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Abstract

Exploring novel computational methods in making sense of biological data has not only

been a necessity, but also productive. A part of this trend is the search for more efficient in

silico methods/tools for analysis of promoters, which are parts of DNA sequences that are

involved in regulation of expression of genes into other functional molecules. Promoter

regions vary greatly in their function based on the sequence of nucleotides and the arrange-

ment of protein-binding short-regions called motifs. In fact, the regulatory nature of the pro-

moters seems to be largely driven by the selective presence and/or the arrangement of

these motifs. Here, we explore computational classification of promoter sequences based

on the pattern of motif distributions, as such classification can pave a new way of functional

analysis of promoters and to discover the functionally crucial motifs. We make use of

Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately

classifying promoter sequences using some of the popular classification techniques. The

classification results on the complete feature set are low, perhaps due to the huge number

of features. We propose two ways of reducing features. Our test results show improvement

in the classification output after the reduction of features. The results also show that decision

trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble

classifier LibD3C, particularly with reduced features. The proposed feature selection meth-

ods outperform some of the popular feature transformation methods such as PCA and SVD.

Also, the methods proposed are as accurate as MRMR (feature selection method) but much

faster than MRMR. Such methods could be useful to categorize new promoters and explore

regulatory mechanisms of gene expressions in complex eukaryotic species.

Introduction

It is challenging to make sense out of the exponentially increasing biological data, particularly

the nucleotide sequences. Efficient, robust, scalable analysis of biological data is the need of the

hour as biological data is noisy and high dimension in nature [1]. Many new methods/tech-

niques can now help in the process of extracting meaningful information from the sequences

for better understanding of biomedical mechanisms [2] and to attempt solve specific biological
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problems. Promoter sequences consist of mainly non-coding sequences and usually have mul-

tiple transcription factor binding sites (TFBS)/motifs, which consist of specific types of pat-

terns with 5–20 nucleotides [3]. Many researchers have earlier tried to use such features of

promoters to predict and/or analyze them [4,5]. We have earlier attempted to analyze promot-

ers using motif-frequency and alignments [6,7]. In this work, we have devised novel computa-

tional methods to analyze promoter sequences.

Exploring what constitutes a functional signal or property at the sequence level is the objec-

tive of many sequence analysis exercises. Often, classification of segments of sequences is use-

ful for this type of analysis and thus classification techniques have become an integral part of

biological data analysis [8]. The biological data is often huge in terms of dimension with com-

paratively less number of samples posing an inevitable challenge for classification methods to

successfully identify classes. Several approaches like Decision Trees (DT), k-Nearest Neighbor

(KNN), Support Vector Machine (SVM), Artificial Neural Networks (ANN) have been found

effective in the problem of classification of biological data [1]. General nucleotide feature

extractions may also not help in comparing promoter sequences from complex eukaryotes.

For example, repDNA [9] and repRNA [10] are useful tools for generating multiple features

reflecting the physicochemical properties and sequence-order effects of nucleic acids. But, they

have been neither designed to use information on TFBSs nor to compare two sets of sequences.

Pse-in-One is a useful feature extraction software tool [11]. Pse DAC—General, a component

of Pse-in-One, is a tool for finding various feature vectors out of a given DNA sequence. This

tool takes as input, a DNA sequence and discovers features such as Kmer, RevKmer and fea-

tures based on correlation between di/tri nucleotides. None of these are close to finding the

features we need, which are all the motifs and their positions. Other two components, Pse

RAC—General accepts RNA sequence as input and Pse AAC-General takes input of protein

sequences. The method proposed analyses the sequence of motifs. Pse-in One is not designed

to take this as input and hence is not suited for our type of analysis.

The inherent high dimension of the data leads to the problems of difficulty in analysis and

inaccuracy in the results of analysis. This is mostly due to the noise, in the form of redundant

information embedded in the features. Dimensionality reduction procedures are thus an

essential step in the analysis of large dimension data sets. Feature selection and feature trans-

formation are two common methods for this step of dimensionality reduction. Selection of

features is a simple and often efficient technique. Although feature selection improves the per-

formance of the data mining algorithm, there is always a possibility of missing out some

important features in the process. There are several approaches proposed in literature for fea-

ture selection which can be categorized as filter methods, wrapper methods and embedded

methods. Filter methods select a subset of the features irrespective of the classification model

used, whereas wrapper methods consider the model hypotheses to select a feasible subset. The

embedded approach is also classifier dependent but is computationally less expensive com-

pared to wrappers [12]. In this work, the significant features, from the view point of getting a

good classification, are selected by filtering.

