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The injection of sheep red blood ceils into mice leads to the proliferation of antigen 
reactive cells, the production of specific antibodies, and the development of an en- 
larged and/or altered population of antigen reactive cells (1). These events provide 
the animal with an immunological memory, so that when restimulated with the same 
antigen, antibodies will be produced more rapidly and in large quantities. By extension 
from other antigenic systems (2), these antibody molecules may have higher affinity. 

Although it is well established now that each mature antibody-producing cell 
makes only one species of antibody which is homogeneous with respect to specificity, 
H chain class, L chain type, and allotype (3-7), it is neither established whether these 
antibody-producing cells derive from a common or separate cell lines nor whether 
memory cells are committed as to class or allotype. Finally, the relationship of memory 
cells to antibody-producing cells is also not yet dear. Are memory cells antibody- 
producing cells, or derived from them? 

Answers to these questions can be obtained by separating the various classes 
of antibody producing cells and memory cells and by establishing the kinetics 
of their appearance relative to one another. In  this paper we used the pro- 
cedures of bovine serum albumin (BSA) density gradient centrifugation (8, 9) 
to separate spleen ceils from animals immunized with sheep red blood cells 
(SRBC), and analyzed the fractions obtained for their content of plaque-form- 
ing cells (PFC) by the localized hemolysis in gel method of Jerne et al. (10). 
The memory cell activity of the fractions was estimated in an adoptive transfer 
system. In  some experiments, PFC were completely depleted from cell suspen- 
sions by adsorption onto glass bead columns (11) to determine what effect this 
had on the ability of these cell suspensions to adoptively transfer the immune 
response of the several classes. The kinetics of density changes in PFC and 

* This investigation was partially supported by U. S. Public Health Service Grants CA 
04681, GM 12075, 2T01 GM-00295 and from the Stanford Medical School Dean's Office 
Postdoctoral Fellowship Funds. 

Present address: Med. Klinik, Kllnikum Steglitz, F.U. Berlin, Germany. 
§ Please send requests for reprints to L. A. Herzenberg. 

1G93 



1094 IMMUNOLOGICAL MEMORY IN MICE. I 

m e m o r y  cells were examined  as a m e a n s  of es tabl i sh ing  the  t ime of d e v e l o p m e n t  

of the  di f ferent  classes of these  two k inds  of cells. 

Materials and Methods 

Mice.--The congenic strains used in these experiments are essentially histocompatible and 
genetically identical at all loci except those in the Ig chromosome region and a small adjacent 
region on that chromosome (12, 13). Strains CWB/5 and CWB/8 (Igb) 1 were obtained by 
crossing C57BL/10 (Ig b) to C3H.SW SnHz (CSW) (Ig a) and by back-crossing the F1 hybrid 
to CSW five and eight times respectively, always using an Ig b positive animal of the previous 
back-cross generation. These strains have since been maintained by brother by sister mating 
of Ig b homozygotes. Intercurrent selection for skin compatibility of animals to be back- 
crossed was made in back-cross generations two and three, resulting in complete skin com- 
patibility and a high degree of congenicity by the fifth back-cross generation (13). In order to 
conform to the practice recommended by the International Committee on Nomenclature for 
Inbred Strains of Mice (14), we are continuing to back-cross the CWB strain to the 14th 
generation, but since no differences were obtained in the experiments here reported using 
CWB/5 and 8, the results are reported together. Within a single transfer experiment donor 
and host mice were always of the same sex, but of different Ig allotypes. Mice to be used as 
lymphoid cell donors were between 6 and 9 wk of age at the time of immunization. Recipients 
were between 10 and 16 wk of age at the time of cell transfer. 

Irradlation.---4-6 hr prior to cell transfer, all recipient mice received 600 fads total body 
X-irradiation using a Siemens X-ray machine operating under the following conditions: 250 
kv, 15 ma, 0.25 ram. Cu and 1.0 mm AL, and a HVL (half-value layer) of 1.10 mm Cu. The 
mice were contained in a circular perforated plastic box with an individual compartment for 
each mouse. The dose rate was 80 rads/min, and the focal skin distance was 60 cm. 

Immunization.--Mice were given a single intravenous injection of 4 X 10 s sheep erythro- 
cytes (SRBC) suspended in 0.1 ml of (MEM-PM). e In some experiments 4 X 105 SRBC 
were used. The SRBC obtained in Alsever's solution were used 2-4 wk after bleeding and 
were washed three times in normal saline prior to use. 

