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ABSTRACT Mycobacterium fortuitum subsp. fortuitum is a rapidly growing mycobacterial
species for which pathogenic features are unclear. Here, we report the complete genome
sequence of the Mycobacterium fortuitum subsp. fortuitum type strain. This sequence will
provide essential information for future comparative genome studies of this mycobacterium.

M ycobacterium fortuitum subsp. fortuitum is a rapidly growing nontuberculous
mycobacterium (NTM) and a member of M. fortuitum group (1–3). It is notewor-

thy that M. fortuitum subsp. fortuitum possesses an erythromycin resistance methylase
(erm) gene [designated erm(39)] that induces macrolide resistance. In contrast, NTM in
the same group, such as M. peregrinum and M. senegalense, do not have this gene func-
tion (4, 5). Here, we report the complete genome sequence of M. fortuitum subsp. for-
tuitum type strain JCM 6387.

M. fortuitum subsp. fortuitum strain JCM 6387T (=ATCC 6841, =CIP 104534, =DSM
46621) was inoculated on 2% Ogawa media (Kyokuto, Tokyo, Japan) and incubated at
30°C for 5 days. Genomic DNA was extracted by a standard phenol-chloroform method
(6, 7). Long-read data were obtained with the MinION platform (Oxford Nanopore
Technologies, Oxford, UK) as follows. Approximately 1 mg of the genomic DNA was
used for library preparation with a ligation sequencing kit (Q201) (SQK-Q20EA). The
library was sequenced using an R10.3 flow cell (FLO-MIN111). Raw sequence data were
base-called using Guppy version 5.0.16 with the base-calling model for Q201 chemis-
try (https://github.com/nanoporetech/rerio). Using NanoFilt software (8), we trimmed
the first 75 bp of each read and filtered the trimmed reads with quality scores of less
than 12 or shorter than 1,000 bp. The remaining reads (458,025 reads and a read
length N50 of 12,020 bp) were de novo assembled into one contig (6,485,838 bp) with
the “suggestCircular” flag, using Canu version 2.2 (9) with following parameters:
corOutCoverage, 1,000; ContigFilter, 50 10,000 1.0 0.5 50; and genomeSize, 6m. The
nonredundant sequence of the contig (bp 44836 to 6450843) was extracted by SeqKit
(10). Using the same DNA, Illumina paired-end (2 � 150-bp) reads were obtained with
the MiniSeq system (Illumina, San Diego, CA). The DNA library was prepared using the
Nextera XT DNA library kit. After checking the quality of raw reads (775,520 reads) using
FastQC version 0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), these
reads were mapped to the assembly using the BWA aligner version 0.7.17 (11) for
sequence and assembly error correction with Pilon version 1.2.4 (12). Using DFAST version
1.4.0 with default setting (13–15), the polished assembly (6,406,072 bp, 66.2% G1C con-
tent, and 426-fold coverage) was subjected to taxonomic checks based on average nucle-
otide identity (ANI) values, gene annotation, and rotation to start with the dnaA gene.

The ANI value between JCM 6387T and a reported draft genome sequence of JCM
6387 (GCA_000295855.1) was 99.93%. Also, the ANI values for M. fortuitum subsp.
acetamidolyticum JCM6368 (GCA_001570465.1), M. peregrinum DSM 43271 (GCA_
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002102345.1), M. conceptionense CCUG 50187 (GCA_002102065.1), and M. boenickei
JCM 15653 (GCA_010731295.1), which are the mycobacterial species phylogeneti-
cally closest to M. fortuitum subsp. fortuitum (16), were 98.75%, 88.13%, 87.11%, and
87.05%, respectively. The numbers of predicted coding sequences, rRNA operons,
and tRNAs in the genome were 6,171, 6, and 65, respectively. We confirmed that
JCM 6387T harbors the erm(39) gene (located between bp 1817406 and 1818146 of
the chromosome). The complete genome sequence of JCM 6387T comprises impor-
tant data for future comparative genome studies.

Data availability. The genome sequence and annotations of M. fortuitum were de-
posited at DDBJ/EMBL/GenBank under the accession number AP025518. Raw sequence
data for strain JCM 6387T were deposited under DRA accession number DRA013323.
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