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ABSTRACT

Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the 
leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses 
encode multifunctional regulatory proteins activating several oncogenic pathways, 
which induce accumulation of multiple genetic alterations in the infected hepatocytes. 
Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-
catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important 
anti-cancer targets. In this review, we highlight the molecular mechanisms underlying 
the pathogenesis of primary liver cancer, with particular emphasis on the host genetic 
variations identified by high-throughput technologies. In addition, we discuss the 
importance of genetic alterations, such as mutations in the telomerase reverse 
transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification 
for development of more effective treatment approaches.

INTRODUCTION

Liver cancer is one of the most common 
malignancies in the world, ranking fifth in men and ninth 
in women in incidence, and second among both sexes in 
mortality [1]. In 2012, the estimated number of new cancer 
cases and deaths was 782,000 and 746,000, respectively 
[1]. The highest incidence has been reported in Eastern 
and South-Eastern Asia [age-standardized rates (ASR) 
of 20.9 and 12.3 per 100,000 population, respectively] 
and Western Africa (ASR 12.1 per 100,000 population), 
(Table 1). On the other hand, most developed countries 
have low (ASR <5 per 100,000) or intermediate (ASR 
5–10 per 100,000) rates with some exceptions, such as the 
high incidence (ASR 34.8 cases per 100,000 men) of liver 
cancer reported in Southern Italy [2].

Hepatocellular carcinoma (HCC) is the most 
common histological type accounting for approximately 
70–85% of primary liver tumors [3]. Chronic HBV and 
HCV infections represent the major cause of HCC, being 
associated with more than 80% of cases worldwide 
[4]. Indeed, pooled estimates of lifetime relative risk to 
develop HCC are 15 – 20 fold higher in HBV or HCV 

positive patients compared to non-infected subjects [5]. 
Non-viral risk factors include alcoholic liver disease, non-
alcoholic steatohepatitis, aflatoxin B1 dietary exposure, 
obesity, and diabetes [6-8]. The relative contribution of 
viral and non-viral factors to HCC development varies in 
different populations. The estimated prevalence of virus-
related HCC is lower in North America (42%) and Europe 
(48%), and higher in Africa (80%) and Asia (87%) [4, 9]. 
A meta-analysis of hepatitis B surface antigen (HBsAg) 
and anti-HCV antibody prevalence among 27,881 HCC 
cases from 36 countries showed a large predominance of 
HBsAg in Asian, African and Latin American countries 
and a significant higher frequency of anti-HCV antibodies 
in Europe and United States [4]. The exception to these 
patterns is represented by the high rates of HCV-related 
HCC in Japan and Egypt [4].

The HBV- and HCV-related carcinogenesis 
initiates in the context of chronic hepatitis, and 
progresses to HCC in a multistep process lasting 
for as long as 30 years [10] (Figure 1). During HCC 
progression, several environmental factors (aflatoxin 
B1, alcohol consumption, cigarette smoking, 
hepatotoxic chemical agents) as well as host co-
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factors (elevated serum androgen levels, genetic 
polymorphisms, DNA repair enzymes) may synergize 
and lead to progressive accumulation of multiple 
genomic changes in the hepatocytes [11, 12]. Among 
these, non-synonymous mutations in TP53 and 
CTNNB1 genes are well known cancer drivers for HCC 
development with variable frequencies depending on 
the underlying etiology [13, 14].

Over the last decade, massively parallel sequencing 
technologies allowed to further uncover the genomic 
diversity of HCC and to identify consistent gene alterations 
activating signaling pathways relevant to cell transformation 
[15, 16]. Such analyses allowed to identify HCC subgroups 
characterized by definite genetic profiles that may be linked 
to specific oncogenic factors and are useful to further 
stratify HCCs for personalized medicine applications [17].

Here, we review the molecular pathogenesis of 
primary liver cancer with particular emphasis on the 

host genetic variations identified by high-throughput 
technologies in the context of HBV and HCV related 
HCC. We discuss the importance of genetic alterations in 
diagnosis, prognosis as well as in tumor stratification for 
more efficient treatment approaches.

HBV and hepatocellular carcinoma

HBV is a partially double-stranded hepatotropic 
DNA virus containing four partial overlapping open 
reading frames (ORFs) encoding the reverse transcriptase/ 
polymerase (Pol), the capsid protein (core antigen 
HBcAg), three envelope proteins (L, M, and S) and the 
transactivating protein x [18].

