only 123I-ioflupane and 123I-beta-CIT have received 
both the U.S. Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA) approvals. An 
alternative for DAT SPECT imaging is PET imaging with 
18F labeled fluorodopa. Although the 18F-fluorodopa has 
been approved by EMA, it has not yet been approved by the 
FDA for production and commercial distribution. None of 
the other radiotracers used in dopaminergic imaging has 
yet gone through the aforementioned approval processes. 
In Turkey, 123I-ioflupane is currently the only radiotracer 
that is approved by the Turkish Medicines and Medical 
Devices Agency of the Ministry of Health. Today, DAT 
SPECT study is the most commonly used molecular 
imaging method in parkinsonian disorders due to the 

presence of long-term clinical experience, normative data 
that have been created, and the practice guidelines which 
were prepared by several medical specialty associations 
[5–9, 17–22].
2.2.  Patient preparation
Patients should avoid taking any drugs or other 
psychotropic substances which may significantly influence 
the DAT binding of radiotracers before the investigation 
(Table 2) [5,6,8]. The recommended withdrawal period is 
at least five times the drug’s biological half-life [5,6,8,23]. 
The antiparkinsonian medications (such as L-dopa, 
dopamine agonists, NMDA receptor blockers, MAO-B, 
and COMT inhibitors) do not need to be stopped since 
they do not significantly affect DAT binding [5,6,8,23]. 
A recent metaanalysis showed that the striatal DAT 
availability was decreased in cocaine, amphetamine, and 
methamphetamine users [24].  In the same metaanalysis, 
it was shown that smoking does not cause a significant 
difference in striatal DAT availability. Regarding sedatives, 
another metaanalysis showed that opioid users had a 
significantly lower DAT availability and alcohol users had 
no significant difference in DAT availability [25]. Other 
drug groups that may alter DAT binding of radiotracers 
include opioid derivatives (fentanyl, modafinil), central 
nervous system stimulants (ephedrine, phentermine), 
amphetamines (methylphenidate), antidepressants 
(bupropion, mazindol, radafaxine), adrenergic agonists 
(norepinephrine, phenylephrine), anticholinergic drugs 
(benztropine), and anesthetics (isoflurane, ketamine, 
phencyclidine) [5,6,8,23,24]. Besides, selective serotonin 
reuptake inhibitors may slightly increase the binding of 
radiotracers to DAT [26,27]. These effects, which should 
be taken into consideration in clinical trials, do not make 
a difference in clinical routine practices to the extent that 

Table 2. Drugs or other psychotropic substances that can significantly affect radiotracer binding in the DAT SPECT study [5–8, 23–26].

Drug class Drug names Potential effects
Cocaine Cocaine striatal 123I-ioflupane binding

Amphetamines Amphetamine, methamphetamine, 
methylphenidate striatal 123I-ioflupane binding

CNS stimulants Phentermine, ephedrines striatal 123I-ioflupane binding
Opioid derivatives Fentanyl, modafinil striatal 123I-ioflupane binding
Antidepressants Bupropion, mazindol, radafaxine striatal 123I-ioflupane binding

Adrenergic agonists Norepinephrine, phenylephrine striatal 123I-ioflupane binding. This effect occurs especially when 
infused at high doses

Anticholinergic drugs Benztropine
striatal 123I-ioflupane binding. Other anticholinergic drugs 
striatal 123I-ioflupane binding to a degree that does not affect visual 
evaluation

Anesthetics Isoflurane, ketamine, phencyclidine  striatal 123I-ioflupane binding
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they affect the patient’s imaging results [23]. Cholinesterase 
inhibitors and neuroleptics also do not affect the DAT 
binding of radiotracers [23].

It is necessary to minimize free 123I accumulating 
in the thyroid gland by blocking the thyroid gland with 
Lugol solution (equivalent to 100 mg iodide) or potassium 
perchlorate (600 mg) at least 1 h before radiotracer 
injection [5–9]. In patients who are sensitive to any of these 
products, the use of these products should be avoided. 
Even in the absence of a blocking agent, the radiation dose 
to which the thyroid is exposed will be low [9]. In some 
patients, an antiallergic premedication can be given before 
the procedure. However, iodine allergy in the patient is not 
a contraindication for radiotracer administration.

