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Abstract: Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved
in neuromodulation. The purpose of this study is to characterize the organization of SST neu-
rons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis,
and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different
perspective to other commonly used nocturnal rodent models. In this study, SST neurons were
located in all layers of the VC except in layer I; they were most common in layer V. Most SST
neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. More-
over, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of
SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and
calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric
oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively.
Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyl-
transferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic
fibers contact some SST neurons. The results showed some distinguishable features of SST neurons
and provided some insight into their afferent circuitry in the gerbil VC. These findings may support
future studies investigating the role of SST neurons in visual processing.

Keywords: somatostatin; visual cortex; gamma-aminobutyric acid; calcium-binding proteins;
calcium/calmodulin-dependent protein kinase II; dopamine receptors; nicotinic cholinergic receptors;
Mongolian gerbil; immunocytochemistry

1. Introduction

Somatostatin (SST), first isolated from the ovine hypothalamus in 1973, acts as a
growth hormone inhibitory peptide [1]. SST impacts a wide variety of physiological
functions, such as hormonal regulation [1,2], gastrointestinal regulation [3], plasticity [4–6],
learning [5,7], memory [6], and visual processing [8–10]. Pathologically, SST is involved in
multiple diseases, such as schizophrenia [11], Alzheimer’s disease [6], depression [12], and
obesity [13].

The identification of the transmitter-, neuromodulator-, and peptide-specific heteroge-
nous types of neurons is essential to understanding the brain’s functioning. In the cerebral
cortex, SST neurons constitute a large cortical subpopulation of interneurons, comprising
approximately 30% of gamma-aminobutyric acid (GABA)ergic interneurons [14–16]. Three
major EF-hand calcium-binding proteins (CBPs), calbindin-D28K (CB), calretinin (CR), and
parvalbumin (PV), have been extensively utilized to localize different types of cortical
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interneurons and SST neurons [17–20]. Two additional markers have been used to identify
interneuron subtypes and have been known to have overlapping populations with SST
neurons: neuropeptide Y (NPY) and nitric oxide synthase (NOS). NPY, one of the most
abundantly expressed neuropeptides in the brain, is mostly seen in GABAergic neurons.
NOS produces a retrograde neurotransmitter, nitric oxide [21–25].

Similarly to the somatosensory and auditory cortex, the visual cortex (VC) is composed
of six distinct cortical layers that are characterized by their synaptic in- and out-puts and
by specific cell types present in each layers [26]. The major class of projection neurons in
the VC is the heterogenous types of pyramidal cells which are located in any of the cortical
layers except layer I. Extremely large number of genetic, functional and/or structural
types of cortical interneurons have been identified [26–30]. In this study, we focused on
SST neurons that are specifically found in cortical layers II/III and V/VI. SST neurons
have been identified in the VC of various animals including mammals and non-mammals,
such as monkeys [31,32], cats [33–37], rabbits [38], rats [31,39–43], mice [14], pigeon visual
Wulst [44], and the squid optic lobe [45]. The majority of SST neurons in the mammalian
VC are non-pyramidal interneurons [14,32,34,35,39–41,46,47]. The cortical distribution of
SST neurons varies with animal species, but they are generally concentrated in either layer
II/III [32,38,40,42,43] or V/VI [32,34,37,41].

Mongolian gerbils, Meriones unguiculatus, are rodents belonging to the subfamily
Gerbillinae. Gerbils are widely used as research models in areas such as aging [48],
metabolism [49–54], anatomy [55,56], and parasitic diseases [57,58]. In neuroscience
research, gerbils have been widely used to study sensory systems [59–63], neural dis-
eases [61,64–66], and brain structure [67–69]. Mice and rats are common in biomedical
and neuroscience research due to their genetic manipulability and well-published data.
However, gerbils are particularly important and have specific advantages for studies on the
central visual system. For example, mice and rats are nocturnal animals with rod-dominated
retinae. Gerbils, however, are diurnal animals with a higher proportion of retinal cones
compared to mice and rats [70–72], thus giving them a higher visual acuity [73]. Further-
more, gerbils have a specialized retinal region, which is similar to the human fovea [72,74].
Accordingly, gerbils have been used widely in studies of the central visual system, such as
the retina [71,72,75,76] and sensory cortex, including the VC [61–63,77].

Although SST neurons have been extensively examined in various animals, the neu-
ronal architecture of SST neurons has not been studied in the Mongolian gerbil VC. Pursuing
this knowledge of such an excellent animal model holds important implications for cen-
tral visual system research. Therefore, we have designed this study to investigate the
organization of SST neurons in the gerbil VC.

It is well known that the morphological identification of neurons is a direct reflection
of their functional connection and, thus, provides a fundamental understanding of the
brain. Therefore, we first examined the distribution and morphology of SST neurons
to identify any heterogenous subtypes. Next, we determined the expression patterns of
GABA in SST neurons to determine any species differences. Then, as cell types can be
distinguished by the expression of specific peptides, we determined different expression
patterns of various CBPs, NPY, and NOS in SST neurons. Finally, although some outputs of
SST neurons have been studied in detail, little is known about the synaptic inputs into these
cells; hence, we decided to analyze dopaminergic and cholinergic receptors in SST neurons.
Both dopamine [78,79] and SST [80] are known to play a role in mood regulation. It is
also known that cholinergic signaling through neuronal nicotinic acetylcholine receptors
(nAChRs) modulates higher cognitive functions [81], including memory [82]. Interestingly,
SST neurons also contribute to cognition [8] and memory formation [6]. Our results
show diverse heterogenous types of SST neurons based on varying morphologies and
expressional patterns of GABA, CBPs, NPY, and NOS. We also provide evidence to suggest
possible connections of SST neurons with dopaminergic and cholinergic neurons.
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2. Materials and Methods
2.1. Animal and Tissue Preparation