HBV infection contributes to hepatocarcinogenesis 
by different mechanisms including 1) expression of 
HBx protein; 2) integration of viral DNA into the host 
genome; and 3) accumulation of somatic mutations 

Table 1: Estimated numbers of new liver cancer cases in males and females, crude rate and world age standardized 
rates [ASR(world)] per 100,000 in 2012

Population Liver Cancer

Cases Crude rate ASR (W) Cumulative 
risk

Africa 58680 5.5 8.9 1.01

  Eastern Africa 7947 2.3 4.0 0.45

  Southern Africa 2232 3.8 4.8 0.53

  Middle Africa 5808 4.4 8.0 0.90

  Northern Africa 19653 9.4 12.3 1.50

  Western Africa 23040 7.2 12.1 1.30

Asia 594431 14.0 13.3 1.46

  Eastern Asia 466336 29.4 20.9 2.26

  South-Central Asia 41387 2.3 2.9 0.34

  South-Eastern Asia 79953 13.2 14.2 1.64

  Western Asia 6755 2.8 3.8 0.45

Europe 63462 8.6 4.3 0.52

  Central & Eastern Europe 15953 5.4 3.1 0.37

  Northern Europe 6457 6.4 3.1 0.36

  Southern Europe 20558 13.1 5.9 0.71

  Western Europe 20494 10.8 4.9 0.62

Latin America & Caribbean 30442 5.0 4.9 0.57

Northern America 32718 9.3 5.8 0.70

Oceania 2718 7.2 5.4 0.60

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. 
GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: 
International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr, accessed on 22/04/2015
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in human genes with or without exposure to other 
carcinogens (i.e. aflatoxin B1), [10, 19, 20].

HBV HBx protein

The HBV protein HBx transactivates viral and 
cellular genes by interacting with nuclear transcription 
factors, such as cyclic adenosine monophosphate(cAMP) 
response element-binding protein (CREB), activating 
protein 1 (AP-1), nuclear factor kappa B (NF-kB), and 
specificity protein 1 (Sp-1). HBx affects also several 
cellular pathways including DNA repair, cell proliferation, 
differentiation and apoptosis [20-24]. In addition, HBx 
protein trans-activates DNA methyltransferase 1 (DNMT1) 
and DNMT3A genes in the HBV infected hepatocytes, 
resulting in the suppression of cell cycle regulators 

P16INK4A and p21 Cip1/CDKN1A, cell-adhesion 
molecule E-cadherin as well as SFRP1 and SFRP5 genes, 
which inhibit Wnt signaling pathway [25-30]. Moreover, 
Wnt/β-catenin pathway is directly activated by HBx 
protein, which interferes with proteasomal degradation of 
β-catenin [31, 32]. More recently, HBx has been shown 
to activate the Yes-associated protein (YAP) oncogene, 
a downstream effector of the Hippo-signaling pathway, 
which represents a key element in HCC development [33]. 
The HBx protein can also bind to the p53 oncosuppressor, 
leading to the disruption of the p53/XPB/XPD complex 
of the transcriptional factor II H and compromising 
the nucleotide excision repair mechanism [34]. Recent 
studies showed that HBx is able to activate AKT, favoring 
persistent, non-cytopathic HBV replication and inhibition 

Figure 1: Early and late events of HBV and HCV-related liver carcinogenesis. The HBV HBx protein facilitates integration of 
HBV into host DNA, resulting in major genetic alteration of the host genome. HBV- and HCV-encoded proteins contribute to the alteration 
of several signaling pathways. Both viruses promote the growth of infected cells and activate several signaling pathways including RAS, 
PI3K, EGFR, and IGFR1.
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of the transcription factor hepatocyte nuclear factor 4 
(HNF4) [35].