Pregnancy is a contraindication for the DAT SPECT 
study. Breastfeeding is a relative contraindication and 
patients should discontinue breastfeeding for 6 days after 
they receive the 123I labeled radiotracer. Fasting is not 
required and patients should be encouraged to be well 
hydrated on the day of examination to minimize bladder 
radiation exposure since the radiotracer is excreted in the 
urine.  

It is necessary to control and ensure that the patient 
will be able to cooperate and lie still for approximately 40 
to 60 min during the investigation. If sedation is required, 
it should not be given earlier than 1 hour before the SPECT 
acquisition.
2.3. Safety of DAT imaging
In adults, the recommended dose is 110–250 MBq 
(usually 185 MBq) for 123I-labeled DAT radiotracers. 
The radiotracer will be delivered ready to use and should 
be injected within the time period specified by the 
manufacturer, usually on the day of delivery. Radiotracer 
is injected in the form of a slow i.v. bolus that lasts about 
20 s.

A radiotracer dose of 185 MBq will cause an effective 
dose of approximately 4.4 mSv in an adult patient [9]. This 
radiation dose is higher in comparison to radiographic 
examinations (with average effective doses of 0.1–1.5 
mSv) and lower in comparison to a chest computerized 
tomography examination (with an average effective dose 
of 8 mSv) [28]. Bladder wall (organ receiving the highest 
radiation dose) will be exposed to a radiation dose of 
approximately 1.0 rad [9]. 

In a safety analysis of clinical studies that involved 
more than a thousand patients, mild side effects such 
as headache, nausea, dizziness, nasopharyngitis, and 
development of hematoma at the injection site were 
observed in less than 4% of patients after 123I-ioflupane 
injection [29]. No serious adverse effects were observed 
related to 123I-ioflupane administration and the 
radiotracer was well tolerated. 

There is no established clinical indication for DAT 

SPECT for children and the safety of the use of these 
radiotracers in pediatric patients has not been established. 
The effect of kidney or liver failure on DAT SPECT 
imaging is unknown. Since I-123 FP-CIT is excreted by 
the kidneys, patients with severe renal impairment may 
have an increased dose of radiation and a possible change 
in DAT SPECT images [9,29].
2.4. SPECT imaging
SPECT imaging should be carried out by or under the 
supervision of nuclear medicine physicians. It is preferable 
to perform DAT examination on SPECT cameras with 
multiple detectors. Single-detector SPECT systems are 
not recommended, since acquiring sufficient counts will 
require long imaging times, which may make examination 
difficult for the patient and cause movement artifacts [5–
9].

The recommended imaging time for 123I-ioflupane is 
3 to 6 h after the radiotracer injection. For 123I-beta-CIT, 
this period is 18 to 24 h after injection. It is recommended 
to standardize imaging times in a center (for example, 3 
h after injection for 123I-ioflupane) so that images of 
different patients or follow-up images of a patient will be 
more comparable by excluding time-dependent changes in 
radiotracer uptake in the brain [5–9].

The distribution of DAT radiotracers in the brain is 
not affected by functional activations. Therefore, patients 
do not need to remain in a quiet/dim environment before 
and during the injection of the radiotracer. Similarly, there 
are no dietary restrictions for the DAT SPECT study. If 
the patient has claustrophobia or if the patient is unable 
to lie still in the camera, a short acting benzodiazepine 
(sedative) can be given before imaging [5–9].

Technical specifications on how to perform DAT 
SPECT imaging are excluded from the scope of this article 
since they can be found in detail in the current procedure 
guidelines [5–9]. Some important practical issues related 
to DAT SPECT imaging are as follows:  DAT SPECT 
imaging will take approximately 30–40 min on a two-
detector gamma camera. The acquired projection images 
should be reviewed in terms of patient motion before 
image processing. Given the limited spatial resolution 
(about 8–10 mm) of SPECT images, small amounts of 
patient motion can be tolerated. However, if the patient 
is observed to move significantly, it is recommended to 
repeat the imaging. Iterative reconstruction methods are 
generally preferred for obtaining cross-sectional SPECT 
images from the projection data since physical corrections 
(such as attenuation, scatter corrections) can be added to 
the reconstruction algorithm. Also, when using normal 
databases for semiquantitative evaluation of DAT SPECT 
images, care should be taken to match the reconstruction 
parameters with the parameters which were used to create 
the normal database. Performing physical corrections 
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improves the accuracy of quantitative analysis and can 
significantly affect the values ​​obtained from quantitative 
analysis [14]. In general, SPECT systems are subjected to 
routine quality control procedures within the framework 
of a quality control program. Besides, imaging of an 
anthropomorphic striatal brain phantom by applying the 
routine clinical imaging and processing parameters used 
in DAT SPECT studies can be useful to assess the system’s 
overall SPECT image quality.

