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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is commonly used to characterize
molecular complexity because it produces informative atomic-resolution data on the chemical structure
and molecular mobility of samples non-invasively by means of various acquisition parameters and
pulse programs. However, analyzing the accumulated NMR data of mixtures is challenging due to
noise and signal overlap. Therefore, data-cleansing steps, such as quality checking, noise reduction,
and signal deconvolution, are important processes before spectrum analysis. Here, we have developed
an NMR measurement informatics tool for data cleansing that combines short-time Fourier transform
(STFT; a time–frequency analytical method) and probabilistic sparse matrix factorization (PSMF) for
signal deconvolution and noise factor analysis. Our tool can be applied to the original free induction
decay (FID) signals of a one-dimensional NMR spectrum. We show that the signal deconvolution
method reduces the noise of FID signals, increasing the signal-to-noise ratio (SNR) about tenfold,
and its application to diffusion-edited spectra allows signals of macromolecules and unsuppressed
small molecules to be separated by the length of the T2* relaxation time. Noise factor analysis of
NMR datasets identified correlations between SNR and acquisition parameters, identifying major
experimental factors that can lower SNR.

Keywords: NMR; molecular complexity; FID; short-time Fourier transform; matrix factorization;
T2* relaxation time; diffusion-edited spectrum; signal-to-noise ratio; acquisition parameters;
correlation network analysis

1. Introduction

NMR spectroscopy is one of the most powerful tools available for molecular characterization
at the atomic level [1]. Because it is non-invasive, NMR has been applied to data-driven analyses of
molecular complexity in many areas of health [2], food [3], materials [4], and the environment [5].
In measuring NMR signals, the main challenges are the sensitivity and resolution of the NMR
spectrum [6]. On the one hand, various techniques and devices for improving sensitivity have been
developed, such as high-field magnets [7], cryogenic detection systems [8], shimming and locking to
adjust the magnetic field [9], and dynamic nuclear polarization [10]. In addition, pulsed field gradient
(PFG), nonuniform sampling [11] and magnetization transfer techniques such as cross-polarization [12]
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and INEPT (Insensitive nuclei enhanced by polarization transfer) [13] have been developed to enhance
the sensitivity per unit time. On the other hand, compact and benchtop NMR instruments with lower
resolution have become highly cost-effective owing to marked progress in the materials used for the
permanent magnet [14].

Regarding spectral resolution, many pulse sequences for the measurement of one-dimensional
(1D)-NMR with selective signal suppression, including pre-saturation, Carr–Purcell–Meiboom–Gill
(CPMG) [15], WATER suppression by GrAdient Tailored Excitation (WATERGATE) [16],
diffusion-editing [17], double quantum filter [18], and pure shift NMR [19], have been developed to
reduce signal overlap. However, the spectra have remaining overlapping signals, or the overlapping
peaks themselves contain part of the information of the sample. In this regard, overlapping signals
can be separated by two-dimensional (2D)-NMR, in which multiple free induction decays (FIDs) are
measured over a small change in evolution time, but this approach is time consuming [20].