The sequential nature of the features imposes constraints on classification of biological

sequences, hence making it a challenging task as compared to classification of feature vectors

[13]. There have been a number of successful attempts in the past for finding the similarity in

the coding as well as the non-coding regions of the DNA sequences. The two major tasks

involved in this process are alignment and analysis. A variety of computational models exist

for alignment such as Bayesian Methods [14], Scoring Matrices [15,16], Dot Matrix [17],

Dynamic Programming [18] and Genetic Algorithms [19]. Nevertheless, most of these meth-

ods are based on nucleotide comparisons, which can be useful in various contexts. Motifs /

transcription factor binding sites (TFBSs) are known to be important patterns within the
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promoter sequences. Simple alignment of nucleotides will disperse the conserved regions of

motifs and hence not suited for promoter comparisons. Analyzing distribution of motifs in the

promoter regions, alignment of motifs are some ways of comparing promoters [20]. Study of

simple distributions, such as frequency of occurrence of each motif across the promoter or

simple alignment of motif sequences as traditionally done in coding regions with nucleotides,

do not utilize or keep the important information of position of motifs in the promoter

sequences.

The model proposed in this work uses the sequence of motifs as well as their positional

information. A promoter is reduced to a matrix called Position Specific Motif Matrix

(PSMM), where rows are motifs present in the promoters and columns are positions where

these motifs are present. This PSMM written as a single row (concatenation of rows of PSMM)

is the feature vector of a promoter. A matrix of feature vectors of all promoters is the feature

matrix of the set of promoters and the classification is performed on the feature matrix.

Materials and Methods

This section describes the proposed methods and the data sets used to test the proposed

methods.

Overall schema of the proposed model

The overall schema and flow of the method is as described in Fig 1. The construction of the

PSMM for a promoter has been described earlier [7,21]. Using the PSMMs of all promoters,

feature matrix is identified. Classification of promoters is performed using (i) all features (ii)

features with high variances (iii) features with low P values and (iv) MRMR [22]. Also, classifi-

cation is performed using transformed features such as PCA [23] and SVD [24] which are

frequently used transformations in literature. We carried out experiments using these trans-

formed features as a comparative study. In this work, we have experimented with three indi-

vidual classification techniques viz., KNN, SVM and Decision Trees and an ensemble classifier

named LibD3C [25].

Classification algorithms

There have been several attempts in the recent past to efficiently classify biological data to aid

biologists in different tasks and solve some specific biological problems [26,27]. The classifica-

tion capability is greatly influenced by the method adopted and the choice of parameters

[28,29]. Some popular classification techniques like Bayesian classification, Hidden Markov

Models [HMMs], Support Vector Machine [SVM] and Decision Trees [DT] have been used in

the recent past for biological sequence classification. SVM is used for successful classification

and validation of cancer tissues using the micro array expression data [30]. Recursive feature

elimination based SVM (RFE-SVM) is yet another successful example in classification of gene

expression data [31]. Human DNA sequence prediction is performed using the Bayesian clas-

sification in [14,32]. Motifs-based HMMs have been successfully employed for classification of

genes using the promoter regions [33]. KNN is a lazy learning method that classifies an unseen

sample by vote of k-nearest training instance by using a distance metric, typically Euclidean

distance [34]. The choice of the distance measure is critical to the performance of KNN classifi-

ers [13]. KNN estimates the density function for every target instance sample locally and differ-

entially instead of estimating once for the entire instance space [34].

SVM is another popular classification method which is proven to be effective for sequence

classification [35,36,37]. The two significant challenges encountered while using SVM for

sequence classification are, definition of kernel functions and computational efficiency of
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kernel matrices [13]. SVM performs well when a simple kernel is used for a small data. Use of

more complex kernels may become necessary when datasets containing more samples become

available [30]. Weston et al [38] propose a semi-supervised protein classification method by

incorporating a cluster kernel into the SVM and they claim that the cluster kernel works better

by adding unlabeled data than when using only the labeled data.

The other method used in this work for classification is the Decision tree. Decision tree is

one of the most popular technique used by the machine learning community in general

[39,40] and particularly has applications in computational biology and bioinformatics because

of their capability in aggregating diverse types of data to make an accurate prediction [41].

Decision trees are sometimes more interpretable and can be trained more efficiently than

other classifiers like SVM and Neural Networks because they combine simple questions about

the data in an understandable way [41]. Also, decision trees suffer less from the curse of

dimensionality [39, 40]. However, small changes in the input data can sometimes lead to large

change in the constructed tree.

LibD3C [25] is an ensemble classifier, this approach is a hybrid model of ensemble pruning

that is based on k-means clustering and the framework of dynamic selection and circulating in

combination with a sequential search method. Ensemble classifier pruning becomes useful in

some applications, where the number of independent classifiers that are needed to achieve rea-

sonable accuracy is enormously large [42].

Fig 1. Overall schema and flow of the method.

doi:10.1371/journal.pone.0167165.g001
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Creation of feature matrix

The PSMM of a promoter/sample is a row in the feature matrix. The successive rows of PSMM

are appended to get a single row in the feature matrix. The PSMM of the promoter/sample in

the Fig 1 along with the PSMM of another sample is shown in Fig 2. The feature vectors of the

two promoters 1 and 2 in Fig 2 are shown in Figs 3 and 4 respectively. In the proposed pro-

moter analysis, position and frequencies of the transcription factor binding sites (TFBSs)/

motifs are the features. The design of feature matrix keeps this information intact.