3. Assessment of DAT SPECT images
The assessment of DAT binding in striatum depends on 
visual interpretation of SPECT images and the results of 
quantitative analysis of SPECT data, if available. The visual 
assessment aims to decide whether the DAT binding is 
normal or abnormal. If DAT binding is abnormal, the 
degree of decrease in DAT binding in striatal subregions 
regarding left-to-right asymmetry and posterior-to-
anterior uptake ratio (gradient) should be evaluated [5, 
6]. Given the age-dependent decrease of striatal DAT 
binding in normal populations, quantitative analysis of 
DAT SPECT is strongly recommended for an objective 
assessment [5, 6]. In clinical trials, quantitative analysis 
is often used to measure DAT intensity as it has high 
reproducibility and objectivity to determine the degree of 
disease and response to treatment [14,26,30,31]. In various 
studies, it has been shown that the inclusion of quantitative 
analysis results in the image evaluation process of readers 
increases the diagnostic performance [15, 30–32].
3.1. Visual assessment
When preparing DAT SPECT images for visual evaluation, 
it is recommended to determine the axial plane in a 
standard way which is parallel to the line passing between 
the anterior and posterior commissures. DAT SPECT 
images should be evaluated on the computer screen 
since the color scale and contrast can be manipulated 
by the reader. In the presence of an anatomical lesion 
and cerebral atrophy, the location or shape of striatal 
structures may change. Therefore, when evaluating DAT 
SPECT images, computed tomography (CT) and magnetic 
resonance imaging (MRI) findings should be taken into 
account. Brain MRI findings can also help assess vascular 
comorbidity [9].

It has been shown in various studies that experienced 
readers can read DAT SPECT images with high accuracy 
only by visual evaluation [20,30,33,34]. Visual evaluation 
is usually sufficient to evaluate striatal left-to-right 
asymmetry and differential radiotracer uptake in striatal 
subregions. In axial sections, normal striatum should 
be in the form of a comma and its borders should be 
clearly visible (Figure 1a). A slight asymmetry in striatal 
radiotracer uptake may be seen in normal individuals. 
The findings of quantitative analysis may be useful when 

evaluating the degree of striatal asymmetry. In addition, 
the level of striatal radiotracer uptake should be compared 
with background activity. A good contrast is expected 
between the striatal and the background signals. However, 
there is some decrease in striatal radiotracer uptake in both 
caudate and putamen with normal aging. In this regard, 
quantitative analysis can help the reader in evaluating the 
findings.

Decreasing striatal radiotracer uptake and increasing 
background activity in DAT SPECT images is an indicator 
of decreased presynaptic dopaminergic function. Striatal 
involvement can occur unilaterally or bilaterally. In 
PD, the most prominent decrease of radiotracer uptake 
occurs in the dorsal putamen contralateral to the side 
where neurological findings are more evident. With the 
progression of the disease, the involvement of anterior 
putamen and then the caudate nucleus becomes more 
evident. Although this posterior-to-anterior gradient is 
also seen in the later stages of the disease, it is more evident 
in the early stages [1,33]. Since putamen is often more 
severely affected in early-stage PD (such as in patients with 
premotor or hemiparkinsonism findings), the striatum 
typically has an oval or circular appearance on DAT 
SPECT images (Figure 1b) [18,33,35,36]. Background 
activity increases more as a result of disease progression 
and decreasing striatal radiotracer uptake (Figure 1c). 
DAT SPECT imaging has a high sensitivity in the early 
stages of PD and the high negative predictive value is an 
important advantage of this method [30,33]. Indeed, in 
a controversial group of patients named SWEDD (scan 
without evidence of dopaminergic deficit), who were 
clinically diagnosed with PD but had normal DAT SPECT 
scans, the findings did not change during the clinical 
follow-up and patients did not show progression [37,38]. 
This observation indicates that the specificity of DAT 
SPECT imaging for early-stage PD may be higher than the 
clinical evaluation.