Conventionally, methods for improving the sensitivity and resolution of FIDs are adjusted by
pre-processing steps, such as zero filling and apodization, before Fourier transformation (FT) is carried
out [21]. Other methods for reducing mathematical noise from FID signals focus on the region of
interest (ROI), such as reference deconvolution [22], harmonic inversion noise removal (HINR) [23],
and complete reduction to amplitude frequency table (CRAFT) [24]. In addition, STFT and wavelet
transform [25] have been developed as alternative transformation methods to FT for analyzing the
relationship between the time and frequency of FIDs. In principle, the exponential decay constant of
the FID obtained by applying a 90◦ pulse to create transverse magnetization is the T2 relaxation time, a
physical parameter independent of field inhomogeneity. In reality, however, because of the effect of
magnetic field inhomogeneity, the decay constant of the FID is defined as T2*, an instrument-dependent
parameter, rather than T2. STFT has the ability to extract time-varying behavior from FIDs, allowing
for the analysis of dynamic chemical shifts of atoms in flexible proteins [26]. In addition, it has been
reported that STFT can extract T2* information from FIDs and improve the results of discriminant
analysis [27]. Applying the same idea to covariance NMR [28], T2*-weighted covariance NMR improves
the sensitivity and resolution of signals based on the difference in T2*, determined by dividing each FID
in the t1 dimension of 2D-NMR to create a series of sub-FIDs [29]. In an alternative approach, matrix
factorization (MF) is commonly used to extract signal components and separate peaks in spectra [30].
For example, a noise reduction method using principal component analysis (PCA), which is one of
the most commonly used multivariate analysis methods for extracting features of data, has been
applied to solid CP-MAS NMR data measured by various parameters [31]. Therefore, the quality
and amount of information from FIDs can be maximized by applying corrections based on different
characteristics. Nevertheless, all these methods require multiple FIDs obtained by adding either
spectral dimensions or multiple conditions of samples or parameters. There is also a computational
approach such as CORE (COmponent-REsolved; a multi-component spectral separation approach
previously introduced method). It focuses on diffusion coefficients to separate the NMR signals of
different compounds in PFG-NMR [32–34]. However, this technique requires a specific NMR probe
with a coil for generating PFG.

In the current move toward a digital innovation society, tools for NMR measurement informatics
are becoming increasingly important [35]. Alongside this, the value of raw NMR datasets for reuse in
research studies is rising [36]. Although the quality of raw data influences the value of knowledge
obtained in terms of both insight and prediction [37], data cleansing methods for utilizing various
kinds of NMR data accumulated over many years, such as data quality checks, noise reduction, and
signal deconvolution, have not been established.

In this study, by focusing on acquisition parameters [38–42] and noise [25], we have developed
an NMR measurement informatics tool for data cleansing based on FID signal deconvolution and
noise factor analysis. Our method for deconvoluting signals and noise factor analysis can be applied
to original single FIDs from 1D-NMR and is based on STFT [43] and PMSF [44]. It differs from
conventional noise reduction using multivariate analysis [34] because it does not require multiple
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1D-NMR data that are measured on many samples or acquired with several acquisition parameters.
The difference in T2* on the time axis determined by performing STFT for each frequency component
is useful to separate signals based on MF instead of ROI [22–24]. Our method that focuses on the
relaxation time utilizes the attenuation behavior of the FID signal without any hardware upgrade for
NMR research field. Lastly, we have developed a function for collecting acquisition parameters as a
measurement of experimental factors from a directory of NMR data, and investigated the relationship
between signal-to-noise ratio (SNR) and acquisition parameters. A researcher performing NMR must
select parameters for each experiment, and normally chooses a reasonable set of parameters based on
their experience. We show that these parameters can be characterized in terms of their correlation with
SNR by a statistical analysis of accumulated NMR datasets. Therefore, this method will be useful to
determine the optimal conditions of acquisition parameters.

2. Results and Discussion

2.1. Signal Deconvolution Method

In this study, signal deconvolution, based on the combined method of STFT and PSMF, was applied
to FIDs of 1D-NMR to separate the components and improve SNR. The theory behind the signal
deconvolution method is described in detail in the Supplementary Materials. In brief, in FT NMR
spectroscopy, the FID is the NMR signal generated by non-equilibrium nuclear spin magnetization
precessing along the magnetic field. In general, this non-equilibrium magnetization can be generated
by applying a pulse of resonant radiofrequency close to the Larmor frequency of the nuclear spins of
the sample. Each FID is commonly a sum of multiple decayed oscillatory signals. These signals return
to equilibrium at different rates or relaxation time constants. Thus, analysis of the relaxation times of
an FID for a sample gives significant insight into the chemical composition, structure, and mobility of
the sample. FIDs acquired by NMR measurement are composed of many signals derived from the
sample, in addition to several types of noise, such as external noise, physical vibration, power supply,
and internal noise from the spectrometer due to thermal noise. Therefore, an FID can be modeled as:

S(t) = Ssignal(t) + Snoise(t) (1)

where S(t) is the measured signal, and Ssignal(t) and Snoise(t) are sets of ideal signals and signals
from different types of noise, respectively (Equation (1) and Supplementary Equation (S1)) [45].
The relaxation process can then be described as the exponential decay of the transverse magnetization
S(t) (Supplementary Equation (S2)) [46]. The shorter the relaxation time T2*, the more rapid the decay.
If an FID has more than one component, it will be the sum of contributions from each component
(Supplementary Equation (S3)).