Spleen Cell Suspensions.--Mice were killed by cervical dislocation, their spleens were 
removed, and a single cell suspension was obtained by gently pressing the tissue in a few drops 
of MEM-PM through a 50-mesh stainless steel screen. Cell clumps were broken up by re- 
peated aspiration through a pipette, and the suspension was allowed to stand for 2-3 min 
after which the supernatant was carefully removed and centrifuged at 300 g for 10 rain. 
The cells were resuspended in MEM-PM and maintained at melting ice temperature through- 
out the experiments. Cell counts were obtained using a Model B Coulter Counter fitted with a 
100 # aperture and using optimum window setting previously calibrated with hemocytometer 
counts of nucleated spleen cells. 

Assay for Plaque Forming Cells (PFC).--The numbers of direct (3'M or 19S) and indirect 
(developed or 3'G) PFC in spleen cell suspensions were determined using a modification of 

a The designations Ig a and Ig b without specification of locus mean that all the Ig loci on 
that chromosome have the respective a or b alleles. Since the Ig loci are so closely linked that 
recombinants have not been observed in inbred strain matings, this is a useful shorthand. 

2 MEM-PM is minimum essential medium (Eagle) Cat. No. F-12 instant tissue culture 
powder medium without NaHCO~ (Grand Island Biological Co., Oakland, Calif.) made up 
with Na2HPO4-12H20 (358 rag/liter) and MgCle.6H20 (200 rag/liter) instead of bicar- 
bonate, in distilled, deionized water. 
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the hemolysis in gel method originally described by Jerne et al. (10), adapted for microscope 
slides by Mishell and Dutton (15), and extended for development of indirect or q'G PFC by 
Dresser and Wortis, Sterzl and Riha, and Weiler et al. (16-18). Portions of 0.25 ml of Agarose, 
0.5% in MEM-PM, were maintained at 47°C in 10 )< 75 mm tubes. SRBC (15 #1 of 20% 
v/v) and 10-20/zl of lymphoid cell suspension were added to exch tube just prior to spreading 
on glass slides that had previously been coated with 0.1% Agarose and allowed to dry. The 
slides were inverted in recessed racks, which allowed the application of constant amounts of 
incubation media. Slides were first incubated for 1 hr at 37 °C with MEM-PM, and then were 
transferred to clean racks. Three sets of slides in duplicate were used. To assay for direct 
PFC, one set of slides was then incubated with normal BALB/C mouse serum 3 at the dilu- 
tion of 1:100 to 1:200 in MEM-PM to correspond with the concentration of mouse anti- 
allotype sera used to develop 3'G2a PFC. For detection of total ",/G PFC, a second set of slides 
was exposed to a polyvalent rabbit anti-mouse 3'G (serum) at a dilution of 1 : 1000. The third 
set was developed with anti-allotype sera to reveal 7G2a PFC. After this second incubation of 
1 hr at 37°C, all slides were transferred to clean racks and incubated for an additional hour 
in the presence of complement 4 diluted 1 : 10 with MEM-PM. All sera and complement used 
in those experiments had previously been absorbed with equal volumes of packed SRBC in 
the cold. The number of "yG and "yG2a PFC was determined by subtracting the number of 
direct PFC from the total number of PFC developed with the antisera. 

Antisera for Development of Indirect _PFC.--Polyvalent rabbit anti-mouse 3tG is a large 
pool (pool A) of sera obtained by immunization with "vG of several mouse strains. I t  precipi- 
tates in high titers 125I-labeled proteins of all classes of mouse "yG and Fc fragments of these 
classes and has a lower, but definite, titer against Fab. I t  is difficult to make a direct com- 
parison between these titers and efficiency of development and/or inhibition of PFC (19). 
Pool A was used at a dilution of 1 : 1000, the dilution previously determined to give maximum 
numbers of developed PFC with spleen cells obtained from mice 7-10 days after immuniza- 
tion. The mouse anti-allotype sera used for development of "yG2a plaques were produced in 
mice immunized with Bacillus proteus anti-proteus aggregates or antisera directed against the 
H-2 antigens of the anti-allotype sera producers (20). For "a" PFC development, anti- 
allotype serum pools made in C57BL mice against CSW anti-proteus-B, proteus aggregates 
were used. Such pools are potentially reactive against the four classes "yG2~, "~'A, ~G2b, and 
"yG1 corresponding respectively to the loci Ig-1, 2, 3, and 4. However, pools selected for use 
in these studies had detectable precipitation only with 125I-labeled qcG2a myeloma proteins 
(of the "a" allotype). Therefore, development with these sera at their limiting dilutions re- 
vealed only "yG2a PFC. 