In patients with PD, the levels of DAT binding 
measured with PET or SPECT will overestimate the true 
degree of neurodegeneration in the striatum because of 
a downregulation of DAT expression in the remaining 
neurons as an adaptive mechanism to preserve synaptic 
dopamine levels [39,40]. On the contrary, the AADC 
expression as shown by 18F-fluorodopa PET imaging 
will underestimate the true degree of neurodegeneration 
because of its upregulation [39,40]. Therefore, in early 
PD, the striatal dysfunction indicated by DAT SPECT is 
more pronounced than the dysfunction observed with 
18F-fluorodopa PET [40]. However, in studies comparing 
these two methods in the same patients, both methods had 
high accuracy in differentiating PD patients from healthy 
controls [41,42]. There is a correlation between the degree 
of motor impairment (Unified Parkinson’s Disease Rating 
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Scale motor scores, Hoehn and Yahr stage scores) in early 
stage PD and the degree of striatal involvement in DAT 
SPECT imaging [40,43]. This correlation disappears in 
the later stages of the disease as the DAT SPECT findings 
reach saturation [36].

In patients with LBD, the caudate nuclei show early 
involvement which may cause the gradient between 
the putamen and caudate to be less pronounced than in 
patients with PD [20,30]. Similarly, the involvement of the 
anterior striatum is seen earlier and more prominently in 
parkinsonian type MSA and PSP compared to PD [40,44]. 
DAT function in cerebellar type MSA is higher when 
compared to parkinsonian type MSA [40]. Patients with 
CBD show a marked asymmetric striatal involvement (both 
in the caudate nucleus and in the putamen) contralateral 
to the body side where clinical findings are more evident 
[45]. However, it should be kept in mind that there is a 
significant overlap between PD and neurodegenerative 
atypical parkinsonism syndromes in terms of DAT 
SPECT findings, and this examination alone may not be 
sufficient for differential diagnosis [20,30]. In order to 
make this distinction, postsynaptic D2-receptor imaging, 

18F-FDG PET (Figures 2a and 2b), or cardiac 123I-mIBG 
SPECT studies can be performed (Figures 3a and 3b) 
[11,12,46]. In clinical situations such as ET, drug-induced 
parkinsonism, vascular parkinsonism, and psychogenic 
parkinsonism DAT SPECT findings are normal; and 
therefore, differential diagnosis of these clinical conditions 
from neurodegenerative parkinsonian syndromes can be 
made by DAT SPECT examination [4,33,47].

DAT SPECT findings are more difficult to evaluate for 
the diagnosis of vascular parkinsonism. Vascular lesions 
in the basal ganglia are common, especially in the elderly. 
However, these vascular lesions cause parkinsonism in a 
small number of patients. If the infarct does not directly 
involve striatal structures, the striatal DAT radiotracer 
uptake is usually normal or slightly reduced. A striatal infarct 
causes a sharply demarcated photopenic appearance in the 
DAT SPECT images which differs from the findings that are 
usually seen in neurodegenerative parkinsonian syndromes 
in terms of quality and morphological appearance. 
Evaluation of the DAT SPECT findings together with a 
recent brain MRI examination of the patient may assist the 
reader in making this distinction [48,49].

Figure 1. Axial 123I-ioflupane DAT SPECT images of three different patients with parkinsonism. (a) Striatal radiotracer uptake 
is visually symmetrical and normal. The background activity is low. Both striata have comma shape and sharp borders. The 
findings of the quantitative analysis were in normal ranges. These findings exclude the presence of a striatal dopaminergic 
deficiency. (b) Radiotracer uptake in putamen is bilaterally decreased and background activity is slightly increased. Both striatal 
structures took an oval appearance. Specific binding ratios calculated from both putamens were significantly lower than the 
patient’s age group. The asymmetry index was 25%. Specific binding ratios calculated from the caudate nuclei were also lower 
than the mean values ​​determined for the patient’s age group, but this difference was not statistically significant (within the 95% 
confidence interval). These findings indicate a moderate nigrostriatal dopaminergic neuron loss and the pattern of involvement 
may be consistent with early-stage PD. (c) Striatal radiotracer uptake is decreased and background activity is increased 
significantly. Specific binding ratios calculated from both putamens and caudate nuclei are significantly lower than the patient’s 
age group. These findings indicate a severe degree of nigrostriatal dopaminergic neuron loss and the pattern of involvement may 
be consistent with late-stage PD.
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Figure 2. Axial 123I-ioflupane DAT SPECT and brain 18F-FDG PET images of a patient with suspected 
neurodegenerative parkinsonism. (a) In the 123I-ioflupane DAT SPECT examination radiotracer uptake in basal ganglia 
is bilaterally decreased and background activity is slightly increased. Both striatal structures took an oval appearance. 
Specific binding ratios calculated from both putamens and caudate nuclei were significantly lower than the patient’s age 
group. The decrease in uptake was more prominent in left basal ganglion and asymmetry indices were 10% and 37% 
for putamen and caudate nucleus, respectively. (b) The axial brain 18F-FDG PET and T1-weighted MR images which 
were simultaneously acquired on a hybrid PET-MR camera showed bilateral relatively increased putaminal glucose 
metabolism and normal findings in the cerebral cortex which is defined as a metabolic marker for PD on brain 18F-FDG 
PET [46]. MR examination did not show a specific pathological change. Taken together, these findings supported the 
diagnosis of PD in this patient.