A total of 15 adult Mongolian gerbils (Meriones unguiculatus) (aged 3–4 months, weigh-
ing 70–90 g), obtained from a local vendor, were used in this study. Animals were group
housed under a 12 h light:12 h dark cycle until used for the study. The temperature and
humidity in the facilities ranged from 23 to 26 ◦C and from 45 to 65%, respectively. All of the
animals were deeply anesthetized with isoflurane (5% in O2) and perfused intracardially
with 4% paraformaldehyde and 0.3% glutaraldehyde in 0.1 M sodium phosphate buffer
(pH 7.4) containing 0.002% CaCl2. Procedures for perfusion, isolation of the brain and
tissue sectioning were based on those previously described [83–85]. The Guide for the Care
and Use of Laboratory Animals (https://grants.nih.gov/grants/olaw/guide-for-the-care-
and-use-of-laboratory-animals.pdf; accessed on 20 October 2021) was followed. All of the
animal experiments were approved by the Animal Care and Use Committee of Kyungpook
National University (permission NO. 2014-0181).

2.2. Horseradish Peroxidase Staining

Monoclonal rat anti-SST was used as the primary antibody and biotinylated anti-rat
IgG produced in goats was used as the secondary antibody (Table 1). Both antibodies were
diluted at a ratio of 1:200. Standard immunocytochemical techniques and methods were
used, as previously described [83,84]. As a negative control, some sections were incubated
in the same solution without the addition of the primary antibody. These control tissues
showed no SST immunoreactivity. The final sections were examined and photographed on
a Zeiss Axioplan microscope (Carl Zeiss Meditec, Inc., Jena, Germany) with conventional
or differential interference contrast (DIC) optics.

2.3. Fluorescence Immunocytochemistry

Standard immunocytochemical methods were employed as described earlier [83–85].
Cortical sections were double-labeled for SST with each of the following: GABA, CBPs
(CB, CR, PV), NPY, NOS, CaMKII, and D1 or D2 dopamine receptors. Triple-labels were
conducted on sections for SST, choline acetyltransferase (ChAT), and α7 or β2 nAChRs.
Labeled sections were preserved under coverslips in Vectashield mounting medium (Vector
Laboratories, Inc., Burlingame, CA, USA). The complete information of the primary and
secondary antibodies used is listed in Table 1.

2.4. Quantitative Analysis

All of the methods have been described in detail elsewhere and are only summarized
here [85]. For the quantitative analysis of laminar distribution, a total of 9 sections, with
a width of 2000 µm each, were sampled from each of the 3 animals (3 tissue sections
per animal). The morphological types were analyzed for 558 neurons from 9 sections in
3 gerbils. The average diameter and area of SST neurons were determined for 202 neurons
analyzed from 20 sections in 3 gerbils. Double-labeled neurons were counted from a total
of 9 different tissue sections from each of the 3 animals, each 2000 µm in width, across all
layers.

2.5. Synaptic Identification

Triple-labeling of SST neurons with ChAT-immunoreactive (IR) fibers and nAChRs
was captured using a Zeiss LSM800 laser scanning confocal microscope (Carl Zeiss Meditec,
Inc.) with a 100× objective. At the contact point between the SST neurons, ChAT-IR
fibers, and receptors, z-series images of these 3 components were taken at 0.2 µm intervals
along the z-axis using the same laser scanning confocal microscope. The images were
viewed using an EC Plan-Neofluar 10×, C-Apochromat 40×/1.2 W, and/or 100×/1.2 oil,
with objectives at 2.5× zoom. We obtained approximately 70–80 confocal images at the
presumed synaptic contact. The z-series of the confocal images were reconstructed as
three-dimensional (3D) images using the ZEN imaging software (2.3 blue edition service
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pack 1, Carl Zeiss Microscopy GmbH, Jena, Germany). The 3D images and orthogonal
views (xy, xz, and yz planes) were used to identify points where the ChAT-IR fibers and α7
or β2 nAChRs contacted the SST neurons.

Table 1. List of primary and secondary antibodies and their dilution used in present study.

Primary Type Dilution Manufacturer

SST RtM 1:200 Millipore, Burlington, MA, USA
GABA MM 1:500 Millipore

CB MM 1:500 Sigma-Aldrich, Saint Louis,
MO, USA

CR MM 1:500 Sigma-Aldrich
CR RbP 1:100 Sigma-Aldrich
PV MM 1:500–1000 Millipore

NPY RbP 1:500 Immunostar, Hudson, WI, USA
NOS MM 1:200 BD Biosciences, San Jose, CA, USA

CaMKII RbP 1:500 Proteintech, Rosemont, IL, USA

D1 MM 1:200 Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA

D2 MM 1:200 Santa Cruz Biotechnology, Inc.
ChAT MM 1:250 Millipore
α7 RbP 1:200 Santa Cruz Biotechnology, Inc.
β2 RbP 1:200 Santa Cruz Biotechnology, Inc.

Secondary Conjugation Dilution Target Manufacturer

HRP

Goat anti-rat IgG Biotinylated 1:200 SST Vector laboratories, Inc.,
Burlingame, CA, USA

Fluorescence

Goat anti-rat IgG Cy3 1:200 SST
Jackson ImmunoResearch

Laboratories, Inc.,
West Grove, PA, USA

Horse anti-mouse IgG FITC 1:200 CB, CR(MM), PV, GABA,
ChAT, D1, D2, NOS Vector laboratories, Inc.