HBV integration and chromosomal alterations

HBV genome commonly integrates in HCC causing 
global genomic instability, increased expression of genes 
adjacent to integration loci, and expression of viral-
host fusion transcripts [36-39]. Genome-wide analysis 
showed that HBV integration occurs in 86% of HCCs and 
in 30.7% of adjacent non-tumor tissues [40]. A similar 
frequency (75.5%) has been identified in HCC patients 
with occult HBV infection [41]. The analysis of genome 
instability showed that somatic copy number variations 
are significantly increased at locations adjacent to HBV 
integration sites [40], and that the number of chromosomal 
aberrations correlates with the mutational status of tumor 
suppressor genes, such as TP53, RB1, CDNK2A and TP73 
[42]. Next-generation sequencing uncovered several new 
genes recurrently interrupted by HBV integrants including 
TERT, MLL4, CCNE1, NTRK2, IRAK2 and p42MAPK1 
[40, 43-45]. The integration of HBV DNA preferentially 
involves the HBx sequence which frequently undergoes 
deletion at the 3’-end, causing the expression of a 
C-terminal-truncated HBx protein able to enhance HCC 
cell invasiveness and metastasis [46, 47]. Transcription 
profiling by RNA-sequencing analysis allowed 
identification of several viral-human fusion transcripts 
generated as a consequence of HBV integration. The 
most abundant is the long non-coding RNA HBx-LINE1 
chimera, which has been detected in 23% of HBV-related 
HCCs [42], and has been shown to promote tumor growth 
through the activation of Wnt/b-catenin signaling [48].

HBV and aflatoxin B1 interaction

In HBV-associated HCC, there is a strong 
overrepresentation of TP53 mutations, particularly in 
geographic regions endemic for HBV and with dietary 
exposure to aflatoxin B1 (AFB1) [49]. Specifically, AFB1 
induces a non-synonymous mutation (G to T transversion) 
changing arginine to serine at codon 249 of TP53 gene 
in up to 50% of HCCs. The mutated p53, together with 
chronic HBV infection, synergistically increase the risk 
to develop HCC [49, 50]. Indeed, the p53 R249S is 
able to bind the HBx protein and to promote hepatocyte 
transformation [51].

HCV and hepatocellular carcinoma

HCV is a single-stranded RNA virus encoding 
a large polyprotein of 3,000 amino acids. The HCV 
polyprotein can be cleaved by viral and cellular proteases 
into four structural proteins (capsid protein C, envelope 
glycoproteins E1 and E2, and protein P7), and six non-
structural proteins (NS2,NS3, NS4A, NS4B, NS5A, and 
NS5B) [52].

HCV causes chronic hepatitis in more than 80% of 
infected subjects, versus the 10% in HBV infected patients, 
and is up to 20 fold more efficient than HBV in promoting 
liver cirrhosis [53]. Pathogenesis of HCV-related HCC 
mainly relies on the ability of the virus to cause chronic 
inflammation, immune-mediated hepatocyte death, tissue 
damage, fibrosis and evolution to cirrhosis [54-56]. The 
HCV core protein C as well as the non-structural proteins 
NS3, NS5A, and NS5B induce hepatocarcinogenesis 
through their ability to perturb several cellular pathways, 
such as DNA repair, proliferation and apoptosis [57-59].

HCV core protein

The HCV core protein binds to numerous 
transcription factors, thus regulating expression of several 
host genes [60, 61]. In addition, it promotes cell growth 
and survival by activation of mitogen-activated protein 
kinase (MAPK) signaling cascade, including MEK1, 
ERK1/2, JNK, p38 MAP kinases, and MKP1 Map 
kinases [62-64]. HCV core enhances cell proliferation 
by inhibiting the synthesis of p53, p21 CDK inhibitor, 
and E2F-1 as well as the phosphorylation of pRb [65]. 
Moreover, it is able to suppress immune-mediated 
apoptosis by inhibiting caspase-8 via over-expression of 
the cellular FADD-like interleukin-1 converting enzyme 
(c-FLIP) [66]. In addition, it enhances angiogenesis by 
triggering the production of TGF-β2 and VEGF proteins, 
and stabilizing the hypoxia-inducible factor 1 (HIF-
1a) [67]. HCV core protein induces IL-6, gp130, leptin 
receptor, and STAT3 over expression, which in turn may 
deregulate c-Myc and cyclin D1 downstream the STAT3 
signaling pathway [68]. HCV core protein also activates 
the Wnt/b-catenin cascade, which is known to play a 
significant role in the HCC development [69].