Figure 3. Axial 123I-ioflupane DAT SPECT and planar cardiac 123I-MIBG images of a patient with suspected neurodegenerative 
parkinsonism. (a) In the 123I-ioflupane DAT SPECT examination radiotracer uptake in basal ganglia is bilaterally decreased and 
background activity is slightly increased. Both striatal structures took an oval appearance. Specific binding ratios calculated from both 
putamens and caudate nuclei were significantly lower than the patient’s age group. The decrease in uptake was more prominent in 
left basal ganglion and asymmetry indices were 13% and 10% for putamen and caudate nucleus, respectively. The patient had clinical 
findings of parkinsonism and autonomic dysfunction and the presumed diagnosis was PD or MSA. Although DAT SPECT findings 
verified the presence of a striatal dopaminergic neurodegeneration, it was not adequate for making a differential diagnosis between 
PD and MSA. Therefore, a cardiac 123I-MIBG examination was requested. (b) The planar cardiac 123I-MIBG image displays normal 
radiotracer uptake in the left ventricle. Since cardiac 123I-MIBG uptake is expected to be decreased in PD and normal in MSA, these 
findings supported the diagnosis of MSA in this patient [12].  
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The differential diagnosis of LBD from Alzheimer’s 
disease (AD) can be done with high accuracy using DAT 
SPECT imaging [20]. While striatal binding of DAT 
radiotracer is usually normal or slightly low in AD, it is 
significantly decreased in LBD [20, 50]. DAT SPECT is 
included as a biomarker in the diagnostic criteria of LBD due 
to its approximately 20% higher specificity in comparison 
to clinical diagnosis [20]. However, approximately 10% of 
patients who meet the pathological criteria of LBD may 
experience normal DAT SPECT findings. DAT SPECT 
becomes abnormal in these patients usually within 1.5 
years [51]. This finding has been associated with the 
heterogeneous topographic accumulation of α-synuclein 
in the brain: While a low-grade of α-synuclein pathology 
in substantia nigra was observed in these LBD patients, 
they had a higher grade of α-synuclein pathology in 
neocortical regions [50].
3.2. Quantitative assessment
The most commonly used quantitative analysis method 
in both research and clinical routine is the calculation 
of the ratio of striatal radiotracer uptake to background 
activity (Specific binding ratio = (striatal counts–
background counts)/background counts) [5–9, 31]. For 
this purpose, regions of interest around the striatum and 
its subregions (caudate nucleus, putamen) need to be 
created. The background activity is generally measured 
from the cerebellum or the occipital cortex. Although 
the specific binding ratio is related to DAT density, it is 
not a parameter that directly reflects DAT density or the 
number of presynaptic neurons. Many biological and 
technical variables (age and sex of the patient, drugs 
used by the patient, patient’s movement during imaging, 
physical characteristics of the camera, variables related to 
SPECT imaging and processing of images, quantification 
algorithm, and the region of interest used) may affect 
this ratio [14,15,24,25]. Regions of interest can be created 
according to the anatomical boundaries of striatal 
structures, and smaller areas of interest can be used to 
measure from caudate nuclei, anterior and posterior 
putamen [52,53]. They can be drawn by hand or to reduce 
operator-dependent variability quantitative analysis tools 
that automatically draw the regions of interest can be used 
[52,54–57]. Additionally, brain CT and MRI images can be 
used to determine the boundaries of the basal ganglia and 
to create regions of interest [58]. The use of radiological 
images for this purpose may be especially useful in cases 
where automatic analysis methods are not used and the 
striatal radiotracer uptake is very low. Moreover, in order 
to interpret the patient’s quantitative data correctly, it 
is necessary to compare them with a normal database 
that preferably contains age appropriate reference values 
[17,21]. 