Whereas standard FT (Supplementary Equation (S4)) contains only the frequency domain,
STFT contains both frequency and time domains. Because the FID signal decays exponentially with
time, for STFT, it needs to be divided into several small time intervals (segments) to analyze the
time–frequency feature accurately, and FT is used to determine the frequency feature of each segment,
thereby increasing the accuracy of signal feature extraction. STFT uses a window function to obtain
each weighted segment on the time axis, and then applies FT to each segment. STFT of S(t) can be
written as:

STFTS(τ,ω) =
∫
∞

−∞

S(t)g(t− τ) exp(−iωt)dt (2)

where the window function g is first used to intercept the progress of FT on S(t) around t = τ locally,
and then FT of the segment is performed on t (Equation (2) and Supplementary Equation (S5)) [43].
By moving the center position of the window function g sequentially, all the FTs at different times can
be obtained.

STFTS(τ,ω) is a complex-valued function (Supplementary Equations (S6)–(S9)) composed of
two types of signal: real (Re, Supplementary Equation (S7)) and imaginary (Im, Supplementary
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Equation (S8)), whose phases differ from each other by 90◦ (Supplementary Figure S1). To change the
complex value into an absolute value, the following equation is applied:

|z| =
√

Re2 + Im2 =

√(
γ cosωt exp

(
−

t
T∗2

))2

+

(
γ sinωt exp

(
−

t
T∗2

))2

(3)

For the matrix factorization method PSMF [47], positive-valued matrices are needed, and the
original signal values must be converted to their logarithmic form for optimal analysis. To convert the
absolute value in Equation (3) to a positive logarithmic form, the following Equation (4) (Supplementary
Equation (S10)) is applied:

V = log10(|z|+ 1) (4)

Signal deconvolution can be then formulated as finding the factorization of the data matrix V
(Supplementary Equations (S11) and (S12)):

V = W·H + residuals = Wsignal·Hsignal + Wnoise·Hnoise + residuals (5)

In this method using PSMF, we focus on sparse factorizations and on properly accounting for
uncertainties while computing the factorization. Equation (5) estimates that the signal component
(Wsignal·Hsignal) decays exponentially with time, while the noise component (Wnoise·Hnoise) is a random
or flat value. To reconstruct the FIDs, the absolute value within each component is converted back
to a complex value (Supplementary Equations (S13) and (S14)). The inverse STFT is computed by
overlap-adding the inverse fast FT signals in each segment of the STFT spectrogram (Supplementary
Equation (S15)).

To evaluate SNR, both noise-removed and noise-only FIDs are converted to signal and noise
spectra, respectively, by applying standard FT. SNR is calculated as the ratio of the signal peak intensity
to the noise value by using the method of Mnova (Supplementary Equation (S16)) [48]. The noise
value is calculated by using the standard deviation of the signals-free region (Supplementary Equation
(S17)). Finally, the relative SNR is the ratio of the SNR after denoising (SNRdenoised) to the original SNR
(SNRoriginal), which is calculated as follows (Equation (6) and Supplementary Equation (S18)):

Relative SNR =
SNRdenoised
SNRoriginal

(6)

Figure 1 shows an example of application of our signal deconvolution process to sucrose 1H-NMR.
STFT of the original FID adds a time axis to the frequency axis of the conventional FT spectrum
(Figure 1a). The STFT spectrogram is three-dimensional, showing the frequency, time, and intensity of
signal and noise. The matrix of the spectrogram was separated into signal and noise components based
on the patterns of relaxation time using PSMF (Figure 1b). Each component was then converted into a
signal FID and time-domain noise data by using inverse STFT (Figure 1c). Lastly, the time-region data
were converted into the denoised spectrum and noise by using standard FT (Figure 1d). Regarding the
noise reduction of the sucrose data, SNR of the denoised spectrum was improved about tenfold relative
to the original data. In other words, for the sucrose sample, a 100-fold longer acquisition time would be
required to obtain the same SNR without denoising. We compared signal and spectral quality between
the original FT and noise reduction data (Supplementary Figure S2 and Table S1). There was almost no
difference between them.