Reduction of features

Applying feature selection techniques in bioinformatics has become a prerequisite for model

building [12]. The major advantages of feature selection are (i) it improves the performance of

the model, (ii) it provides faster and more cost effective models and (iii) it helps gain a deeper

insight into the underlying processes [12]. As feature selection merely selects a subset of fea-

tures, it does not change the actual representation of the features [12], hence preserves the

original semantics which can be easily interpreted by a domain expert [12]. MRMR [22] is

one of the most robust feature selection techniques that is useful in various applications.

MRMR-MIQ features compute the significance of each feature one by one and rank the fea-

tures according to their significances in the descending order [43].

Often in classification problems, features are transformed and later features are selected in

the transformed space. However, there are some advantages in reduction of original features.

The reduced feature set can be useful information to the biologists, since it points to key motifs

and their positions that are significant in differentiating the promoter sets. In the transformed

space this kind of inference is not possible. PCA and SVD are methods of this type and fre-

quently used in literature. PCA and SVD are the basic linear transformations of the input vari-

ables [24]. PCA extracts the components by maximizing the variance of a linear combination

Fig 2. PSMMs of two promoters/samples.

doi:10.1371/journal.pone.0167165.g002

Fig 3. Feature vector of promoter 1.

doi:10.1371/journal.pone.0167165.g003
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of the original features [23]. We have experimented and compared the efficiency of the pro-

posed feature selection methods using these popular methods. The section next gives an over-

view of the proposed feature selection methods. For reasons mentioned above, our selection

methods do not transform features.

Variance based reduction. If the number of promoters considered for analysis is just two,

then the feature matrix is as shown in Fig 5. Features are selected based on variance. We find

variance of every column (features) and those that are highly variant are selected. Total vari-

ance in all features is computed. Features are then added on to the selected set in the decreas-

ing order of their variations until a specified threshold P% of variation is covered as described

in Eq (2). Rest of the features are ignored. By doing so, we select not only motifs but also spe-

cific regions of the motif. A motif in a specific position may get selected and the same motif in

some other positions may be ignored.

Suppose, v1, v2, v3, v4 . . . . . .. vn are the variances of ‘n’ features. Then, the total variance

(TV)of the n features is given by,

Tv ¼
Xn

j¼1

Vi ð1Þ

Let j1, j2, j3, j4 . . . . . . . . . . . . . . .. jk be the features selected, where k<< n.

Then, Var j1� Var j2� Var j3� Var j4. . . . . . . . . . . . . . . . . . . . .�Var jk

Xk

i¼1

Varðj iÞ � ðP� TvÞ � 100 ð2Þ

and

Xk� 1

i¼1

Varðj iÞ < ðP� TvÞ � 100

Fig 4. Feature vector of promoter 2.

doi:10.1371/journal.pone.0167165.g004

Fig 5. Example feature matrix of PSMMs of promoters 1 and 2.

doi:10.1371/journal.pone.0167165.g005

Feature Selection and Promoter Sequences

PLOS ONE | DOI:10.1371/journal.pone.0167165 December 15, 2016 6 / 20



For example, in the feature matrix in Fig 5, the total variance is 8.5. Let P = 50%, then 50%

of 8.5 is 4.25. Hence, only the features ‘MA0041.1’ in band 0–50, ‘MA0072.1’ in band 51–100

and ‘MA0258.1’ in band 201–250 are selected since the sum of variations is 6, which is just

greater than 4.25, the threshold for selection in this case. Thus, ‘MA0041.1’is selected in the

region 0–50 whereas the same motif is ignored in other regions.

Advantage of variance based reduction of features is, it is computationally simple and gen-

erally it works very well for moderately separated classes. If the data is known to have a lot of

overlap of classes, T test based reduction will perform better than simple variance based reduc-

tion. This is because individual class means and variances are used in the process of reduction.

P value based reduction. Typically, we classify two or more sets of promoters using the

selected features. In biological applications P values are important and often used in variety of

applications. P values of features are calculated based on t distribution. Features with lower P

values are better since these indicate presence of two distinct classes. A threshold on the num-

ber of features (T %) is set. Features in the increasing order of P values are added to the list

until T% is selected as described in Eq (3).

Suppose, p1, p2, p3, p4 . . . . . ... pn are the P values of ‘n’ features.

Let l1, l2, l3, l4 . . . . . . . . . . . . . . .. lk be the features selected, where k<< n.

Then, pl1� pl2� pl3� pl4. . . . . . . . . . . . . . . . . . . . .� plk

The number of features selected ‘k’ is

k ¼ ðn� TÞ � 100 ð3Þ

For example, consider a feature matrix of 4 promoters from 2 different sets as shown in Fig

6. Suppose that the first two promoters belong to set/class 1 and next two to set/class 2. T test is

performed on values of set 1 and set 2 across all the columns as shown in Fig 6. Suppose, the

threshold T = 50% then the number of features selected is 10 (50% of total number (20) of fea-

tures) in the increasing order of their P values. Therefore, the selected features for this particu-

lar example are motif MA0041.1 in band 51–100, 151–200 and 201–250 with P values 0.17,

0.15 and 0.04. MA0084.1 in bands 0–50, 101–150 and 151–200 with p values of 0.10, 0.10 and

0.15. MA00141.1 is selected in 4 of 5 bands except band 151–200 with P values of 0.15, 0.17,

0.15 and 0.19. Rest of the bands (also motifs—in this example MA0072.1) are ignored as they

do not satisfy the threshold conditions.