HCV NS3 protein

The HCV NS3 protein is a multifunctional protein 
with protease, RNA helicase, and NTPase activity. NS3 
can promote hepatocarcinogenesis by its binding with 
certain cellular proteins, such as p21 and p53 [70]. 
Recently, HCV NS3/4A protease was demonstrated 
to activate the EGFR signaling pathway through the 
proteolytic cleavage of tyrosine phosphatase T-cell 
protein (TC-PTP), resulting in increased EGFR activity 
and the downstream PI3K/Akt pathway [71]. MAP kinase 
signaling, through activation of JNK, was also implicated 
in HCV NS3 protein-mediated cell growth in infected cells 
[65].

HCV NS5A protein

NS5A has been shown to bind a wide range of 
cellular proteins controlling signal transduction and 
host microenvironment [72]. Particularly, the truncated 
HCV NS5A protein localizes to the nucleus and acts as a 
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transcriptional activator. NS5A can bind cellular signaling 
components and regulatory protein kinases, leading to the 
suppression of the host immune response and inhibition 
of apoptosis [73]. NS5A binds and stabilizes β-catenin, 
inducing activation of the c-Myc promoter and increased 
c-Myc expression, which increases production of reactive 
oxygen species, DNA damage, and cell-cycle deregulation 
[74, 75]. NS5A also stabilizes poly(ADPribose) 
polymerase 1 (PARP-1), which is involved in DNA repair 
and apoptosis, thus contributing to genetic instability and 
accumulation of mutations in HCV-infected hepatocytes 
[59, 76, 77].

Gene expression profiling in HCC

Early studies on gene expression profiling 
highlighted the wide heterogeneity of global gene 
expression patterns in liver tumors [78, 79]. Hierarchical 
clustering analysis of tumor-specific genes contributed to 
classify HCC subtypes, unravel the complex pathogenesis 
of HCC and stratify tumors according to their etiological 
factor, clinical stage, recurrence rate, and prognosis 
[80-82]. Several reports showed strong expression 
signatures in genes regulating cell proliferation and anti-
apoptotic pathways (i.e., PNCA and cell cycle regulators 
CDK4, CCNB1, CCNA2, and CKS2), ubiquitination 
mechanisms [83, 84], as well as molecular markers of 
tumor progression like HSP70, CAP2, GPC3, and GS 
[85]. A class-comparison analysis performed in our 
lab (HCV-related HCC, HCV-related non HCC and 
metastatic liver tissue vs. normal control; HCV-related 
HCC vs. autologous HCV-related non HCC liver tissue) 
identified a gene-set that distinguish the different types of 
liver disease [86]. In particular, the time course analysis 
allowed to identify several candidate genes as progression 
markers (e.g., GPC3, CXCL12, SPINK1, GLUL, UBD, 
TM4SF5, DPT, SCD, MAL2, TRIM55, COL4A2) [86]. 
Altogether, these data are useful for developing a specific 
gene-chip including those genes showing the highest fold 
increase.

Moreover, HCC-specific alterations of signal 
transduction pathways and protein expression patterns 
have been detected and opened opportunities for new 
therapies targeting molecular factors such as EGFR, 
VEGF, DDEFL, VANGL1, WDRPUH, ephrin-A1, 
GPC3, number gain 7q, PFTK1, PEG10 and miR-122a 
[87, 88].

miRNA in HBV-related HCC 

Several microRNAs (miRNA) have been found 
deregulated in HBV-positive HCCs. The HBx protein has 
a major role in the miRNAs alteration. Specifically, HBx 
is able to increase the expression of miRNA 602, targeting 
the putative tumor suppressor Ras association domain 
family 1 isoform A (RASSF1A) [89]; miRNA-143, 

targeting fibronectin type III domain-containing 3B 
(FNDC3B) promoting hepatoma cell invasion, migration 
and tumor metastasis [90]; miRNA-29a and miR-148a, 
targeting phosphatase and tensin homolog (PTEN) and 
stimulating cell migration [91, 92]. Notably, levels of 
miR-122 and let-7b have been found increased in the 
serum of HBV-positive patients with early HCC and 
have been proposed as useful markers to differentiate 
early HCC from dysplastic nodules [93]. In addition, 
HBx inhibits the expression of miR-661, targeting 
metastasis associated 1 factor (MTA1) [94]; miR-373, 
targeting cadherin 1 (CDH1) gene [95]; let-7a, which is 
implicated in the cell proliferation control through STAT3 
modulation [96]; and miR-101 and miR-152, controlling 
the expression of DNMT3A and DNMT1, respectively 
[97, 98]. HBx also inhibits expression of miR-148a, which 
targets hematopoietic pre-B cell leukemia transcription 
factor interacting protein (HPIP), and miRNA-16 
family, targeting cyclin D1 (CCND1); both mi-148a and 
miRNA-16 family are associated with tumor growth 
control [99, 100].