Goat anti-rabbit IgG FITC 1:200 CR(RbP), NPY, CaMKII Jackson ImmunoResearch
Laboratories, Inc.

Goat anti-rabbit IgG Cy5 1:200 α7, β2
Jackson ImmunoResearch

Laboratories, Inc.

SST, somatostatin; GABA, gamma-aminobutyric acid; CB, calbindin-D28K; CR, calretinin; PV, parvalbumin; NPY,
neuropeptide Y; NOS, nitric oxide synthase; CaMKII, calcium/calmodulin-dependent protein kinase II; D1, D1
dopamine receptor; D2, D2 dopamine receptor; ChAT, choline acetyltransferase; α7, α7 nicotinic acetylcholine
receptor; β2, β2 nicotinic acetylcholine receptor; RtM, rat monoclonal; MM, mouse monoclonal; RbP, rabbit
polyclonal.

3. Results
3.1. Laminar Distribution of SST Neurons

SST neurons were selectively distributed in the gerbil VC (Figure 1). Figure 1A shows
a thionin-stained section of a gerbil VC, which revealed division of the cortical layers.
Figure 1B shows the laminar distribution of SST neurons with different intensities of stain-
ing. The first group of neurons were intensely stained (Figure 1B, arrowheads). These
intensely stained neurons were mostly located in layers V–VI and sparsely distributed
through II–IV (Figure 1D, black colored bars). The second group of neurons were weakly
stained (Figure 1B, arrows), and these types of neurons showed a more even distribution
compared to the former group (Figure 1D, white colored bars). In both groups, the distribu-
tion peaked at layer V and was absent in layer I, except a single weakly stained SST neuron
found in layer I. Figure 1C represents a dark field image of SST fibers forming a plexus
throughout multiple layers. Figure 1D shows the relative frequency of the laminar distribu-
tion of the two differently stained SST neurons and the sum of both calculated SST neurons,
respectively. Quantitatively, 0% ± 0% (mean ± S.D.) of intensely stained SST neurons were
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found in layer I, 3.50% ± 3.96% were found in layer II, 6.29% ± 4.32% were found in layer
III, 2.10% ± 3.47% were found in layer IV, 51.05% ± 21.2% were found in layer V, and
37.06% ± 19.54% were found in layer VI. Furthermore, 0.17% ± 0.54% of weakly stained
SST neurons were found in layer I, 7.20% ± 3.03% were found in layer II, 24.01% ± 6.58%
were found in layer III, 25.73%± 6.57% were found in layer IV, 30.53% ± 4.35% were found
in layer V, and 12.35% ± 4.34% were found in layer VI. 0.14% ± 0.44% of total SST neurons
were found in layer I, 6.47% ± 2.41% were found in layer II, 20.52% ± 8.41% were found in
layer III, 21.07% ± 4.71% were found in layer IV, 34.57% ± 4.78% were found in layer V,
and 17.22% ± 4.49% were found in layer VI (Figure 1D, striped bars).
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Figure 1. Laminar distribution of SST neurons in the gerbil VC. (A) Thionin-stained section illustrating
the layer division in gerbil VC. (B) Immunostained section showing distribution of SST neurons
in gerbil VC. SST neurons in gerbil VC can be distinguished as either intensely (arrowheads) or
weakly (arrows) stained, based on their intensity of staining. (C) Low-magnification dark field
photomicrograph of the gerbil VC with SST fibers dispersed throughout whole layers. (D) Histogram
of the relative distribution of intensely and weakly stained SST neurons in the gerbil VC. The error
bars represent standard deviation (S.D.). Scale bar = 100 µm.

3.2. Morphology of SST Neurons

Figure 2A–J show the representative form of each cell type. Figure 2A,B,G repre-
sent multipolar round/oval cells, the most common type in SST neurons, which have a
round/oval-shaped cell body and multiple dendrites extending from the cell body to many
directions. The multipolar round/oval cells had medium dendritic fields (200–300 µm
in diameter). Figure 2C,D,H show multipolar stellate cells, which are the second most
common type among SST neurons. Similarly to round/oval cells, these types of cells also
have multiple dendrites proceeding to various directions. However, the polygonal-shaped
cell body distinguishes these cells from round/oval cells. In general, the multipolar stellate
cells had larger dendritic fields (300–400 µm in diameter) than round/oval cells. Figure 2E,I
show typical vertical fusiform cells. These cells have a vertical fusiform cell body with two
main processes, each ascending towards the pial surface and descending to lower layers,
respectively. These types of cells have medium to large dendritic fields (200–400 µm in
diameter). Figure 2F,J are examples of horizontal cells, which have a horizontally oriented
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fusiform cell body and horizontally oriented long dendrites. In the present study, some
fibers in this cell type were found to have more than 500 µm-long fibers (Figure 2J). Al-
though a large amount of the SST-staining in the present study is notable, we still face the
high possibility of a lack of complete staining of cells due to the limitations of immuno-
cytochemistry, and truncations of some cell processes due to the sectioning and curving
of processes. Thus, the labeling of dendrites was not sufficiently extensive to provide full
descriptions of the dendritic size and morphology.
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Figure 2. Images of SST neurons’ morphologies and quantitative data in the gerbil VC. DIC photomi-
crographs (A–F) and drawings (G–J). (A,B,G) Multipolar round/oval cell. (C,D,H) Multipolar stellate
cell. (E,I) Vertical fusiform cell. (F,J) Horizontal cell. Although the drawings are copies based on the
best-stained cells, note that cell depictions may not be realistic due to the limitations of immunocyto-
chemistry, such as imperfect filling of the whole cell body and trimming of fibers. (K) Histogram of
the morphological distribution of SST neurons in the gerbil VC. Multipolar round/oval cells were the
most commonly found. The average diameter (L) and area (M) of SST neurons in the gerbil VC were
calculated. The average diameter ranged from 7.50 to 14.48 µm, with a mean of 10.81 µm (S.D. = 1.34).
The average area of these cells ranged from 44.20 to 153.12 µm2, with a mean of 93 µm2 (S.D. = 22.70).
The error bars represent standard deviation (S.D.). Scale bar = 20 (A–F) and 50 µm (G–J).