For the development of "b" PFC two pools of anti-ailotype serum were used. These sera 
did not precipitate a 3'G1 myeloma protein of "b" allotype (MOPC300, kindly supplied by 
Dr. M. Potter), although it did precipitate in high titer a qtG2a protein preparation obtained 
from a SJL/J mouse with a hypergammaglobulinemia of this class (21). Since myeloma pro- 
tein of all classes of "b" allotype are not available the sera could not be tested for reactivity 
with ~'G2b. Therefore, for "b" PFC development we can say with certainty only that "YG2a 
PFC are ievealed and that 3'Gl are not. The dilution of anti-allotype sera used were limiting 
dilutions (usually between 1:100 and 1:200) previously found to develop the maximum 
number of 3'G2 PFC in spleens removed from mice 8-10 days after immunization. 

Separation of Lymphoid Cells.--Separation of ceils was achieved by isopycnic (equilibrium) 
centrifugation in a stepwise density gradient of BSA using the method described bv Raidt 

3 Normal BALB/C mouse serum was found to increase the visibility of direct plaques and 
gave 10-30% higher direct PFC counts than slides incubated without serum addition. 

4 Dried complement (guinea pig) Hyland Laboratories, Los Angeles, Calif. 
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et al. (9). As reported by these authors, results vary with the lot of BSA solution used. In 
these experiments a single lot 5 of 35% sterile isotonic solution of BSA, ptI 7 and specific con- 
ductance 5.2 millimhos was used. 1 ml each of 33%, 29%, c~ 0.5 ml of 23jo, and 10% BSA 
diluted in balanced saline solution (BSS) (9) was layered in a nitrocellulose tube. The cells 
to be separated were included in the 333  layer. The tubes were spun in the SW39 Beckman 
rotor at 13,500 rpm for 30 rain at 4°C. Four fractions, A, B, C, and D were harvested from 
the interphases commencing at the top. The harvested fractions were suspended in 20 volumes 
of MEM-PM, centrifuged at 300 g for 10 min at 4°C, and resuspended in MEM-PM. 

Fractionation of Spleen Cells on Glass Bead Columns.--The method described by Plotz 
and Talal (11) was used to further separate density fractions into adherent and nonadherent 
populations. Glass beads 6 in MEM-PM containing 10% fetal calf serum were packed in a 
5 ml plastic syringe, occupying a volume of approximately 3 ml. This was equilibrated at 
37°C, and 70-90 million nucleated cells were loaded onto each column. After 10 min, non- 
retained cells were eluted by washing with about 30 ml of the same medium at 37°C. Some 
adherent cells were eluted with 1% ethylenediaminetetraacetic acid (EDTA) in cold Puck's 
Saline G (22) without divalent cations. Recovery in these two fractions is reported in Results. 

Experimental Design.--The general plan of the experiments is indicated in Fig. 1. Spleens 
or lymph nodes were removed from mice 3-118 days after intravenous injection of 4 X 10 s 
SRBC (in some experiments 4 ;< ]05) and a single cell suspension was prepared. The cells, 
pooled from four to eight spleens, were separated according to density on the BSA gradient 
into fractions, A, B, C, and D. In some experiments gradient fraction A was further separated 
on glass bead columns. 

Aliquots of the original cell suspension and of all fractions obtained after separation pro- 
cedures were assayed for their PFC content. Equal numbers of nucleated cells from each cell 
suspension were injected into mice irradiated with 600 R together with 4 )< l0 s SRBC. 7 
days later, the numbers of PFC in the spleens of these recipient mice were determined. 

RESULTS 

Specificity and Extent of PFC Development by A nti-Allotype Sera.--The speci- 

f icity of deve lopmen t  wi th  an t i -a l lo type  sera is demons t r a t ed  in Tab le  I.  

Anti-"a" sara were able to develop p laques  (3'G2~ P F C  as described in M a -  

terials and  Methods )  only  when  the spleen cells were t aken  f rom immunized  

C S W  mice or f rom C W B  mice t h a t  had  been i r rad ia ted  and  g iven  C S W  cells of 

immunized  donors.  S imi lar ly  a n t i - " b "  sara developed plaques  only wi th  spleen 

cells t aken  fronl  C W B  mice or f rom i r rad ia ted  C S W  mice g iven  pr imed  C W B  

cells. As described in M e t h o d s  the  "b" deve loped  P F C  include 3'G2~ producing  

cells and  do not  include 3'G1 producing  cells. G a m m a  G2b P F C  poss ib ly  are de- 

ve loped  wi th  a n t i - " b "  sara (see Mate r ia l s  and Methods ) .  