In STFT, the size of a window function g(t− τ) is important. We define the percentage of the time
width as the percentage of the window size to FID length. After examining different percentages of the
time widths, we found that signal components could be properly extracted in 1.5% and 3.1% (512 and
1024 points for 33,280 points), but not 6.2% (2048 points for 33,280 points) (Supplementary Figure S3).
This is because the larger time width does not improve spectra since STFT becomes standard FT.
Consequently, the percentage against the effective average region of FIDs is important for this method.
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Based on this result, the percentage of the time width was set to 3.1% for data analyzed in Figure 1.
When using this method for data with short effective regions (fast relaxation systems such as solid-state
NMR and quadrupole nucleus), data processing must be adjusted to maintain the shorter percentage
of the time width. In addition, if an FID consists of a number of signals with differing T2*, it will
not be possible to choose an optimal filter for all lines simultaneously by applying commonly used
apodization. The apodization such as exponential filtering decreases both signal and noise. In contrast,
the method that we propose enables signal and noise to be extracted from an FID based on each pattern
of T2* relaxation time.
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Figure 1. The free induction decay (FID) signal deconvolution method and its application to 1H-NMR
data for sucrose. (a) The spectrogram was obtained by applying short-time Fourier transform (STFT)
to the original FID. (b) The matrix obtained after STFT was applied to probabilistic sparse matrix
factorization (PSMF), which separated it into signal and noise components. (c) The signal and noise
components were converted into a noise-removed FID signal (orange) and a time-domain noise signal
(blue) by using inverse short-time Fourier transform. (d) Finally, the noise-removed FID and the
time-domain noise signal were converted to a frequency-domain spectrum by applying standard
Fourier transform. As compared with the original FID, the signal-to-noise ratio of the denoised FID
was improved about tenfold.

We compared the performance of PSMF with that of three other MF methods, namely
standard nonnegative matrix factorization (NMF), sparse nonnegative matrix factorization (SNMF),
and probabilistic nonnegative matrix factorization (PMF) (Figure 2). For PSMF, the noise region
was successfully removed from the signal component (Figure 2a). For the other three methods,
by contrast, the noise component remained in the signal component (Figure 2b–d). Regarding the
PSMF time-varying coefficients, the signal component attenuated gradually over time, whereas the
noise component attenuated sharply in the first segment and then became flat from the second segment
(Supplementary Figure S4a). This observation suggests that part of the signal component may be
included in the initial stage of the noise component. Therefore, for the optimal result in Figure 1,
the initial value of the noise component is added as a signal component. The time-varying coefficients
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of the other three methods were characterized by containing mostly noisy components in the signal
components, suggesting that the signal components were not properly extracted (Supplementary Figure
S4b–d). The signal component is theoretically considered to be sparse data that comprise only specific
frequency components. PSMF is a method that considers noise and uncertainty under the sparseness
constraint, which suggests that it is suitable for removing noise from 1H-NMR data. We also examined
the effect of the number of components in PMSF on signal deconvolution, which showed that it was
possible to properly extract signal components when there were two components (Supplementary
Figure S5). When the number of components was increased, only noise components were separated
more finely. Based on this result, the number of components was set to 2 in the signal deconvolution
method for noise reduction. In the case of more complex data, such as the NMR signal of a mixture,
it may be possible to apply the method to the characterization of multiple components by separating
them with an arbitrary number of components.
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Figure 2. Comparison of four matrix factorization (MF) methods in signal deconvolution. Shown are
spectral patterns of signal deconvolution for sucrose 1H-NMR data using (a) PSMF, (b) NMF, (c) PMF,
and (d) SNMF. The signal components are shown in orange and the noise components are shown
in blue.