Figure 2K reveals the relative frequency of each cell type in the gerbil VC. Quantita-
tively, 44.62% ± 3.94% (mean ± S.D.) (249 of 558 cells) of SST neurons were round/oval,
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35.48% ± 3.44% (198 of 558 cells) were stellate, 13.08% ± 3.98% (73 of 558 cells) were
horizontal, and 6.81% ± 3.09% (38 of 558 cells) were vertical fusiform. Figure 2 shows the
average diameter (O) and area (P) of SST neurons, respectively. The average diameter of
SST neurons ranged from 7.50 to 14.48 µm, with a mean of 10.81 µm (S.D. = 1.34 µm). The
vast majority of SST neurons (87.62%, 177 of 202 cells) had a diameter ranging between 9 to
13 µm, and none of these cells had a diameter > 15 µm. The area of these cells ranged from
44.20 to 153.12 µm2, with a mean of 93.00 µm2 (S.D. = 22.70 µm2).

3.3. Colocalization of SST with GABA, CBPs, NOS, NPY, CaMKII, Dopamine Receptors, and
ChAT with nAChRs

In the present study, we investigated whether the SST neurons in the gerbil VC
colocalize with GABA, CBPs, NPY, or NOS. Figure 3 shows neurons stained with SST
(Figure 3(A1,B1,C1,D1,E1,F1,G1,H1,I1,J1,K1)), GABA (Figure 3(A2,B2)), CBPs (Figure 3
(C2,D2,E2,F2,G2)), NPY (Figure 3(H2,I2)), NOS (Figure 3(J2,K2)), or CaMKII (Figure 3
(L2,M2)), and the overlapped images of SST with GABA (Figure 3(A3,B3)), CBPs (Figure 3
(C3,D3,E3,F3,G3)), NPY (Figure 3(H3,I3)), NOS (Figure 3(J3,K3)), or CaMKII (Figure 3
(L3,M3)). Some cells were clearly labeled with SST and GABA, CB, CR, NPY, NOS, or
CaMKII antibodies in the gerbil VC. Other cells were labeled with one of the antibodies,
but not both. There was no obvious relationship between cell morphology and whether
the cell was single or double-labeled. None of the SST neurons were labeled with PV
(Figure 3(G1–G3)). Quantitatively, 33.50% ± 6.04% (66 of 197 cells) of SST neurons were
double-labeled with GABA, 24.05%± 3.73% (51 of 212 cells) with CB, 16.73%± 2.77% (40 of
239 cells) with CR, 0% (0 of 193 cells) with PV, 75.41% ± 8.64% (200 of 265 cells) with NOS,
80.07% ± 7.80% (217 of 271 cells) with NPY, and 64.57% ± 8.77% (164 of 254 cells) with
CaMKII. The percentage of double-labeled cells was relatively consistent across sections
and among animals (Table 2).

To determine if SST neurons in the gerbil VC receive synaptic inputs from dopaminer-
gic neurons, we double-labeled them with D1 or D2 dopamine receptors. Figure 4 shows
the double-labeling of SST neurons (red) with well-stained immunopuncta of D1 or D2
dopamine receptors (green). Some neurons were clearly co-labeled with anti-SST and
anti-receptor antibodies. The immunopuncta of D1 (Figure 4A,B) or D2 (Figure 4C,D)
dopamine receptors clearly surrounded some SST neurons (D1 in Figure 4(A2,B2) or D2
in Figure 4(C2,D2)). There were some cells (arrowhead) that were not surrounded with
dopamine receptors or labeled with SST. Conversely, some cells (arrows) were surrounded
by dopamine receptors but were not labeled with SST.

In order to identify whether SST neurons in the gerbil VC receive synaptic inputs
from cholinergic neurons, we triple-labeled with them ChAT and either α7 or β2 nAChRs.
Figure 5 shows the distribution of SST neurons (Figure 5A,H), ChAT-IR fibers (Figure 5B,I),
α7 nAChR (Figure 5C), and β2 nAChR (Figure 5J). Merged images of the cell with fibers
and each receptor are shown in Figure 5D,K. The crosshair reveals the colocalization of
SST neurons and ChAT-IR fibers with the nAChRs, in an orthogonal projection. The areas
marked with white squares in Figure 5A–D,H–K are displayed at higher magnification in
Figure 5(E1–G4,L1–N4). The merged images of SST neurons and ChAT-IR fibers in the xy, xz,
and yz planes are shown in Figure 5(E1,F1,G1,L1,M1,N1), respectively. Both SST neurons
and ChAT-IR fibers are labeled together in every plane. This indicates the coexistence
of the SST neurons and ChAT-IR fibers. Similarly, we identified that SST neurons and
α7 nAChRs (Figure 5(E2,F2,G2)); ChAT-IR fibers and α7 nAChRs (Figure 5(E3,F3,G3));
SST neurons, ChAT-IR fibers, and α7 nAChRs (Figure 5(E4,F4,G4)); SST neurons and β2
nAChRs (Figure 5(L2,M2,N2)); ChAT-IR fibers and β2 nAChRs (Figure 5(L3,M3,N3)); and
SST neurons, ChAT-IR fibers, and β2 nAChRs (L4,M4,N4) overlap in all 3 planes. These
images suggest that cholinergic fibers make synaptic contacts and innervate SST neurons
in the gerbil VC.
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CB- (C2,D2), CR- (E2,F2), PV- (G2), NPY- (H2,I2), NOS- (J2,K2), or CaMKII-IR (L2,M2) neurons 
labeled with FITC, shown in green, and overlapped images of SST with GABA (A3,B3), CBPs 
(C3,D3,E3,F3,G3), NPY (H3,I3), NOS (J3,K3), and CaMKII (L3,M3) in the gerbil VC. Some of the SST 
neurons co-expressed GABA (arrowheads in A3,B3), CB (arrowhead in C3), CR (arrowhead in E3), 
NPY (arrowheads in H3,I3), NOS (arrowheads in J3,K3), or CaMKII (arrowhead in L3). However, 
none of the SST neurons co-expressed PV (arrow in G3). Single-labeled SST neurons were marked 
with arrows. SST, somatostatin; GABA, gamma-aminobutyric acid; CB, calbindin-D28K; CR, 
calretinin; PV, parvalbumin; NPY, neuropeptide Y; NOS, nitric oxide synthase; CaMKII, 
calcium/calmodulin-dependent protein kinase II. Scale bar = 20 μm. 