Parameters for Demonstration of an A doptiveSecondary Response ("Memory").-- 
Pre l imina ry  exper iments  were carr ied out  to de te rmine  the o p t i m u m  t ime 

be tween  cell t ransfer  and p laque  assay giving m a x i m u m  numbers  of direct  and 

developed P F C .  This  was found to be 7 days  using cells t aken  f rom animals  

3 -10  days  af ter  p r ima ry  i m m u n i z a t i o n - - i n  reasonable  ag reemen t  wi th  the re- 

5 Pentex, Inc., Kankakee, I11., Path-o-cyte No. 5, Lot 10-2. 
6 Superbrite glass bead, type 150-5005, Minnesota Mining & Manufacturing Co., Re- 

flective Products Div., St. Paul, Minn. 
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ports of others (23 25). In  most of our studies a primary saturating immunizing 
dose of 4 X 10 s SRBC was used. A low priming dose of 4 X 105 SRBC resulted 
in a very low primary PFC response but in a higher secondary response after 
transfer than was obtained when 4 X l0 s SRBC were used for priming (26). To 

Fro. 1. Experimental design. 

obtain the secondary adoptive response a challenge dose of 4 X l0 s SRBC was 
injected along with the spleen ceils in all experiments. 

Various numbers of spleen ceils from normal and immunized mice were trans- 
ferred into irradiated recipients to determine the dose that would consistently 
result in an adoptive response of developed PFC with primed ceils but would 
not give significant numbers of developed PFC with unprimed ceils. More than 
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5 X l0 s cells from nonimmunized mice were needed to elicit a significant re- 
sponse, while detectable numbers of P F C  were obtained using as few as 5 >( 10 5 
cells from primed animals. Consistently high adoptive secondary responses for 
all 3'G classes of developed P F C  were obtained with 5 )< 10 6 transferred cells, 
and this dose was used for most of the experiments. 

TABLE I 
Demonstration of Specificity of Devdopment of "rG2~ PFC in Spleen Cell Suspensions with 

A nti-allotype Sera 

No. of PFC on duplicate slides:~ 

Ig-1 Developed with: Source of spleen cells* allotypes Direct 
Anti-a Anti-b 

Immunized CSW 

Immunized CWB b 

Irradiated CSW given spleen cells 
from immunized CWB mice 

Irradiated CWB given spleen cells 
from immunized CSW mice 

Irradiated CSW given spleen cells 
from normal CWB mice 

b--*a 

a--~b 

b ~ a  

a 70,60 130,118 58,68 
42,30 103,101 33,35 
66,58 160,157 61,64 

22,29 20,27 93,81 
40,41 38,43 85,77 

124,143 140,130 212,230 

8,12 9,12 45,55 
59,73 71,61 112,115 
82,74 75,69 232,210 

29,30 52,58 32,30 
80,86 124,138 81,77 
64,62 145,127 63,58 

52,44 50,56 49,44 
87,91 70,100 83,100 

101,105 105,103 108,92 

* Spleen cell pools from four to eight donor mice. 
PFC assays performed 7 days after SRBC injection into normal mice or after spleen 

cell transfer (5 X 10 6 cells) and simultaneous injection of SRBC into irradiated mice. The 
figures in the various lines indicate values obtained in different experiments in which from 
0.2 to 2.2 X 10 6 cells were plated. 

Distribution of Direct and Indirect PFC in B S A  Gradient Fractions.--Pooled 
spleen cells taken from 4-8 mice on day  7-10 after immunizat ion were fraction- 
a ted by  densi ty  gradient  centrifugation into four bands (A, B, C, D). Tota l  cell 
recovery var ied  from 55-70%. The remainder of the cells was lost p resumably  
in the pellet or during the washing procedures. Of the cells recovered in the four 
bands in all experiments 15-23 % were found in A, 34-43 % in B, 28-30 % in C, 
and 11-14% in D. The means of the numbers for direct, total  3'G and 3'G2~ P F C  
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per 10 6 nucleated cells in the four bands, expressed relative to the numbers 
found in the unfractionated spleen cell suspension and calculated separately for 
each experiment, are indicated in Fig. 2. The average number of direct PFC per 
10 6 cells was significantly increased in bands A and B, unchanged in band C, 
and significantly decreased in band D. Similar results have been reported for 
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FIG. 2. Relative distribution of the three classes of PFC in BSA gradient fractions of spleen 
cells taken from mice 7-10 days after immunization. The points represent the arithmetic 
mean of the values for PFC/106 cells in four gradient bands relative to the value obtained 
for unseparated spleen ceil suspensions (horizontal dashed line). The numbers on the points 
indicate the numbers of experiments (four to eight spleens pooled per experiment). The 
vertical bars represent the 95% confidence limits computed by using appropriate Student 
t-test values. 