2.2. Noise Reduction in NMR Data Measured by Various Pulse Sequences

The improvement in the relative SNR achieved by the noise reduction method was investigated
by using large-scale data measured by various pulse sequences (Figure 3). Here, we analyzed the
following three pulse sequences, which are generally used depending on the target of analysis: CPMG,
which detects small molecules with long T2*, diffusion-edited, which detects proteins and lipids with
relatively short T2*, and WATERGATE, which detects both of these. For the analysis of extensive data,
percentages of the time width to FID lengths were set to 6.3% for CPMG and WATERGATE, 12.5%
for diffusion-edited (1024 points for 16384 and 8192 points), and the initial three values of the noise
component were added as a signal component. For CPMG and WATERGATE, the improvement rate
was 3.7-fold and 3.3-fold, respectively. On the other hand, it was only 2.2-fold for diffusion-edited
NMR data (Figure 3a). As a result of comparing the relative SNRs of three typical pulse sequences
for 10 representative samples, the data of diffusion-edited tended to be lower than those of CPMG
and WATERGATE as in the case of large-scale data (Figure 3b, Supplementary Table S2) since the time
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width for diffusion-edited (12.5%) is higher than that of the other two pulse sequences (6.3%). The SNR
of any NMR data set is related to the acquisition parameters (Supplementary Figures S6–8). In NMR
data using CPMG and WATERGATE, the SNR is related to several acquisition parameters, such as
receiver gain (RG), number of scans (NS), relaxation delay time (D1), spectral width (SW), and offset of
the transmitter frequency (O1), whereas in diffusion-edited NMR, the SNR is particularly related to the
gradient pulse in the z-axis (GPZ). In diffusion-edited NMR, signals from small molecules with long
T2* relaxation times are suppressed. We therefore considered that, if the GPZ setting was insufficient,
signals of small molecules would remain, resulting in a difference in relative SNR. As expressed,
the peak SNR depends on T2* because an FID with large T2* yields a sharp line with higher SNR
at the peak [38]. Thus, it seems likely that the diffusion-edited NMR data contain a lot of broad
signals derived from macromolecules, resulting in less improvement as compared with CPMG and
WATERGATE which have many sharp signals.
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Figure 3. Relative SNR in data measured by three pulse sequences. (a) Shown is the relationship
between the relative SNR after application of the noise reduction method to large-scale data measured
by three pulse sequences: CPMG (blue), WATERGATE (red), and diffusion-edited (yellow), and its
acquisition time. The upper part of the figure shows the number of spectra and the average relative
SNR for each pulse sequence. (b) Comparison of the efficiency for improvement of the SNR measured
by three pulse sequences: CPMG (blue), WATERGATE (red), and diffusion-edited (yellow), among
NMR spectra derived from sample ID of 1 to 10. The acquisition time and the average relative SNR for
each pulse sequence are shown in the upper part of the figure.

2.3. Application of Signal Deconvolution Method in Diffusion-Edited NMR

We further examined the application of our signal deconvolution method to diffusion-edited
NMR data. For the optimal analysis of these data, the percentage of the time width to FID length
was set to 6.3% (512 points for 8192 points), and the initial value of the noise component was added
as a signal component. The original FID was separated into three components, including noise and
the long and short components of T2* (Figure 4a,b). By extracting each component and performing
standard FT, the SNR of the denoised spectrum was improved about threefold as compared with the
original data. In addition, we obtained individual spectra for the short and long components of T2*
(Figure 4c,d). Thus, the diffusion-edited spectrum was separated into signals from macromolecules and
small molecules by the length of the T2* relaxation time. The composition of molecules in these signals is
related to the GPZ value of the acquisition parameters (Supplementary Figures S8 and S9). We consider
that insufficient GPZ is the main factor affecting the relative SNR of diffusion-edited NMR data because,
if GPZ is insufficient, relatively more signals from small molecules are contained in the measured
signals. Knowing this composition will help to evaluate the data quality of diffusion-edited NMR.
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Figure 4. Application of the signal deconvolution method to diffusion-edited spectra. (a) Spectral
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2.4. Noise Factor Analysis in Data Measured by Low- and High-Field NMR at Multiple Institutions