Dataset description

Here we describe the origin and selection of data sets to test the proposed methods. Dataset 1

contains 6 sets (one test and 5 backgrounds) having 124 promoters in each set. Dataset 2 has 3

sets having 100 promoters in each set.

Fig 6. Hypothetical feature matrix of PSMMs of 4 promoters from two classes and their P values.

doi:10.1371/journal.pone.0167165.g006
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Dataset 1. Among 176 genes listed in the supplementary notes of experiments on tran-

scriptional regulation of HL60 neutrophil differentiation [44], 124 genes were selected with

known functional genes and extracted promoter sequences for these genes using UCSC chro-

mosomal sequences, BioMart annotations and a PERL program. Similarly, five background

sets of promoters of genes, which were known to be not differentially expressed, were also

obtained. Using Clover tool [45], JASPAR [46] matrices were scanned to obtain the motif

information of the promoter as shown in Fig 1.

Dataset 2. Ubiquitous and tissue-specific gene lists:

The ubiquitous gene list was obtained from an earlier report [47]. We also used the list of

genes transcribed in the Testis, Uterus and Kidney from three recent bio curated mammalian

gene expression databases MGEx-Tdb, MGEx-Udb and MGEx-Kdb respectively. The advan-

tage of these databases is that the genes were assigned a reliability score based on a meta-

analysis of multiple data sets such that the score for a gene indicates the consistency of its tran-

scription status across experiments. Cumulative reliability scores from the 3 databases were

used, to hierarchically list the ubiquitous genes. Thus, ubiquitous genes from the earlier report

were short-listed if they were also present in 3 tissues considered, with high reliability scores,

according to the MGEx-dbs.

Testis and kidney transcribed lists from MGEx-Tdb and MGEx-Kdb were also similarly

used to derive a hierarchical list of tissue-specific genes. Testis and kidney specific genes

were first obtained from the TiGER database [48] with EST enrichment value, Refseq IDs.

Testis-specific genes from the TiGER database that were also transcribed according to the

MGEx-Tdb were then short-listed. Similarly, the kidney-specific genes from TiGER database

were also short-listed using MGEx-Kdb. But both EST enrichment scores (scaled 0–10) and

the reliability score (scaled 0–10) were added and the sum used to sort the tissue-specific

genes.

For the top 100 (ubiquitous/tissue-specific) genes, respective ensemble transcript ID was

obtained using ensemble. Then, the promoter sequences (-2000 upstream and +500 down-

stream) corresponding to the selected genes were retrieved using the MGEx databases.

Experiments and Results

The experiments were conducted with complete feature set and also with selected features. As

mentioned in the earlier section, selection of features is done using two criteria namely vari-

ances and P values. In case of variance based reduction, a threshold on total variation is set for

selecting features. Features with higher variance are sequentially added to the selection list

until the sum of variations of features in the selected set is just greater than the threshold. With

P value selection, the threshold is chosen on the percentage (T%) of features to be selected.

Features are added to the selection list in the increasing order of P value until T% is included

in the list.

Features selection using MRMR, PCA and SVD are also explored. For these selection meth-

ods, the available packages are used. MRMR is a selection procedure. PCA and SVD perform

transformation of features and then features are selected.

Classification is performed using three classifiers (KNN, SVM, Decision Tree) and an

ensemble classifier (LibD3C) for various parameter settings (such as different K for KNN, dif-

ferent kernels for SVM and for various learning, testing ratios). Details of the extensive experi-

ments conducted on the two datasets are given in Table 1.

We also performed experiments using one of the popular ensemble classifier LibD3C for

the best performing feature sets (P value based reduced features and MRMR reduced features)

on individual classifiers.

Feature Selection and Promoter Sequences
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Results of experiments on dataset 1

The classification results using different classification techniques (KNN, SVM and Decision

Trees) for different learning testing ratios on this dataset are summarized in the Tables 2 to 7.

The experiment was repeated 25 times for randomly selected training and testing samples and

the average accuracy of these 25 experiments is quoted. We observe in Table 2 that the perfor-

mance of KNN is consistent irrespective of the K values (1 to 5). SVM classification technique

Table 1. Details of number of experiments. (Dataset 1 has 5 pairs of promoter sets and Dataset 2 has 3 pairs of promoter sets).