splenic direct PFC 1-3 days after immunization (9). An enrichment of total 
indirect PFC was obtained in bands A and B and a depletion in band D. The 
~/G2~ PFC were more equally distributed between the three upper bands. Only 
the D-band showed significantly decreased numbers. 

Distribution of Memory Cells in BSA Gradient Fractions.--Splenic memory 
cells from animals 7-10 days after immunization showed similar distributions 
in BSA gradients and the numbers of direct and developed PFC obtained in the 
recipient spleens 7 days after transfer of 5 X 10 8 cells from each gradient frac- 
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t ion are reported in Figs. 3 and 4. The  points in Fig. 3 represent the geometric 
means of the values for P F C  per recipient spleen obtained in all experiments 
done for each group. The  points in Fig. 4 represent the geometric mean of nor- 
malized differences for each individual  experiment between unsepara ted  spleen 
cells and cells from the gradient  fractions. Unsepara ted  spleen cells and cells 
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FIG. 3. Distribution in BSA gradient fractions of memory for "yM, total 3'G, and "gG2a 
PFC and ability to transfer a primary adoptive response for "yM. Spleen cells from donor 
mice were separated 7-10 days after primary immunization, and 5 X 106 cells from each 
fraction were transferred together with 4 ;< 10 s SRBC into irradiated recipients. U, un- 
separated spleen cells; A, B, C, D, gradient fractions. Solid circles (O) represent the geo- 
metric mean for the numbers of PFC per recipient spleen (antilog of average of log [x + 1] 
where x = number of PFC). The vertical bars represent the 95% confidence limits. Numbers 
next to the points represent numbers of experiments (pool of two to three recipient spleens 
per experiment)./% represents values obtained with lymph node ceils (pool of two recipient 
mice per point). [] represents values obtained with spleen cells from unimmunized donors 
(points are geometric means of three experiments with two recipient spleens pooled for each 
experiment). 

from the four bands were about equal in their  abi l i ty  to give rise to direct P F C  
in the i r radia ted  recipients. Frac t ion  A was significantly enriched (Fig. 4) for 
total  "yG memory  while the other fractions were not  significantly different (at  
the 5 % level) from the unseparated spleen cells in their  abi l i ty  to give rise to 
total  ~,G PFC.  However,  for 3'G~ a marked difference was found following in- 
ject ion of equal numbers of cells from the various bands. There is a four-fold 
enrichment for 3'G2a P F C  memory in the top (A-band) and then a progressive 
decrease in B and C with finally a very considerable depletion for q/G2~ memory  
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in the D-band. The D-band, 7-8 days after immunization, had no detectable 
3'G2a memory (see also Fig. 5). Thus, D-band cells, though unchanged in ca- 
pacity for direct and total indirect PFC memory, were virtually unable to trans- 
fer a 3~G2a PFC response. 

In a few experiments, similar results for memory distribution of the various 
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FIG. 4. Relative distribution of memory for three classes of PFC in BSA gradient frac- 
tions. Irradiated recipients were injected intravenously with 5 X 106 cells from each gradient 
fraction or from unfractionated spleen together with 4 X 10 s SRBC. The points represent 
the geometric means of the numbers of ]?FC obtained 7 days later in spleens of recipients 
injected with cells from BSA gradient fractions relative to unseparated spleen cells (dashed 
horizontal line). Numbers next to points represent numbers of experiments (two to three 
recipients per experiment). Vertical bars indicate 95% confidence limits. 

classes were found with spleen cells separated 4-7 days after immunization with 
4 X 10 5 SRBC. 