Figure 3. Fluorescence confocal photomicrographs of colocalization of SST neurons (A1,B1,C1,D1,
E1,F1,G1,H1,I1,J1,K1,L1,M1) labeled with Cy3, shown in red, with GABA- (A2,B2), CB- (C2,D2), CR-
(E2,F2), PV- (G2), NPY- (H2,I2), NOS- (J2,K2), or CaMKII-IR (L2,M2) neurons labeled with FITC,
shown in green, and overlapped images of SST with GABA (A3,B3), CBPs (C3,D3,E3,F3,G3), NPY
(H3,I3), NOS (J3,K3), and CaMKII (L3,M3) in the gerbil VC. Some of the SST neurons co-expressed
GABA (arrowheads in A3,B3), CB (arrowhead in C3), CR (arrowhead in E3), NPY (arrowheads in
H3,I3), NOS (arrowheads in J3,K3), or CaMKII (arrowhead in L3). However, none of the SST neurons
co-expressed PV (arrow in G3). Single-labeled SST neurons were marked with arrows. SST, somato-
statin; GABA, gamma-aminobutyric acid; CB, calbindin-D28K; CR, calretinin; PV, parvalbumin; NPY,
neuropeptide Y; NOS, nitric oxide synthase; CaMKII, calcium/calmodulin-dependent protein kinase
II. Scale bar = 20 µm.
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some cell nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). (A2,B2,C2,D2) 
Magnification of white boxes (A1,B1,C1,D1) showing merged images of cells co-expressing both 
SST (red) and dopamine receptors. SST neurons were clearly surrounded by immunopuncta of D1 
(A2,B2) and D2 (C2,D2) dopamine receptors. There are cells surrounded by dopamine receptors 
without SST immunoreactivity (arrows). There are also cells that are immunoreactive to neither 
dopamine receptors nor SST (arrowhead). Scale bar = 10 (A1–D1) and 5 μm (A2–D2). D1, D1 
dopamine receptor; D2, D2 dopamine receptor. 
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Figure 4. Double-labeling of SST with D1 or D2 dopamine receptors in gerbil VC. Fluorescence
photomicrographs of immunostained D1 (A,B) and D2 (C,D) dopamine receptors (green) surround
some cell nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). (A2,B2,C2,D2) Magnifi-
cation of white boxes (A1,B1,C1,D1) showing merged images of cells co-expressing both SST (red)
and dopamine receptors. SST neurons were clearly surrounded by immunopuncta of D1 (A2,B2)
and D2 (C2,D2) dopamine receptors. There are cells surrounded by dopamine receptors without
SST immunoreactivity (arrows). There are also cells that are immunoreactive to neither dopamine
receptors nor SST (arrowhead). Scale bar = 10 (A1–D1) and 5 µm (A2–D2). D1, D1 dopamine receptor;
D2, D2 dopamine receptor.

Table 2. Percentage of SST neurons, and neurons double-labeled with GABA, CBPs, NPY, NOS, or
CaMKII in the gerbil VC.

Antibodies Animal No.
Sections

No. SST
Cells

No.
Double % Double (Mean ± S.D.)

GABA
#1 3 70 23 32.85 ± 5.59
#2 3 73 23 31.50 ± 3.38
#3 3 54 20 37.03 ± 6.75

GABA total 9 197 66 33.50 ± 6.04

CB
#1 3 78 19 24.35 ± 0.56
#2 3 63 16 25.39 ± 1.55
#3 3 72 16 22.22 ± 5.69

CB total 9 212 51 24.05 ± 3.73

CR
#1 3 58 9 15.51 ± 4.29
#2 3 84 14 16.66 ± 0.56
#3 3 97 17 17.52 ± 0.65

CR total 9 239 40 16.73 ± 2.77

PV
#1 3 67 0 0
#2 3 65 0 0
#3 3 61 0 0

PV total 9 193 0 0
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Table 2. Cont.

Antibodies Animal No.
Sections

No. SST
Cells

No.
Double % Double (Mean ± S.D.)