Feature reduction / Selection

method

Classifier

KNN SVM Decision Tree

Complete Features 5 Ks x 5 L:T ratios with all features = 25 5 kernels x 5 L:T ratios with all

features = 25

5 with all features

Total = 25 x 8 pairs Total = 25 x 8 pairs Total = 5 x 8 pairs

Feature variance 5 Ks x 5 L:T ratios x 5 levels of

reduction = 125

5 kernels x 5 L:T ratios x 5 levels of

reduction = 125

5 L:T ratios x 5 levels of

reduction = 25

Total = 125 x 8 pairs Total = 125 x 8 pairs Total = 25 x 8 pairs

P value of features 5 Ks x 5 L:T ratios x 5 levels of

reduction = 125

5 kernels x 5 L:T ratios x 5 levels of

reduction = 125

5 L:T ratios x 5 levels of

reduction = 25

Total = 125 x 8 pairs Total = 125 x 8 pairs Total = 25 x 8 pairs

MRMR 5 Ks x 5 L:T ratios x 5 levels of

reduction = 125

5 kernels x 5 L:T ratios x 5 levels of

reduction = 125

5 L:T ratios x 5 levels of

reduction = 25

Total = 125 x 8 pairs Total = 125 x 8 pairs Total = 25 x 8 pairs

PCA 5 Ks x 5 L:T ratios x 5 levels of

reduction = 125

5 kernels x 5 L:T ratios x 5 levels of

reduction = 125

5 L:T ratios x 5 levels of

reduction = 25

Total = 125 x 8 pairs Total = 125 x 8 pairs Total = 25 x 8 pairs

SVD 5 Ks x 5 L:T ratios x 5 levels of

reduction = 125

5 kernels x 5 L:T ratios x 5 levels of

reduction = 125

5 L:T ratios x 5 levels of

reduction = 25

Total = 125 x 8 pairs Total = 125 x 8 pairs Total = 25 x 8 pairs

Total number of experiments 5200 5200 1040

doi:10.1371/journal.pone.0167165.t001

Table 2. KNN Classification Results for Test v/s Background1 (Variance Reduced).

K K = 1 K = 2 K = 3 K = 4 K = 5

P(%) Ratios 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5%

50–50 0.76 0.8 0.87 0.94 0.77 0.78 0.87 0.94 0.75 0.8 0.86 0.94 0.76 0.79 0.87 0.94 0.76 0.79 0.86 0.94

60–40 0.81 0.84 0.9 0.95 0.81 0.83 0.88 0.95 0.81 0.85 0.89 0.95 0.82 0.84 0.89 0.96 0.78 0.84 0.9 0.96

70–30 0.85 0.86 0.92 0.97 0.85 0.88 0.92 0.97 0.87 0.88 0.92 0.97 0.85 0.87 0.92 0.97 0.86 0.88 0.91 0.97

80–20 0.92 0.91 0.95 0.98 0.9 0.92 0.96 0.98 0.92 0.91 0.94 0.98 0.9 0.91 0.95 0.98 0.92 0.91 0.94 0.98

90–10 0.96 0.96 0.98 0.99 0.95 0.96 0.97 0.99 0.96 0.95 0.97 0.99 0.95 0.97 0.97 0.99 0.95 0.97 0.98 1

doi:10.1371/journal.pone.0167165.t002

Table 3. SVM Classification Results for five different kernels for Test v/s Background1 (Variance Reduced).

Kernel Linear Quadratic Polynomial RBF MLP

P(%) Ratios 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5%

50–50 0.75 0.81 0.99 1 0.73 0.74 0.79 0.88 0.48 0.51 0.79 0.95 0.74 0.74 0.74 0.84 0.49 0.53 0.68 0.81

60–40 0.8 0.86 1 1 0.8 0.8 0.84 0.91 0.8 0.51 0.84 0.97 0.81 0.78 0.79 0.89 0.81 0.53 0.68 0.82

70–30 0.86 0.9 1 1 0.83 0.85 0.88 0.94 0.52 0.51 0.9 0.98 0.84 0.84 0.85 0.92 0.43 0.53 0.68 0.84

80–20 0.91 0.93 1 1 0.88 0.89 0.91 0.97 0.48 0.5 0.93 0.98 0.89 0.89 0.89 0.94 0.44 0.5 0.69 0.84

90–10 0.95 0.95 1 1 0.93 0.95 0.96 0.98 0.52 0.5 0.95 0.99 0.93 0.96 0.94 0.99 0.39 0.52 0.68 0.83

doi:10.1371/journal.pone.0167165.t003
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was performed with different kernels (Linear, Quadratic, Polynomial, RBF-Radial Basis Func-

tion and MLP-Multilayer Perceptron). It can be seen in Table 3 that Polynomial and MLP ker-

nels do not give satisfactory classification accuracy when compared to the other three kernels

when the dimension of features is very high. However, we could observe (Table 3) that their

performance significantly improves when the input of the dimension of features is very low

(5% of total variation).

We can see in Table 8 that PCA/SVD features perform poor when compared to original fea-

tures. With PCA/SVD features, only for very large size learning set, the classification accuracy

of these features is comparable to that of the original features. MRMR yields very good results

Table 4. Decision Tree Classification Results for Test v/s Background1 (Variance Reduced).

P(%) Ratios 100% 50% 40% 30% 20% 10% 5%

50–50 0.742258 1 1 1 1 1 1

60–40 0.778586 1 1 1 1 1 1

70–30 0.811892 1 1 1 1 1 1

80–20 0.869388 1 1 1 1 1 1

90–10 0.945 1 1 1 1 1 0.998333

doi:10.1371/journal.pone.0167165.t004

Table 5. KNN Classification Results for K = 1 for test v/s all five backgrounds (Variance Reduced).