Though lymph nodes of mice immunized intravenously with 4 X 10 8 SRBC 
showed little or no primary PFC response, the adoptive response with lymph 
node cells 8 and 9 days after immunization paralleled that with spleen cells. The 
gradient distribution for memory was similar to that of spleen cells (triangles 
in Fig. 3). Also included in Fig. 3 are results of adoptive transfer of unimmunized 
spleen cells. The mean numbers of direct (3'M) PFC obtained after transfer of 
5 X 10 6 unimmunized spleen cells from the various gradient fractions did not 
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significantly differ from the results obtained with immunized cells. Neverthe- 
less, no developed PFC (3,G) were obtained after transfer of cells from un- 
immunized donors. 

Change in Density with Time after Primary Immunization of 3'G2~ Memory 
Activity.--Groups of mice were killed 3-118 days after an injection of 4 X 10 s 
SRBC, and A- and D-band cells prepared from spleen and lymph nodes 
were injected into irradiated recipients. As shown in Fig. 5, D-band cells at 

I0 5 i 

I - .  
Z 

o_  

a .  

10 4 

10 3 

10 2 

_<10 

o 

o o 
o J i  o 

o Q 
& A o o 

o o o  

o o 

o 
o 

o 

i I JI, ,#~ ,a~ I I 
3 5 7 9 ~ f05 118 

DAYS AFTER IMMUNIZATION 
OF DONOR MICE 

FIG. 5. Change in BSA gradient distribution of memory for "yG2a PFC with time after 
immunization. Separation of donor spleens on BSA density gradients was done 3-118 days 
after primary immunization with 4 X l0 s SRBC. 5 X 10 6 separated cells of A- or D-band 
were injected with 4 X l0 s SRBC into irradiated recipients. Each point represents "yG2a PFC 
obtained in one to three recipient spleens 7 days after transfer of A-band cells (O, spleen; 
/X, lymph nodes) or D-band cells ( 0 ,  spleen; A,  lymph nodes). 

3-9 days after priming displayed no or a markedly reduced capacity to transfer 
3'G2a memory when compared with an equal number of A-band cells. From 10 
days the A to D difference decreased and no difference between A- and D-band 
cells was evident by 42 days and up to 118 days after immunization. 

Absence of Correlation between Numbers of PFC and Memory Activity in BSA 
Gradient and Glass Bead Column Fractions.--The results presented in Fig. 2 
(distribution of PFC in the gradient fractions) and in Figs. 3 and 4 (distribution 
of memory cells) indicated that there is only a partial parallelism between the 
numbers of PFC in any one band and the capacity to engage in an adoptive 
secondary response. Thus the D-band contains a lower number of PFC of all 
types, yet only the adoptive 3'G2~ PFC response is deficient. The A-band is an- 
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riched for all PFC types, but contains a significantly increased number of 
memory cells only of ~G2~ type. The following experiments were designed to 
determine whether removal of all PFC types from the A-band would result in a 
decreased capacity to transfer memory. Using a glass bead column the cells 
were separated into two fractions: one containing cells that  were nonadherent 
to glass at 37°C ("nonretained") and a second containing cells that were ad- 
herent at 37°C in MEM-PM but were eluted in the cold with medium free of 
divalent cations and containing EDTA ("retained and eluted"). These fractions 

TABLE II 

Separation of PFC from Cdls Capable of Transferring an Adoptive Immune Response Using 
Glass Bead Columns 

PFC per 10 6 cells before injection (X 10-3) Total PFC/recipient spleen per 10' 
injected nucleated cells (X 10 -2) 

% Cell 
Indirect recovery Indirect 

Cells Direct Direct 
q'G2a 5'G total 7G~a ~/G total 

Fraction "A" 2.7* 2.5 11.5 23~ 26 111 
(from BSA (1 .3 -5 .9 )  (2 .3-2 .7)  (9.1-15.8) (16-33) (23-30) (79-133) 
gradient) 

Nonretained 0.02 0.03 0.2 14.2* 26 58 273 
(0-0.05) (0.01-0.04) (0-0.4) (6.5-18.8) (19--54) (47-72) (168-400) 

Retained and 1.3 1.5 6.7 35.2 15 11 113 
eluted (0.3-2.5) (1 .0-2 .1)  (4.3-8.7) (30.5-42.2) (2-73) (3-44) (26-475) 

* Arithmetic means (range). 
Geometric means (range). 