To investigate the comprehensive relationship between noise and several acquisition parameters,
we analyzed noise factors in data acquired by low- and high-field NMR at multiple institutions.
We collected NMR data for four compounds (glucose, sucrose, citric acid, and lactic acid) measured by
benchtop NMR (60 MHz) and high-field NMR (500, 600, and 700 MHz) from five institutions/data
repositories (RIKEN, NUIS (Niigata University of International and Information Studies), BMRB [49],
BML [50], and HMDB [51]) (Supplementary Table S3). The results of correlation analysis between
noise and experimental parameters were first summarized as a heatmap (Supplementary Figure S10).
With a specific focus on the experimental parameters that affect the SNR, we then derived a network of
experimental factors affecting noise based on the correlation coefficients between SNR and experimental
parameters (Figure 5). Here, in addition to the SNR calculated using Mnova, we calculated a theoretical
SNR value (calcSNR) using a previously described SNR formula (Supplementary Equation (S19)) [52]
in order to obtain a theoretical SNR index based on acquisition parameters. Figure 5 shows that,
based on the correlation between SNR and, for example, number of scans (NS) and signal intensity
(e.g., standard, sample, and solvent), the integration of strong signals will increase noise and reduce
SNR. Therefore, the suppression of water signals and sample concentration will be important factors to
obtain NMR data with a good SNR.

In situations where longer NMR measurements are needed owing to poor signals (e.g., for nuclei
of low sensitivity and/or low natural abundance, and samples of low concentration), paying attention
to the certain factors, as discussed here, may provide significant improvements in SNR [38], or even
more marked savings in measurement time for a given SNR. For example, too long an acquisition
time is not beneficial for SNR. An FID of the time constant T2* gives, on Fourier transformation, a line
width of 1/πT2* or approximately 1/3T2*. Thus, data acquisition beyond about 3T2* provides little gain
in resolution, but causes a considerable deterioration in SNR. In addition, the spectral width may be
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set high enough to prevent aliasing of NMR signals. If not, there may be still other signals that fold,
namely noise, meaning that the final SNR in the spectrum deteriorates.

Receiving efficiency (R) has been proposed as a way to characterize how efficiently the NMR signal
can be observed after a unit transverse magnetization in a sample under optimal probe tuning and
matching conditions [39]. In that study, the NMR signal amplitude was described as a function of the
instrument constant, receiver gain, excitation angle θ, inhomogeneity factor I(θ), concentration of the
observed nucleus, and sample volume. Modern NMR spectrometers require receivers to work within
their linear ranges to maintain high-fidelity line shapes and peak integration [40]. The NMR receiver
gain is a parameter that is often chosen to maximize SNR. For example, for optimal sensitivity, a dilute
analyte needs to be observed with high NMR receiver gain, while the strong, interfering solvent signal
must be suppressed [41]. In this case, the dependence of I(θ) on θ becomes more significant because
homogeneity is typically lower for a cryoprobe than for its conventional counterpart [42], and failing
to recognize the dependence of I(θ) on θ alone may potentially lead to errors in quantification as large
as 5%. Other factors that we have discussed have less effect on SNR, but are significant in terms of
line shape.
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Figure 5. Analysis of experimental factors based on a correlation network of SNR and experimental
parameters. The network diagram was drawn by setting positive correlations to red, negative
correlations to blue, and the magnitude of the correlation coefficient to the edge thickness. Abbreviations:
SNR, signal-to-noise ratio; calcSNR, calculated SNR; Cstd, concentration of standard compound;
Ccomp, concentration of compound; Water+, positive intensity of water signal peak to standard peak;
Water–, negative intensity of water signal peak to standard peak; Intensity, intensity of standard signal;
FWHM, full width at half maximum; Area, area of standard signal; RG, receiver gain; NS, number of
scans; D1, relaxation delay time; SW, spectral width; AT, acquisition time; TD, time-domain data size;
O1, offset of transmitter frequency; TE, temperature; BF1, basic transmitter frequency for channel F1 in
Hertz; PROBHD, if cryoprobe, value is 4, if not, value is 0.