Dataset Test_Bg1 Test_Bg2 Test_Bg3 Test_Bg4 Test_Bg5

P(%) Ratios 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5%

50–50 0.76 0.8 0.87 0.94 0.76 0.8 0.91 0.97 0.75 0.78 0.51 0.5 0.74 0.78 0.89 0.96 0.77 0.77 0.89 0.96

60–40 0.81 0.84 0.9 0.95 0.78 0.84 0.94 0.97 0.81 0.83 0.51 0.5 0.8 0.82 0.91 0.97 0.82 0.81 0.92 0.97

70–30 0.85 0.86 0.92 0.97 0.85 0.88 0.94 0.98 0.86 0.88 0.51 0.51 0.85 0.88 0.94 0.98 0.87 0.86 0.93 0.97

80–20 0.92 0.91 0.95 0.98 0.91 0.91 0.96 0.99 0.91 0.92 0.5 0.53 0.89 0.92 0.95 0.98 0.91 0.9 0.95 0.98

90–10 0.96 0.96 0.98 0.99 0.95 0.97 0.98 1 0.96 0.95 0.51 0.51 0.95 0.96 0.98 1 0.96 0.94 0.98 1

doi:10.1371/journal.pone.0167165.t005

Table 6. SVM Classification Results for Linear Kernel for test v/s all five backgrounds (Variance Reduced).

Dataset Test_Bg1 Test_Bg2 Test_Bg3 Test_Bg4 Test_Bg5

P(%) Ratios 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5%

50–50 0.75 0.81 0.99 1 0.74 0.89 1 1 0.75 0.82 0.5 0.5 0.73 0.81 1 1 0.75 0.79 0.95 0.98

60–40 0.8 0.86 1 1 0.8 0.92 1 1 0.79 0.87 0.49 0.51 0.78 0.84 1 1 0.79 0.83 0.97 0.96

70–30 0.86 0.9 1 1 0.85 0.96 1 1 0.86 0.92 0.51 0.5 0.83 0.89 1 1 0.85 0.89 0.99 0.95

80–20 0.91 0.93 1 1 0.9 0.99 1 1 0.9 0.95 0.53 0.5 0.89 0.92 1 1 0.92 0.91 0.98 0.96

90–10 0.95 0.95 1 1 0.94 1 1 1 0.95 0.98 0.52 0.5 0.96 0.96 1 1 0.95 0.96 0.99 0.95

doi:10.1371/journal.pone.0167165.t006

Table 7. Decision Tree Classification Results for test v/s all five backgrounds (Variance Reduced).

Dataset Test_Bg1 Test_Bg2 Test_Bg3 Test_Bg4 Test_Bg5

P(%) Ratios 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5% 100% 50% 10% 5%

50–50 0.74 1 1 1 0.75 1 1 1 0.73 1 0.51 0.51 0.73 1 1 1 0.73 0.99 0.99 0.99

60–40 0.78 1 1 1 0.78 1 1 1 0.78 1 0.51 0.52 0.78 1 1 1 0.78 0.99 1 1

70–30 0.81 1 1 1 0.83 1 1 1 0.83 1 0.53 0.5 0.83 1 1 1 0.83 1 0.99 0.99

80–20 0.87 1 1 1 0.88 1 1 1 0.86 1 0.51 0.51 0.88 1 1 1 0.87 1 1 0.99

90–10 0.95 1 1 1 0.9 1 1 1 0.93 1 0.51 0.51 0.91 1 1 1 0.93 1 0.99 0.99

doi:10.1371/journal.pone.0167165.t007
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for all L: T ratios and all reduction levels. However, almost same accuracy for most cases is

obtained even with simple selection procedures based on variance and P values.

In Table 9 the classification performance of ensemble classifier LibD3C using the best fea-

tures MRMR and P value is presented. When compared to all three individual classifiers, the

overall classification accuracies are poor for all the experiments conducted. Ensemble classifi-

ers generally perform better than individual classifiers, but could fail occasionally. This could

be because of the k—means clustering algorithm used in LibD3C can be instable and because

some classifiers with useful information are excluded from the ensemble without multilayer

optimization [25]. Also the time taken by LibD3C is generally more than other individual

classifiers.

For background 1, the summary of results after selecting features based on their variance is

given in Tables 2, 3 and 4. We observe that decision trees outperform KNN and SVM particu-

larly when the features are reduced. Tables 5, 6 and 7 show the performance of the classifiers

Table 8. Selected classification results of KNN, SVM and Decision Trees for the 3 sets of promoters of dataset 1for learning testing ratio of 60:40

for different feature selection/transformation methods (File 1: Test v/s Background1, File 2: Test v/s Background2, File 3: Test v/s Background3,

File 4: Test v/s Background4, File 5: Test v/s Background5).