The data are from three experiments. For each experiment, spleen cells of six to seven 
donor mice 7 days after immunization with 4 X 108 SRBC were pooled and separated on a 
BSA gradient. Fraction A was then separated into a nonretained and a retained and eluted 
fraction (see Methods) on a glass bead column. Two to three irradiated mice received 10 6 
cells plus 4 X 108 SRBC each, and their spleens were individually assayed 7 days later 
for PFC. 

contained respectively about 14 % and 35 % of the A-band cells, leaving about 
50% still adherent to the glass beads. PFC assays of these fractions were per- 
formed and, as shown in Table II, the nonretained cell fraction was virtually 
devoid of direct, total indirect, and ~/G2~ PFC. However, one million cells from 
this fraction were able to elicit in irradiated recipients a memory response for 
all PFC types, which was in point of fact higher than that of unfractionated 
A-band cells. It is also clear from Table II that the fraction eluted from the 
column contained numerous PFC and that these cells were as effective in trans- 
ferring a secondary PFC response as unseparated A-band cells. 

DISCUSSION 

Sheep erythrocytes stimulate sensitive cells to undergo metabolic changes re- 
sulting in proliferation and the subsequent formation of antibody producing 
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cells. Recently, substantial evidence has revealed that this involves the inter- 
action of two cells derived respectively from the thymus and bone marrow in 
the mouse (27, 28). Although both may be sensitive to antigen, the latter is the 
major source of precursors of the actual antibody producing cells (29) detected 
by the localized hemolysis in gel techniques. We have utilized the buoyant 
density changes that occur in stimulated cells to show the relationship between 
the PFC of different immunoglobulin classes and the cells conferring immuno- 
logical memory. 

This report is the first to our knowledge of the distribution in density gradi- 
ents of total yG and ~G~ PFC, although studies of others have shown that 3'M 
PFC have a lower average density in BSA density gradients than the bulk of 
nucleated spleen cells (9, 30). During the period of 7-10 days after antigenic 
stimulus, total 3'G PFC, mainly of the 3'G1 type, are also enriched in the less 
dense fractions but not as much as the "/M PFC. 3'G2~ plaques have a slightly 
flatter distribution across the density gradient. These differences in the density 
profile between 3'M and 3'G producing cells at that stage of immunization un- 
doubtedly reflect differences in the physiological state of these cells. Cells enter- 
ing into a metabolically active state such as occurs on blast transformation are 
lighter than the quiescent lymphocytes from which they arise. As these cells ap- 
proach division they can be expected to become still less dense. Antigen sensi- 
tive cells 10 hr after stimulation are much lighter than prior to antigenic stimu- 
lation (31) but plasma cells are, on the average, denser than either 19S PFC or 
total spleen cells (30). Erythrocytes become progressively more dense as they 
age (32). 

The lower density of "yM PFC therefore is consistent with their recent deriva- 
tion from dividing cells. In fact, PFC of the 3'M type have themselves been seen 
to divide (33) and Jerne et al. (10) have suggested that 3'M PFC have half-lives 
of less than 24 hr. Studies utilizing thymidine incorporation have shown that 
all 19S PFC have recently synthesized DNA (34, 35). The appearance of rela- 
tively fewer 3,G~ PFC in the lighter fractions and enrichment in the denser 
fractions at 7-10 days after immunization may be a consequence of the longer 
time after division required for a cell to secrete 3'G2a antibodies in sufficient 
quantities to become a PFC. 

Antigenic stimulation causes not only a density change of cells producing 
antibodies, but also of cells capable of transferring a secondary response, i.e. 
memory. The density profile of memory cells for the different classes is quite 
distinct from that of the PFC of these classes. Our aim in this work was to study 
the 3'G PFC and memory response, but our data also bear on 3,M memory. 
We find that there is neither an appreciable density change subsequent to 7 
days after an immunizing dose of 4 X 10 s SRBC in cells capable of transferring 
a 3'M response, nor is there an increase in the response transferred by 5 ;K 106 
cells from immunized compared with nonimmunized animals. Thus, if there is 
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3'M memory under these conditions, it persists for less than 7 days. Cunningham 
(25) and Shearer et al. (24) have recently looked for 3'M memory in the SRBC 
system. These authors used, respectively, priming doses of 5 X 106 and 2 X 106 
SRBC (in contrast to our dose of 4 X 10 s SRBC) and studied memory in an 
adoptive transfer system. Their results differ from one another. Cunningham 
found that 5 X 105 transferred cells from primed donors gave a "greatly in- 
creased PFC response" per spleen in the irradiated recipients as compared to 
cells from unprimed donors. He also found that "ten to thirty-fold less cells 
(from primed donors) were required to give a significant response" in the ir- 
radiated recipients. This apparent memory was reported to persist with "no 
more than a hint of decline" for at least 5 months. The results of Shearer et al. 
did not indicate ~M memory in a similar system 4-5 months after priming. 