3. Materials and Methods

3.1. Signal Deconvolution Method

The signal deconvolution method was developed in python 3, and built as a graphical user
interface (GUI) tool using Tkinter. The tool is available on http://dmar.riken.jp/NMRinformatics/.

http://dmar.riken.jp/NMRinformatics/
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The processing of NMR data was implemented by using the nmrglue [53] package in Python. PSMF [47],
PMF [54], SNMF [55], and standard NMF [56] were calculated based on the NIMFA Python library for
nonnegative matrix factorization [44].

3.2. Noise Factor Analysis Method

The noise factor analysis consisted of four steps implemented in python 3, namely: (1) Collecting
acquisition parameters of NMR data: FID and acquisition parameters were searched from the selected
NMR data directory and written to CSV files. (2) Calculating SNR: each FID was usually processed
to an FT spectrum and denoised spectrum, and the SNR and its improvement ratio were calculated.
In the noise factor analysis of data collected from multiple databases, SNR was calculated by using
Mnova. (3) Calculating the correlation coefficient between SNR and each parameter by Pearson’s
correlation coefficient. (4) Visualizing experimental factors: the nodes, edges, and widths of networks
based on the correlation coefficient were transformed in GML format by using the Networkx package
in Python. Lastly, the network figure was drawn by using Cytoscape [57].

3.3. NMR Data Acquisition

Briefly, 1H-NMR data were by recorded using an Avance II 700 Bruker spectrometer equipped
with a 5-mm inverse CryoProbe operating at 700.153 MHz for 1H. In the 1H -NMR data, the number of
data using CPMG pulse sequence was 2386, the number of data using WATERGATE pulse sequence
was 2760, and the number of data in the 1D LED experiment using bipolar gradients (diffusion-edited)
pulse sequence was 975 [58–61]. Regarding these large data sets, a summary of information on the
sample and acquisition parameters (the sample title, solvent, acquisition time, acquisition point, and the
original SNR) is available at http://dmar.riken.jp/NMRinformatics/. Data sets for comparing the relative
SNRs of three typical pulse sequences for 10 representative samples are shown in Supplementary
Table S2. To demonstrate the denoising method, data for sucrose and citric acid were acquired by
using the presaturation (program name; “zgpr”) pulse sequence. To demonstrate the method of
separating signals in the diffusion-edited spectrum, 1H-NMR data for fish muscle were measured by a
diffusion-edited pulse sequence. Lastly, 48 sets of 1H-NMR data (glucose, sucrose, citric acid, and lactic
acid) were collected from the following five sites; RIKEN, NUIS, BMRB, BML, and HMDB. The data
were measured with NMR spectrometers of 60, 500, 600, and 700 MHz manufactured by Bruker, Varian,
and Nanalysis (Supplementary Table S3).

4. Conclusions

We have developed a measurement informatics tool for NMR signal deconvolution and noise
factor analysis and used it to investigate the relationship between noise and acquisition parameters in
accumulated NMR datasets. This method enables 1D-NMR spectra to be evaluated with a high SNR,
and residual signals from small molecules to be removed from diffusion-edited spectra. This method can
be adjustable to any T2* length, recycle delay, sample molecular weight, or measurement temperature.
The percentage of the time width against the effective average signal region of FIDs must be adjusted
according to T2* length. Therefore, when using this method for fast relaxation systems such as
solid-state NMR and quadrupole nucleus, additional efforts are needed. In the case of 2D-NMR, it is
necessary to use this method by splitting each t1-dimensional FID and creating a series of sub-FIDs.
Noise factor analysis of accumulated NMR datasets might facilitate the investigation of experimental
factors related to a lower SNR. Therefore, these methods will help to determine optimal acquisition
parameters, to cleanse data, including data management and noise reduction in accumulated NMR
datasets, and to promote data-driven studies of molecular complexity using NMR.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/8/2978/
s1. An NMR measurement informatics tool for data cleansing and information on the sample and acquisition
parameters are available at http://dmar.riken.jp/NMRinformatics/.

http://dmar.riken.jp/NMRinformatics/
http://www.mdpi.com/1422-0067/21/8/2978/s1
http://www.mdpi.com/1422-0067/21/8/2978/s1
http://dmar.riken.jp/NMRinformatics/
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