Dataset and Classifier Complete Features Variance

Reduction

P value

Reduction

MRMR PCA SVD

File 1 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.81 0.84 0.9 0.66 0.63 0.87 0.98 0.81 0.83 0.8 0.8

SVM 0.8 0.86 1 1.00 0.99 0.99 1 0.82 0.81 0.81 0.81

DT 0.78 1 1 1.00 0.82 1 1 0.84 0.77 0.8 0.76

File 2 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.78 0.84 0.94 0.65 0.59 0.91 0.99 0.79 0.8 0.8 0.82

SVM 0.8 0.92 1 0.99 0.98 0.99 1 0.77 0.77 0.79 0.8

DT 0.78 1 1 1.00 0.83 1 1 0.83 0.78 0.78 0.79

File 3 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.81 0.83 0.51 0.69 0.67 0.95 1 0.82 0.81 0.81 0.8

SVM 0.79 0.87 0.49 0.99 0.98 0.99 1 0.81 0.51 0.82 0.72

DT 0.78 1 0.51 1.00 0.85 1 1 0.83 0.71 0.8 0.76

File 4 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.8 0.82 0.91 0.59 0.61 0.87 0.96 0.79 0.81 0.8 0.79

SVM 0.78 0.84 1 0.99 0.99 0.99 1 0.82 0.78 0.83 0.8

DT 0.78 1 1 1.00 0.82 1 1 0.85 0.79 0.8 0.78

File 5 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.82 0.81 0.92 0.62 0.62 0.91 0.96 0.83 0.8 0.81 0.8

SVM 0.79 0.83 0.97 1.00 0.99 1 1 0.81 0.77 0.82 0.81

DT 0.78 0.99 1 1.00 0.83 1 1 0.84 0.78 0.8 0.76

doi:10.1371/journal.pone.0167165.t008

Table 9. LibD3C classification accuracies for MRMR and P value reduced features on dataset 1.

File1/percentage of features P value Reduced MRMR Reduced

100% 49.60 49.60

50% 65.73 77.02

40% 74.19 80.65

30% 74.60 77.82

20% 76.61 82.66

10% 80.65 81.85

doi:10.1371/journal.pone.0167165.t009
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for test v/s different backgrounds. We can notice that all the backgrounds show similar perfor-

mance on all the three classification techniques except background 3. This background shows

a drastic fall in number of features as well as accuracy for a threshold<30% of total variance,

irrespective of the classifier used. This difference in the background 3 is perhaps due to the

presence of a few highly variant features which can be observed from Table 10. Figs 7 and 8

show some plots of classification accuracies obtained for various parameters of classifiers and

for different classifiers and feature selections/transformations.

Table 10. Feature reduction (Variance) pattern for test v/s 5 backgrounds of dataset 1.

Threshold Test_Bg1 Test_Bg2 Test_Bg3 Test_Bg4 Test_Bg5

100% 5496 5536 5618 5495 5495

50% 1109 1037 621 1069 1049

40% 790 728 319 755 739

30% 515 468 98 490 476

20% 286 251 14 269 258

10% 102 81 2 90 84

5% 33 21 1 26 23

doi:10.1371/journal.pone.0167165.t010

Fig 7. Analysis of classification accuracies for various parameters on dataset 1.7 (a), 7(b): KNN, 7 (c), 7(d): SVM.

doi:10.1371/journal.pone.0167165.g007
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Results of experiments on dataset 2

The experimental setup is same as that of Dataset 1 as described in the earlier section. Selected

results are shown in Table 11. Highlights of the results obtained in this extensive experimenta-

tion are given in S3 File. The detailed results on top 100promoter sets as well as the complete

results of dataset 1 are given in S1 and S2 Files.

The results with P value reduced features are consistently better in all cases, compared to

variance reduced features as the number of features is significantly large in P value reduced

features compared to variance reduced. MRMR performs best when compared to other feature

selections/transformations even on dataset 2. The results of the ensemble classifier LibD3C on

dataset 2 is detailed in Table 12. The pattern of feature reduction for different files of dataset 2

is presented in Table 13. Figs 9 and 10 are graphs showing classification accuracies of a classi-

fier and of different classifiers.

Implementation details

The experiments were carried out on an Intel Core i5—4460 @ 3.20 GHz machine with 4GB

RAM. The code is implemented in MATLAB. It is empirically shown that, reduction in

Fig 8. Analysis of classification accuracies on dataset 1.8 (a): Decision Trees.8 (b): different classifiers 8(c): different

feature selections/transformations.

doi:10.1371/journal.pone.0167165.g008
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features improves classification accuracy. From Table 14, it is also evident that reduction in

features results in drastic reduction in the execution time. This becomes important when we

are dealing with large data sets. The time for KNN is the total time taken for K values from 1 to

5 and in the case of SVM it is the total time taken for execution of all 5 kernels. The pattern in

reduction of time is same for both KNN and Decision Trees, but in the case of SVM the reduc-

tion in time is not uniform, this is due to the convergence issue that exists with some of the

kernels used.