NPY
#1 3 84 71 84.52 ± 3.73
#2 3 103 73 70.87 ± 2.49
#3 3 84 73 86.90 ± 3.47

NPY total 9 271 217 80.07 ± 7.80

NOS
#1 3 68 55 80.88 ± 2.40
#2 3 103 73 67.20 ± 5.71
#3 3 84 73 84.72 ± 5.42

NOS total 9 265 200 75.41 ± 8.64

CaMKII
#1 3 86 54 62.79 ± 8.53
#2 3 85 50 58.82 ± 5.11
#3 3 83 60 72.29 ± 6.03

CaMKII
total 9 254 164 64.57 ± 8.77

GABA, gamma-aminobutyric acid; CB, calbindin-D28K; CR, calretinin; PV, parvalbumin; NPY, neuropeptide Y;
NOS, nitric oxide synthase; CaMKII, calcium/calmodulin-dependent protein kinase II.
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(green, B,I), α7 nAChRs (blue, false color of infrared fluorescence, C), merged image of SST neurons
with ChAT-IR fibers and α7 nAChRs (D), β2 nAChRs (blue, false color of infrared fluorescence, J),
and merged image of SST neurons with ChAT-IR fibers and β2 nAChRs (K). High-power images
in crosshair from the xy (E1–E4), xz (F1–F4), and yz (G1–G4) planes from A–D, respectively. High-
power images in crosshair from the xy (L1–L4), xz (M1–M4), and yz (N1–N4) planes from H to K,
respectively. (E1,F1,G1) Merged images of SST neurons (A) and ChAT-IR fibers (B) in the xy, xz, and
yz planes, respectively. (E2,F2,G2) Merged images of SST neurons and α7 nAChRs immunopuncta in
the xy, xz, and yz planes, respectively. (E3,F3,G3) Merged images of ChAT-IR fibers and α7 nAChRs
immunopuncta in the xy, xz, and yz planes, respectively. (E4,F4,G4) Merged images of SST neurons,
ChAT-IR fibers, and α7 nAChRs immunopuncta in the xy, xz, and yz planes, respectively. (L1,M1,N1)
Merged images of SST neurons (H) and ChAT-IR fibers (I) in the xy, xz, and yz planes, respectively.
(L2,M2,N2) Merged images of SST neurons and β2 nAChRs immunopuncta in the xy, xz, and yz
planes, respectively. (L3,M3,N3) Merged images of ChAT-IR fibers and β2 nAChRs immunopuncta
in the xy, xz, and yz planes, respectively. (L4,M4,N4) Merged images of SST neurons, ChAT-IR
fibers, and β2 nAChRs immunopuncta in the xy, xz, and yz planes, respectively. SST, somatostatin;
ChAT, choline acetyltransferase; α7, α7 nicotinic acetylcholine receptor; β2, β2 nicotinic acetylcholine
receptor. Scale bar = 10 (A–D,H–K) and 1 µm (E1–G4,L1–N4).

4. Discussion

The present study showed that SST neurons were mainly distributed in layer V of the
Mongolian gerbil VC and showed various morphologies. Our results also showed diverse
heterogenous types of SST neurons based on the expressional patterns of CBPs, NPY, and
NOS. Some SST neurons appeared to be innervated by dopaminergic and cholinergic
inputs.

The immunocytochemical labeling of SST neurons showed both intensely and weakly
labeled cells. These two labeling patterns represent different distributional characteristics.
Intensely labeled SST neurons were highly concentrated in the lower layers, V and VI, of
VC. However, weakly labeled neurons were distributed throughout layers III and IV and
with a peak at V. Both types of neurons showed almost no labeled cells in layer I. This
is highly consistent with other reported animals [40–43]. Similarly to the present results,
previous studies in rat [32,41] and cat [34] VC also showed the prominent distribution of
SST neurons on infragranular layers. However, there are differences in distribution patterns
among studies with various animals. The majority of SST neurons were in layer II and III in
rat [40,42,43], mouse [14], rabbit [38], and monkey [32] VC. In addition, our results showed
a relatively large portion of weakly labeled SST neurons in layer IV, which seems to be an
unusual pattern compared to other studies, describing the presence of very few cells in
layer IV of rat [39,41], cat [34], rabbit [38], and monkey VC [32]. Although there is still no
explanation for the differences in distribution between species, these facts might suggest
that there are subtle differences in the role of SST neurons in VC between animals.

The cortex contains extremely large numbers of functional and morphological types of
neurons [27]. Based on the cortical tiling arguments, hundreds of different cell types have
been suggested in the neocortex [28]. Moreover, based on the investigations of functional
connectivity revealed by laser scanning photostimulation, at least 156 cell types have been
suggested in layer IIIb in the primary VC of macaque monkeys [29]. The morphology of
SST neurons in the gerbil VC showed diverse types of non-pyramidal interneurons. The
majority of the cells were round/oval cells. The next most common were the stellate cells.
Vertical fusiform and horizontal cells were also found in the gerbil VC. As in the present
study, SST neurons in rat [39–41,46] and monkey VC [32] are non-pyramidal cells with a
multipolar, bitufted morphology. The cat VC also contains the same morphological features
of SST neurons with multipolar, bitufted, bipolar, and Martinotti cells [34,37]. However,
in cats and rabbits, few pyramidal-like cells were observed [35,86]. Taken together, these
results show that the morphological shape of SST neurons in VC is in general agreement
among animal species. However, the various distinct types of SST neurons reflect the
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diverse functions and connections with other neurons of SST neurons in VC. It will be very
important to elucidate the functions and circuits of each type of SST neurons in the future.

SST neurons in the gerbil VC showed variable sizes but small-to-medium sized cells
were most prevalent. No cells bigger than 15 µm were found. Similarly to the present
study, the monkey VC also contained small multipolar SST neurons with diameters of 10 to
12 µm. However, contrary to the present study, large multipolar cells of more than 16 µm in
diameter and bitufted cells with lengths of 18 to 30 µm have also been described in monkey
VC [32]. Small round cell bodies, 8 × 8 µm2 in size, and fusiform cell bodies, 20 × 10 µm2

in size, have been reported in rat and monkey neocortices, including the VC [31]. Finally,
SST neurons in the cat VC were medium-to-large sized (16–30 µm) cells [34,35]. Thus, the
sizes of SST neurons between animals are generally inconsistent. The importance of this
diversity in size is not yet obvious.