miRNA in HCV-related HCC

HCV replication and pathogenesis are tightly 
controlled by the expression of several miRNAs [101]. In 
particular, miRNA-122 favors HCV replication by binding 
directly to viral RNA, while miRNAs-130a and-21 subvert 
the IFN signaling pathway, leading to immune evasion 
[101, 102]. miRNAs-196/199a and -448/let-7b attenuate 
viral replication, and Let-7b and miRNA-221 compromise 
the antiviral effect of IFN-α [103, 104]. Expression of 
miRNAs regulating lipid metabolism (miRNA-27a) and 
hepatocyte growth (miRNA 181c) is decreased in HCV 
infected cells. In contrast, expression of miRNA-155, 
promoting hepatocyte proliferation and inflammation, and 
miRNA-21 and -200c, promoting fibrosis, is increased in 
advanced stages of liver disease [101].

Chromosomal aberrations and gene copy 
number variations in HCC

Chromosomal alterations are very common in liver 
tumors . Comparative genomic hybridization (CGH) data 
showed frequent gain of chromosomal regions 1q (57.1%), 
8q (46.6%), 6p (22.3%), and 17q (22.2%), and prominent 
losses of 8p (38%), 16q (35.9%), 4q (34.3%), 17p (32.1%), 
and 13q (26.2%), Table 2, [105, 106]. Chromosome losses 
in the regions 4q, 13q, 16q, and 8p are more frequent in 
HBV - related tumors, while loss of chromosome 8p in 
HCV-positive HCCs is less frequent compared to virus 
negative tumors [105]. Moreover, gains of 1q and 8q as 
well as losses of 4q, 16q and 13q have been shown to 
increase with HCC progression [105].

High-resolution array CGH studies allowed to 
discover chromosomal gains in 5p15.33 and 9q34.2–
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34.3 and losses in 6q, 9p and 14q, in addition to the 
previously identified genetic aberrations [107-111]. Copy 
number variation of 1q21.3-44 and LOH of 1p36.21-
36.32 and 17p13.1-13.3 regions were identified in early 
HCC but not in chronic liver disease, suggesting their 
possible causative role in HCC development, while 
gains of 5q11.1-35.3, 6p, and 8q11.1-24.3 as well as 
LOH of 4q11-34.3 and 8p11.21-23.3 appear associated 
with more advanced tumor stages [108, 112]. The copy 
number gain of 8q24 region is generally associated with 
an increased expression of c-Myc gene, particularly in 
viral and alcohol-related HCCs but not in cryptogenic 
HCCs [111]. Other small chromosomal aberrations, 
such as amplification of 1q32.1 and 20q13.33, have 
been associated with overexpression of MDM4 and 
EEF1A2, respectively, in approximately 50% of tumors, 
independently from the etiology [111]. The integration 
of CGH data with gene expression arrays allowed to 
identify over-expressed candidate oncogenes, such as 
TAGLN2, MDM4, SNRPE, SPP1 VEGFA, PEG10, 
Jab1, HEY1, BOP1 and EEF1A2 [109, 111, 113-117] 
and down-regulated candidate tumor suppressor genes, 
such as TRIM35, DLC1, CRYL1, and Spry2 [117-120]. 
Few studies analyzed the prognostic significance of 
chromosomal alterations and gene profile expression 
[121]. Roessler et al. combined CGH data and gene 
expression arrays of 256 HCC cases, and identified 10 
genes associated with poor survival, of which six were 
located at chromosome 8p, [122].