In addition to the specific binding ratios for caudate 
and putamen, different quantitative variables such as left-
to-right asymmetry values ​​[Asymmetry index = (Left–
Right) / (Left+Right)] and putamen-to-caudate ratios 
can also be calculated from DAT SPECT images. These 
quantitative parameters may be useful in patients where it 
is difficult to evaluate images and where a clear evaluation 
cannot be made. In particular, the putamen/caudate ratio 
is an important data since it is independent of the imaging 
variables, reconstruction algorithm, and background 
activity. Similarly, assessment of asymmetry between the 
right and left nuclei is useful for detecting early-stage 
disease, but mild (less than 6%) asymmetry may also occur 
in the striatum or striatal subregions of healthy individuals 
[52].

All variables obtained as a result of the quantitative 
analysis of DAT SPECT images depend on the imaging 
method used, the reconstruction algorithm, and the 
corrections applied. Therefore, there are no absolute 
normal values ​​that can be used in all conditions. Ideally, 
each center should image a healthy control group and 
generate their own normal reference values. However, 
since striatal DAT density varies depending on age and 
sex, it is generally preferred to use existing normal DAT 
SPECT databases and to match the method used for 
DAT SPECT imaging to the method used in the creation 
of these databases. To evaluate the performance of this 
matching process systematically, it is suggested to scan 
an anthropomorphic striatal phantom and to determine 
the quantitative analysis results of the system for different 
levels of specific striatal radiotracer uptake values [13,16].

There are two large normal databases that can be 
used in quantitative analysis of DAT SPECT images. The 
first one is the output of the ENC-DAT study that was 
launched by the EANM Neuroimaging committee in 2009 
and included a single center from Turkey (Gazi University 
Hospital) among 13 different European centers [13–17]. In 
this study, 123I-ioflupane DAT SPECT data were recorded 
from 139 healthy control subjects (74 males, 65 females; 
age range 20–83 years, mean age 53 years). The second 
normal 123I-ioflupane DAT SPECT database was obtained 
in the PPMI (Parkinson’s progression marker initiative) 
project [21]. These two studies have shown that the striatal 
uptake of this radiotracer decreases approximately 5.5%–
6.0% (0.6%/year) in each 10-year period with normal 
aging and the specific binding ratios differ depending on 
sex. In the PPMI study, it was observed that radiotracer 
uptake in all striatal regions decreased significantly in the 
4-year follow-up of patients diagnosed with PD [21]. This 
decrease occurs approximately 20 times faster than the 
decrease observed in normal aging. These results suggest 
that DAT SPECT imaging may be a suitable biomarker for 
demonstrating PD progression.
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4. Conclusion
In patients with suspected PD or other parkinsonian 
disorders, DAT SPECT imaging be used to evaluate the 
functional integrity of presynaptic striatal dopaminergic 
neurons. DAT SPECT is a valuable tool for the early 
diagnosis of PD and for the differential diagnosis of PD 
from other nondegenerative causes of parkinsonism. 
Normal DAT SPECT findings exclude presynaptic striatal 
dopaminergic insufficiency. Thus, the clinical findings of 
parkinsonism in these patients may be related to clinical 
conditions such as ET, drug-induced parkinsonism, 
psychogenic parkinsonism or vascular parkinsonism. 
Abnormal DAT SPECT findings indicate a variety of 
diseases that have presynaptic striatal dopaminergic 

insufficiency as a common pathophysiological process, 
including PD, MSA, PSP, CBD, and LBD. If the examination 
is used for the differential diagnosis of AD with LBD, 
normal DAT SPECT findings support the diagnosis 
of AD. In some patients, a more explicit diagnosis can 
be made when other molecular imaging examinations 
(postsynaptic D2-receptor SPECT or PET, 18F-FDG 
PET, cardiac 123I-mIBG scintigraphy, etc.) findings are 
included in the interpretation.
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