SST neurons are a major group of GABAergic neurons in mammalian cortical areas,
including the VC [14]. In the present study, we found that approximately one-third of SST
neurons contained GABA. This result is quite contradictory to the fact that SST neurons
are thought to be almost GABAergic in VC [34,42]. However, there is a proportion of SST
neurons that do not express GABA. Thus, some SST neurons (2–20%) were not labeled with
GABA in rat VC [14,39]. In the hippocampus (9%) and entorhinal cortex (18%), various
numbers of SST neurons were not labeled with GABA [87,88]. This discrepancy indicates
the existence of species diversity and location dependence. Moreover, the presence of
GABAergic neurons outside the boundary of interneurons in the mouse neocortex suggests
the possibility that unconventional groups of SST neurons could exist [89].

The low rate of GABA expression in SST neurons raises the question of non-GABAergic
neuron functions. The excitatory neuronal marker CaMKII was colocalized with many
SST neurons in the present study. It is widely agreed that SST mainly acts as an inhibitory
neurotransmitter or neuromodulator in the central nervous system. However, there have
been reports of the excitatory effects of SST. For example, SST had a potent excitatory
effect on the hippocampus [90], and the effects of SST on mammalian cortical neurons in
culture were predominantly excitatory [91]. Most (>90%) SST neurons in the Pre-Bötzinger
complex of rat medulla contained vesicular glutamate transporter 2 [92]. In the nucleus
of the solitary tract of the rats, one-third of SST neurons, which do not express GAD-67,
were found to be vesicular glutamate transporter positive [93]. An unpublished article by
Cattaneo [94] suggested that striatal SST interneurons expressed mRNAs for both glutamate
and GABA vesicular transporter. These results suggest that the actions of SST are both
inhibitory and excitatory.

Many cortical interneurons selectively express specific CBPs [20]. In general, CR and
PV are known to form non-overlapping populations with SST neurons and have distinct
roles [5,95–97]. For example, SST neurons did not express CR in the rat VC [41]. However,
the mouse VC expressed 34.3% of CR in SST neurons [97]. An overlapping population (30%)
of SST neurons with CR-IR neurons across frontal, somatosensory, and VC has also been
reported in mice [98]. Similarly, some SST neurons (16.73%) were double-labeled with CR
in the gerbil VC. Our study showed distinct populations of SST neurons from PV, which is
in agreement with many former studies. For example, none of the SST neurons colocalized
with PV in the rat VC [41]. However, a small number (10%) of cells in the somatosensory
cortex of rats co-expressed both PV and SST at the mRNA level [99]. CB is known to
comprise a large portion of SST neurons in the cortex [41,95,96]. In the rat VC, 86.3% of SST
neurons co-expressed CB [41], 85% of SST neurons co-expressed CB in layers II/III, and
92% in layers V and VI [95]. However, only one-fourth of SST neurons colocalized with CB
in the gerbil VC. In the mouse cingulate cortex, one-third of SST neurons co-expressed CB
in layers II/III [100]. The combined results again indicate the existence of diversity among
animal species and subtle differences in roles that SST neuronal subtypes play.

NPY and NOS have been widely used as markers for the classification of neurochemi-
cally distinct interneurons in VC [84,85]. The present study shows large numbers of SST
neurons co-expressing NPY (80.07%) and NOS (75.41%). Similarly, 97% and 98% of SST
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neurons expressed NPY and NOS, respectively, in the guinea pig dorsal striatum [101]. In
the rat striatum, 78.3% of SST neurons also expressed NPY [102]. However, only 1.7% of
SST neurons expressed NOS in the rat VC [41], and 7% of SST neurons express NOS in
the mouse hippocampus [103]. Again, the difference in the expression rates of NPY and
NOS in SST neurons between animals and regions seems to be clear. However, the present
and previous studies suggest that SST neurons can be further subdivided based on their
respective abundance and scarcity of various CBPs, NPY, and NOS. These SST neurons
subtypes can present diverse physiological relevance.

The dopamine system controls the physiological function of mood. Indeed, depression
is characterized by a decreased dopamine level [104]. The level of SST is also closely related
to mood symptoms, whereby decreased SST is a pathological feature in depression [105].
Dopamine receptors are distributed throughout the brain [78]. D1 [106] and D2 [107]
dopamine receptors have been found in the VC. Previous studies have shown that a few
SST neurons contained detectable D1 dopamine receptor mRNA [108] and that dopamine
affected the level of SST via D1 and D2 dopamine receptors in the striatum [109]. D1 and
D2 receptors are present in inhibitory interneurons, including SST neurons in the monkey
frontal eye field [110]. However, minimal colabeling between D1 dopamine receptor and
SST interneurons was shown in the mouse prefrontal cortex [111]. The present study
showed the positioning of D1 and D2 dopamine receptors in SST neurons in the gerbil
VC. These results may suggest a neural connection of dopaminergic neurons to the SST
neurons in the VC. Previous studies have shown that SST neurons are responsible for
the surround suppression of pyramidal cells in VC [112] and can improve the cognitive
function of visual perception in the VC via the inhibition of excitatory neurons to PV+ in-
hibitory neurons [8,113]. Many previous studies have shown that ChAT plays an important
modulatory function in cognition and memory through nAChRs. Additionally, various
subtypes of nAChRs have been found in the cerebral cortex [114]. SST is also involved in
neuroplasticity, such as enhanced ocular dominance plasticity in VC. Furthermore, SST
neurons were activated by acetylcholine [115] and nicotinic receptors [4]. The choliner-
gic facilitation of the lateral inhibition of neighboring pyramidal neurons in the mouse
neocortex is mediated by the activation of β2 subunit-containing nAChRs that depolarize
SST-positive Martinotti cells [116]. The nAChR modulator, the Lynx family, has been found
in SST interneurons in the mouse VC [117]. In this study, we found the presence of α7 and
β2 subtypes of nAChRs in the SST neurons. These results suggest an acetylcholine-SST
circuit in the VC, and such information will significantly improve our understanding of
SST neuron circuits.