Somatic mutations in HBV and HCV-related 
HCC

Genomic instability of viral-related HCCs is 
characterized by high frequency of somatic mutations. 
Several studies showed that TP53 oncosuppressor and 
CTNNB1 oncogene are the most frequently mutated genes 

in primary liver cancer, being identified in about 25% and 
30% of HCCs, respectively [13]. Up to 75% of missense 
TP53 mutations, other than the R249S induced by AFB1, 
are scattered over 200 codons of the TP53 region encoding 
for the DNA-binding domain [123-126], and show similar 
frequencies in HCCs with different etiologies [13]. Such 
a finding suggests that chronic inflammation, reactive 
oxygen species, and oxidative DNA damage, which 
are common effects of cancer causing factors, may be 
responsible for such variations. TP53 mutations may 
cause several pathway deregulations in HCCs. Okada 
et al. identified 83 genes differentially expressed in TP53 
mutant compared to wild type TP53 liver tumors [127]. 
The genes differentially expressed in TP53 mutant tumors 
include cell cycle regulators (CCNG2, BZAP45) and cell 
proliferation-related genes (SSR1, ANXA2, S100A10, and 
PTMA) [127]. These data support the hypothesis that p53 
mutant tumors have higher malignant potentials compared 
with wild type p53 [128, 129].

CTNNB1 gene, expressing β-catenin, and AXIN1 
and AXIN2 genes, encoding for components of β-catenin 
degradation complex, are frequently mutated in liver 
cancers [130, 131, 131-133]. Interestingly, CTNNB1 
mutations have been shown to occur mainly in alcohol 
and HCV-related tumors [16, 134, 135]. Guichard et al. 
reported CTNNB1 mutations in 11.4% and 33.3% of 
HBV and HCV-related HCCs, respectively, and in 41.8% 
of alcohol-related HCCs [16]. In addition, mutations 
in CTNNB1 and TP53 genes appear to be mutually 
exclusive, suggesting that inactivation of either pathway 
is sufficient to induce cell transformation [16].

Next generation sequencing allowed to identify 
other oncosuppressor genes in HCC, which have lower 
mutation frequencies compared to TP53, independently 
from the etiology of the tumor. They include P16INK4 
(6%–17%), P14arf (5%), AXIN1 (5%–15%), AXIN2 
(2%–10%), TIP30 (24%), IGFR2 (10%–20%), KLF6 

Table 2: Major chromosomal alterations (frequency above 20%) identified in 31 studies by conventional metaphase-
based CGH analysis

Chromosome gain Hot spot All HCC 
(n=785)

HBV HCC 
(n=244)

HCV HCC 
(n=110)

1q 1q31 57.1% 53.3% 45.5%

6p 6p25–p23 22.3% 24.2% 16.4%

8q 8q24.2 46.6% 46.7% 34.5%

17q 17q25 22.2% 20.9% 17.3%

Chromosome Loss

4q 4q23–24 34.3% 43.4% 27.3%

8p 8p21.3–p21.2 38.0% 40.6% 20.0%

13q 13q21.1–q21.3 26.2% 31.1% 23.6%

16q 16p13.2 35.9% 41.8% 27.3%

17p 17p12 32.1% 32.4% 30.9%
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(15%), Caspase- 8 (13%), PTEN (5%–8%), etc. [14, 135-
137]. Moreover, oncogenes other than CTNNB1 are less 
frequently mutated and they include EGFR (1%) and 
Erb2 (2%), K-ras (0%–19%) and N-ras (2%) and PIK3CA 
(<5%) [14, 135-137].

At least three large whole-exome sequencing studies 
described the mutational landscape and possible druggable 
targets in viral-related and viral-unrelated HCC,Table 3, 

[138-140]. Totoki et al. identified 30 candidate driver 
genes associated with 11 core pathways in 608 liver 
cancers including 413 cases from Japan [138]. Importantly, 
they discovered that 68% of HCC cases had telomerase 
reverse transcriptase (TERT) genetic alterations, including 
promoter mutation, focal amplification, and viral genome 
integration, and recognized TERT as a central regulator of 
hepatocarcinogenesis.