At 7-10 days after immunization, 3'G2~ PFC have a considerably higher aver- 
age density than the memory cells for this class. Using the relation between 
density and antigenic stimulation discussed above, we would suggest that the 
3'G2~ memory cells arise later with respect to antigen administration than the 
3'G2~ PFC. At the same time after immunization, other 3'G memory cells (pre- 
sumably 3'G1) are not depleted from the denser gradient fractions. The physical 
separation of memory cells for two immunoglobulin classes shows that different 
cells carry memory for different classes. This conclusion is in agreement with 
that reached by Hamaoka et al. (36) and Shearer et al. (24). Our data is also 
in agreement with Hamaoka et al. (36) in showing that 3'G1 memory arises 
prior to 3'G2 memory. This order of memory cell appearance is the same as that 
reported by Wortis et al. for PFC of these classes (19). 

The relationship between density and time after immunization is emphasized 
by the density changes in 3'G2~ memory seen over a period of 16 wk (Fig. 5). 
Soon after immunization, the 3'G2~ memory cells have a low density that in- 
creases progressively with time. By 6 weeks the difference in memory exhibited 
by the A and D fractions is no longer observed. Thus the memory cells have 
become similar in density to the general spleen and lymph node cell populations. 

Cunningham (25) showed that primed spleen cell suspensions from which 3'M 
PFC had been removed by micromanipulation, lost none of their ability to 
transfer a 7M PFC response. We have confirmed these results for 3'M by using 
glass bead columns to remove virtually all 3'M PFC from such suspensions with 
out diminishing the ability of these suspensions to transfer a ~M response. 
Further, we have shown that antibody secreting cells are not needed for 3'G 
memory. In fact, greater numbers of 7G PFC are obtained per 106 cells trans- 
ferred after removal of 3'G PFC by glass bead columns. This last finding may 
be due to avoidance of suppression by anti-SRBC antibodies that would have 
been released by transferred PFC. (37). 

The methods used here for obtaining suspensions either greatly enriched or 
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depleted in memory celts will be useful in studies of cell interactions in the sec- 
ondary response. This will be the subject of the subsequent paper of this series. 

SUI~MARY 

Plaque forming cells (PFC) of different immunoglobulin classes producing 
antibodies against sheep erythrocytes were separated according to their 
buoyant densities by means of equilibrium centrifugation in a stepwise BSA 
gradient. In the period of 7-10 days after immunization 7M PFC are markedly 
enriched in fractions of low density and relatively depleted in fractions of high 
density. The distribution of total 3'G PFC shows less enrichment in the lower 
density fractions and less depletion in the higher density fractions, The density 
profile for 3'G2~ PFC is even flatter, with a significant difference (depletion) 
relative to the unseparated spleen cells only in the highest density fraction. 

The density gradient distributions of cells able to transfer an adoptive im- 
mune response of the various immunoglobulin classes are markedly different 
from the PFC distribution. 

Cells obtained 7-10 days after immunization able to transfer an IgM response 
are present in the same proportions across the density gradient, whereas 
memory cells for 3'Ge~ obtained at this time are markedly enriched in fractions 
of low density and virtually depleted from high density fractions. With increas- 
ing time after primary immunization, the 3'G2~ memory cells increase progres- 
sively in density and by 6 weeks the higher and lower density fractions have 
the same proportions of ~/G2a memory cells. The total ")'G (mainly ~'G1) memory 
cells by 7-10 days show slight enrichment in low density fractions and no de- 
pletion in high density fractions. The conclusions were reached that (a) memory 
for 7G~ develops earlier than memory for 3'G2~ and (b) that memory for anti- 
SRBC antibodies of different classes is carried in separate cells. 

When gradient fractions enriched for PFC and memory cells for all classes 
were completely depleted of PFC using glass bead columns, the ability of this 
fraction to transfer memory for all classes was not diminished. This shows that 
memory cells are not identical with cells secreting antibodies. 

The authors are pleased to acknowledge Janet Barrett for technical assistance, Leonore 
Herzenberg and Derek Hewgill for anti-allotype sera, and Dr. E. B. Jacobson and Dr. G. F. 
Mitchell for many helpful comments and criticisms of the manuscript. 
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