There are differences in the organization of the area of VC between diurnal and
nocturnal rodents. The percentage of the cortex devoted to area 17 is significantly greater
in the diurnal Nile grass rat compared to the nocturnal Norway rat [118]. However, there
were no clear cellular composition differences in area 17 between nocturnal and diurnal
rats [118]. The squirrel, a highly visual diurnal rodent with a cone-dominated retina,
has a larger amount of cortex devoted to VC compared to nocturnal rodents [119]. The
connections from the lateral geniculate nucleus to the VC shows that the squirrel has a
well-developed retino-geniculo-cortical system compared to that of the laboratory rat [120].
Several response properties of neurons in the squirrel V1 set diurnal squirrels apart from
nocturnal rodents. For example, the squirrel has laminar specificity for direction selectivity,
which is lacking in nocturnal rats and mice and has fewer orientation-selective cells in
V1 than nocturnal mammals [121]. The V1 of the squirrel contains cells that are tuned to
high temporal frequencies, reflecting cone-based vision [121]. Thus, the diurnal squirrel
V1 has many similar response properties to larger mammals with a well-developed visual
system [122]. However, similarly to other less visual rodents, structured functional maps in
visual systems, such as columnar organizations or orientation maps, were lacking in the
V1, even in more visual diurnal rodents, such as squirrels [123]. Recently, the orientation-
and direction-selective neurons and their spatial layout have been characterized in the
primary VC of the large diurnal rodent agoutis. Neurons exhibited orientation and direction
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preferences in agoutis, with a bias for horizontal contours [124]. The aggregate classical
receptive field of agoutis was similar to that of cat areas 17 and 18 and was smaller than that
of nocturnal rats and mice [124]. However, the response properties, such as orientation and
direction selectivity, simple and complex cells, and spatial and temporal tuning, that have
been fairly well-documented in diurnal squirrels, have not yet been well-studied in gerbils.
Future studies should elucidate these response properties in gerbils to better understand
the diurnal gerbil visual system and the diverse functional organization of the rodent VC
as cortical functional architecture can vary greatly from species to species [118,123,124].

Studies on the localization of SST in the human brain have been somewhat limited.
One study, using immunocytochemistry, found widespread SST neurons with varying
morphologies, sizes, and fibers in whole brain regions and forebrain areas [125]. Distinct
topographical localizations of two SST receptor (SSTR) subpopulations in the human cortex
have been described using radioligands [126]. The SSTR1 was preferentially localized in
layers V and VI, while SSTR2 was concentrated in the superficial cortical layers (I–IV) and
particularly enriched in parts of the lamina IV. The SSTR4 localization in the human brain
has also been found to include the VC [127]. Both cell bodies and fibers existed at layers
III–VI—abundant in layer III—and cell bodies were lacking in I–II. SST mRNA-containing
neurons were widely distributed in several areas of the human brain, including the VC [128].
Neurons containing SSTR mRNA also localized in the human cortex, which identified the
noticeable distribution of SSTR3 mRNA in layers IVc and V of the VC [129]. In the human
neocortex, it has been found that the depolarization of SST-positive Martinotti cells by
acetylcholine mediates the cholinergic facilitation of lateral inhibition [116]. These results
strongly support the evidence that SST neurons exist in the human VC. However, there
have been no detailed studies on cell morphology, laminar distribution, or neural networks
of SST neurons in the human VC comparable with the present result. Studies in animals are
often closely related to humans, but in-depth research on the human VC will be essential
for a clear understanding of the organization and function of SST neurons in humans.

The dysfunction of SST in the brain is closely linked to various human neuropsy-
chiatric and neurodegenerative disorders. Patients with major depressive disorder show
decreased SST levels [12]. Other neuropsychiatric disorders, such as schizophrenia and
bipolar disorder, showed a reduction in SST gene expression and fewer SST-expressing
neurons in various brain areas [11,130]. Neurodegenerative disorders, such as Alzheimer’s
and Parkinson’s disease, are also closely linked to reduced levels of SST in cortical and
subcortical regions [6,80]. Many aspects of the anatomical, physiological, pharmacological,
and genetic characteristics of SST neurons remain unknown. However, the attribution of
SST in the control of various human brain diseases demands in-depth information, such as
specific laminar distribution, distinct cell types, and specific cortical wiring patterns of SST
neurons.

5. Conclusions

SST neurons included a highly diverse group of interneurons both morphologically
and with respect to the presence and absence of GABA, CB, CR, PV, NPY, NOS, and CaMKII
implying diverse functional roles. The present study suggests that SST neurons in the VC
receive inputs from dopamine and acetylcholine at least via D1 and D2 dopamine receptors
and α7 and β2 nAChRs for wiring of VC. It will be essential to compare the present
study with molecular, physiological, pharmacological, and genetic levels to enhance the
understanding of SST function in the VC. With this knowledge, links can be made between
SST function and SST-related neurological disorders in humans.
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