The CPU time analysis for the two datasets is shown in Tables 15 and 16. It is clear MRMR

takes most time for all feature set sizes of dataset 1. On the other hand, PCA consumes more

Table 11. Selected classification results of KNN, SVM and Decision Trees for the 3 sets of promoters of dataset 2for learning testing ratio of 60:40

for different feature selection/transformation methods (File 1: Kidney v/s Ubiquitous, File 2: Testis v/s Ubiquitous, File 3: Kidney v/s Testis).

Dataset and Classifier Complete Features Variance

Reduction

P value

Reduction

MRMR PCA SVD

File 1 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.8 0.51 0.58 0.49 0.57 0.81 0.85 0.8 0.75 0.8 0.82

SVM 0.84 0.88 0.94 1 1 0.99 0.99 0.82 0.82 0.84 0.82

DT 0.79 1 1 1 1 1 1 0.89 0.86 0.85 0.8

File 2 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.82 0.68 0.56 0.7 0.53 0.82 0.88 0.82 0.79 0.8 0.82

SVM 0.84 0.87 0.96 1 1 0.99 0.99 0.81 0.83 0.85 0.83

DT 0.78 1 1 1 1 1 1 0.88 0.85 0.84 0.79

File 3 100% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10%

KNN 0.82 0.51 0.58 0.55 0.56 0.83 0.91 0.8 0.79 0.82 0.8

SVM 0.8 0.83 0.93 1 1 1 0.99 0.81 0.81 0.83 0.8

DT 0.78 1 1 1 1 1 1 0.89 0.86 0.78 0.86

doi:10.1371/journal.pone.0167165.t011

Table 12. LibD3C classification accuracies for MRMR and P value reduced features on dataset 2.

File1/percentage of features P value MRMR

Reduced Reduced

100% 50 50

50% 80 78

40% 80 78

30% 86.5 75.5

20% 88 77.5

10% 87.5 86.5

doi:10.1371/journal.pone.0167165.t012

Table 13. Feature reduction (Variance) pattern for 3 files of dataset 2.

Threshold File1 File 2 File 3

100% 23800 23800 23800

50% 10695 10431 10791

40% 6192 6019 6273

30% 3120 3031 3180

20% 1236 1212 1270

10% 305 313 314

5% 56 65 57

doi:10.1371/journal.pone.0167165.t013
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time than MRMR when the feature set size becomes smaller. However, Variance and P value

based reductions are most time efficient.

Conclusion

The results obtained indicate that the variance based and P value based feature selection meth-

ods can be effectively used for classifying promoter sequences. Also, we have successfully

demonstrated the effect of dimensionality reduction on some of the popular classification tech-

niques used on biological sequences for our experiments on selected promoter sequences.

KNN and SVM (particularly with Linear, Quadratic and RBF kernels) perform well even when

the dimensionality is very high. Discriminative ability of SVM could be highly improved with

good feature selection on Polynomial and MLP kernels. Decision trees seem to be one of the

best classifier that achieves good accuracy even when the data dimension is high and the accu-

racy marginally improves when the dimensionality decreases [27]. We observe a significant

improvement in results when compared to some recent methods [6]. This is because we retain

the PSMM details in the process of differentiating the promoter sets in this work. Whereas, in

[6] the summary of the PSMM is used for promoter set differentiation. The proposed methods

out perform some of the popular feature transformation methods such as PCA and SVD. Also,

Fig 9. Analysis of classification accuracies for various parameters on dataset 2. 9(a), 9(b): KNN, 9(c), 9(d): SVM.

doi:10.1371/journal.pone.0167165.g009
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the methods proposed are as accurate as MRMR (feature selection method) but much faster

than MRMR. However, we need to further explore the efficiency of this technique for different

promoter datasets. Sometimes, even after feature selection using sophisticated techniques, the

dimensionality of the chosen features may still be very high [13]. Hence, we can attempt to

Fig 10. Analysis of classification accuracies on dataset 2. 10 (a): Decision Trees. 10 (b): different classifiers 10 (c):

different feature selections/transformations.

doi:10.1371/journal.pone.0167165.g010

Table 14. Execution time (in seconds) for different classifiers for features of different thresholds for the experiment test v/s background 1 (Dataset

1).

Classifier Used

Threshold(P) No. of features KNN (k = 1 to 5) SVM (all 5 kernels) Decision Trees

100% 5495 248.17 38.18 947.08

50% 1109 37.71 22.1 12.8

40% 790 21.61 22 9.8

30% 515 11.35 21 6.6

20% 286 8.17 25 4.22

10% 102 5.85 51 2.28

5% 33 4.70 15.28 1.59

doi:10.1371/journal.pone.0167165.t014
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reduce the feature set by combining different feature selection techniques using ensemble fea-

ture selection approaches based on the fact that there cannot be a single universally optimal

feature selection technique [49]. Also, there is a possible existence of more than one subset of

features that discriminates the data equally well [50]. A combination of different classification

and feature selection techniques can both lead to different results [27].

In general, using minimal features for fast classification may help to distinguish functionally

different sets of promoters. Such efforts would help scientists understand the molecular mech-

anisms of gene expression control, which in turn would aid research in many important bio-

logical topics.
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