Table 3: Comparison of recurrently mutated genes in HCC identified in three large studies in Japan, Korea and 
Europe

Function Gene name Totoki et al.* 
(n=452)

Ahn et al.* 
(n=231)

Schulze et al.* 
(n=243)

WNT/β-catenina CTNNB1 31.0% 22.9% 37.4%

RSPO2 - 3.0% -

AXIN1 6.2% 6.9% 11.1%

FZD6 - 3.0% -

Chromatin remodeling ARID1A 8.6% 3.9% 12.8%

ARID2 10.8% 3.0% 6.8%

ARID4b 1.1% 3.0% -

p53/cell cycle TP53 32.2% 31.2% 24.3%

CDKN2A 2.2% 6.1% 8.5%

ATM 4.4% 2.2% 5.5%

CDKN2B 0.2% 2.2% 5.1%

CCND1 - 5.2% 4.7%

RB1 4.2% 7.8% 3.8%

RBL2 2.2% 3.0% -

HUWE1 0.4% 0.9% 3.4%

Epigenetic regulation MLL2 3.8% 5.2% 5.5%

MLL3 2.4% 3.0% 2.0%

MLL 2.9% 3.9% -

CHD1 - 3.0% -

CHD7 0.9% 3.0% 3.4%

CREBBP 2.0% 3.0% 3.0%

SMC3 - - 3.0%

SRCAP 2.9% - 3.0%

Telomere mantainence TERT promoter 55.1% - 60.0%

TERT 4.0% - -

Oxidative stress NFE2L2 4.9% 3.0% 6.4%

KEAP1 2.4% - 3.8%

Hepatic differentiation ALB 6.9% 4.8% 12.8%

APOB 10.2% 10.3% 9.4%

HNF1A 2.2% 0.9% 4.7%
(Continued )
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Ahn et al. analyzed 231 cancer cases from Korea 
and identified recurrent somatic mutations in nine 
genes, comprising TP53, CTNNB1, AXIN1, RPS6KA3, 
and RB1, homozygous deletions in FAM123A, RB1, 
and CDKN2A, and high-copy amplifications in MYC, 
RSPO2, CCND1, and FGF19 [139]. RB1 mutations 
were associated with cancer recurrence in resectable 
HCCs. Schulze and colleagues identified 161 putative 
driver genes associated with 11 pathways: TERT 
expression, WNT/β-catenin, PI3K-AKT-mTOR, TP53 
– related pathway, MAP kinases, hepatic differentiation, 
epigenetic regulation, chromatin remodeling, oxidative 
stress, IL-6/JAK-STAT and TGF-β [139, 140]. 
Approximately 30% of liver tumors analyzed in these 
studies harbored genetic alterations potentially targetable 
by Food and Drug Administration (FDA)-approved drugs 
[140]. The analysis of copy number variations revealed 
recurrent homozygous deletions of the CFH locus, 
IRF2, CDKN2A, PTPN3, PTEN, AXIN1 and RPS6KA3 
and recurrent focal amplifications of TERT, VEGFA, 
MET, MYC, the FGF-CCND1 locus containing FG3, 
FG4 and FGF19, JAK3 and CCNE1 [140]. Moreover, 
integrating results of exome sequencing mutation and 

focal copy number alteration allowed to identify 3 groups 
of putative cancer driver genes: CTNNB1, TP53 and 
AXIN1 clusters [140].

The frequency of mutations in different genes 
seems related to the cancer etiology. TP53 gene was 
mostly mutated in HBV-related HCC, while CTNNB1, 
TERT, CDKN2A, SMARCA2, and HGF genes were 
mainly mutated in alcohol-related HCCs, and IL6ST was 
mutated in HCCs with no known etiology. Conversely, no 
specific gene mutation was associated with HCV infection, 
metabolic syndrome and hemochromatosis [138-140].

Somatic mutations in the TERT promoter have been 
identified as the first recurrent genetic alteration in 25% of 
dysplastic cirrhotic nodules [141, 142]. These mutations 
create a consensus binding sequence for a ternary complex 
factor and induce expression of telomerase reverse 
transcriptase [148]. Conversely, several other genes known 
to be recurrently mutated in HCC, including CTNNB1, 
TP53, ARID1A, ARID2, RPS6KA3, NFE2L2 and KEAP1 
were not mutated in dysplastic nodules [141]. TERT 
promoter mutations may be considered as biomarkers for 
the identification of premalignant lesions developed in 
cirrhosis patients with a high risk of progression to HCC.

Function Gene name Totoki et al.* 
(n=452)

Ahn et al.* 
(n=231)

Schulze et al.* 
(n=243)

FGA 1.5% 1.7% 3.4%

MAPK RPS6KA3 3.8% 5.0% 6.8%

FGF4 0.2% - 4.7%

FGF19 - 5.0% 4.7%

FGF3 0.2% 0.9% 4.3%

EPHA4 1.8% 2.6% 3.4%

FLT4 0.9% 2.6% 3.4%

HGF 0.7% 0.4% 3.0%

NTRK3 1.5% 1.7% 3.0%

PI3K-AKT-mTOR TSC2 5.3% 3.0% 5.1%

FGF4 0.2% - 4.7%

FGF19 4.0% 5.0% 4.7%

FGF3 0.2% 0.9% 4.3%

FLT4 0.9% 2.6% 3.4%

PTEN 1.3% 2.0% 3.4%

HGF 0.7% 0.4% 3.0%

PRKCB 1.5% 3.5% -

NTRK3 1.5% 1.7% 3.0%

JAK3 0.9% 0.4% 3.0%

* Totoki et al. (n=413 Japan, 92 HBV+ and 183 HCV+); Ahn et al. (n=231 Korea, 167 HBV+ and 22 HCV+); Schulze et al. 
(n=243 [n=193 France, n=41 Italy, n=9 Spain], 33 HBV+ and 61 HCV+).
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Immunotherapeutic approaches and gene 
mutations in HCC

In several cancer types, the activity of tumor 
antigen-specific T-cells is tightly regulated by the 
balanced expression of stimulatory and inhibitory 
molecules defined as “immune checkpoints” [144, 
145]. Therapies targeting these checkpoints, such 
as those directed against cytotoxic T-lymphocyte 
antigen 4 (CTLA-4) and programmed death 1 receptor 
(PD-1), have shown to be more effective in cancers 
characterized by high rates of somatic mutations [146]. 
Recent studies have indicated that a high tumor mutation 
burden increases responsiveness to CTLA-4 inhibition 
in melanoma, to PD-1 inhibition in non-small cell lung 
cancer and in mismatch repair-deficient colorectal 
cancers [147]. The hypothesis is that the higher number 
of genetic variations leads to a greater number of 
mutated epitopes in tumor proteins (neoantigens). Such 
neoantigens may be characterized by an improved MHC-
binding profile, resulting in superior presentation to T 
cells for eliciting a stronger cytotoxic response [148, 
149]. Very recently, this has been experimentally proven 
in animal models [150, 151] as well as in melanoma 
patients treated with the anti–CTLA-4 monoclonal 
antibody, ipilimumab [152, 153].

Liver sinusoidal endothelial cells express high 
levels of the inhibitory molecule program death receptor 
ligand 1 (PD-L1) and low levels of the co-stimulatory 
molecules CD80 and CD86, thereby limiting their ability 
to effectively activate CD4-positive (CD41) and CD8 1 
T lymphocytes [154, 155]. Immune checkpoint inhibitors 
have been recently evaluated in HCC patients. The anti-
CTLA-4 monoclonal antibody tremelimumab showed a 
safe profile and antitumor activity in HCC patients with 
chronic HCV infection [156]. Very recently, results from 
a phase I/II clinical trial (ClinicalTrials.gov Identifier: 
NCT01658878) presented at the last 2015 ASCO 
Meeting showed that nivolumab, a fully humanized 
IgG4 monoclonal antibody to PD-1, may be a promising 
treatment for patients with advanced HCC [157]. Indeed, 
the overall survival at 1 year was 62% and overall 
objective responses rate was 19%, including complete 
response (CR) in 5% and partial response in 14% of 
enrolled patients. Such responses are significantly higher 
compared to responses to the kinase inhibitor sorafenib, 
the current standard of care for late stage HCC.

Further studies are needed to evaluate whether the 
immune responses elicited by mutated epitopes could 
lead to an increased efficacy of anti immune-checkpoint 
therapies also in liver cancer.

CONCLUSIONS

Classification of liver cancers in homogeneous sub-
groups characterized by specific molecular alterations 

is an important tool for the application of personalized 
therapies. Several commonly altered pathways have 
emerged following the integration of data obtained with 
multiple high-throughput analyses. Common oncogenic 
drivers, differentially represented in HCCs with different 
etiologies, include genetic alterations affecting TERT, 
Wnt/beta-catenin, JAK/STAT and PI3K-AKT-mTOR 
pathways. Drugs targeting these pathways are now 
available and have been approved in clinical trials.
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