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The behavior and skills of living systems depend on the distributed control provided by
specialized and highly recurrent neural networks. Learning and memory in these systems
is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity.
Translating principles of recurrent neural control and plasticity to artificial agents has seen
major strides, but is usually hampered by the complex interactions between the agent’s
body and its environment. One of the important standing issues is for the agent to
support multiple stable states of behavior, so that its behavioral repertoire matches the
requirements imposed by these interactions. The agent also must have the capacity to
switch between these states in time scales that are comparable to those by which sensory
stimulation varies. Achieving this requires a mechanism of short-term memory that allows
the neurocontroller to keep track of the recent history of its input, which finds its biological
counterpart in short-term synaptic plasticity. This issue is approached here by deriving
synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating
units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain
parameter domains, which result in a set of stable states and the required short-term
memory. They can also operate as oscillators, which allow them to surpass the level of
activity imposed by their homeostatic operation conditions. Neural systems endowed
with the derived synaptic dynamics can be utilized for the neural behavior control of
autonomous mobile agents. The resulting behavior depends also on the underlying
network structure, which is either engineered or developed by evolutionary techniques.
The effectiveness of these self-regulating units is demonstrated by controlling locomotion
of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot.

Keywords: sensorimotor loop, autonomous agent, synaptic plasticity, short-term plasticity, homeostasis, self-
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1. INTRODUCTION
Living systems, which have to survive in a complex, permanently
changing environment must exhibit a life-sustaining behavior.
For autonomous agents, such as animats, this is one of the desired
capacities. For achieving this objective, autonomous agents are
equipped with different types of sensors, with proprioceptors
monitoring their internal states, and with motors to articulate
their body movements. In addition, since every movement of the
body changes the inputs to the sensors and proprioceptors, these
agents always operate in a sensorimotor loop.

Even when the overall task is apparently simple, autonomous
agents are still expected to express diverse behavior in order
to accomplish the task, and the rich dynamics provided by
artificial recurrent neural networks is usually invoked for the
control of this behavior. Examples include tropisms of wheel-
driven robots (Hülse and Pasemann, 2002; Smith et al., 2002),
biped walking (Manoonpong et al., 2007; Kubisch et al., 2011),
active tracking (Negrello and Pasemann, 2008), quadruped loco-
motion, (Manoonpong et al., 2006; Ijspeert et al., 2007; Shim
and Husbands, 2012), hexapod locomotion (Beer and Gallagher,
1992), and swimming robots (Ijspeert et al., 2007; Shim and
Husbands, 2012).

The ability of recurrent neurocontrollers to generate success-
ful behavior depends highly on its connectivity structure as well
as on the synaptic efficacies of its connections. Suitable neuro-
controllers are usually found by evolutionary techniques (Nolfi
and Floreano, 2000). However, synaptic plasticity and regulatory
mechanisms of neural activity constitute the biological basis for
learning and memory (Cooper et al., 2004), and were taken up
by (evolutionary) robotics as a tool for adding learning abilities
to autonomous agents (Nolfi and Floreano, 1999; Di Paolo, 2000;
Smith et al., 2002; Williams and Noble, 2007; Vargas et al., 2009;
Santos et al., 2010; Hoinville et al., 2011). Incorporating plastic-
ity in the neural control of robots takes the load off evolution for
finding the right synaptic weights and/or operating range of the
neurons within the network, and limits the role of the evolution-
ary process to the allocation of suitable connectivity structure,
which considerably reduces the search space.

We follow on the lead of these studies, where we assume that
the connectivity structure is given as a result of an evolutionary
process, and we concentrate on deriving synaptic dynamics for
the neural control of artificial agents acting in the sensorimotor
loop. Our model is referred to as the self-regulating neuron, or
the SR-neuron, for short. A similar model was first proposed for
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a slightly different synaptic dynamics and another neuron type
(Zahedi and Pasemann, 2007). The SR-neuron differs from the
previous approaches in that its synaptic dynamics acts on a faster
time scale. Here, synaptic efficacies do not change due to a slow
adaptation process based on repetition of pre- and postsynaptic
activity patterns. Instead, they adapt to sensory stimulations at
the rate by which these stimulations change. This feature makes
the SR-neurons suitable for the requirement of real-time diverse
dynamic behavior and for a quick reaction to varying stimuli. As
such, and unlike previous studies, the SR-neuron dynamics does
not aim at augmenting the neurocontroller with learning, in the
sense of a gradual change of behavior to a better one. In other
words, there is no training phase that ends with higher fitness and
a steady state of the synaptic weights. Instead, synaptic weights are
constantly adapting in response to the changes of external stimuli.

The synaptic dynamics of the self-regulating neuron does not
replicate a particular plasticity mechanism that is empirically
observed in biological systems. Nevertheless, it is biologically-
inspired in three different ways, by which it exploits the functional
properties of biological plasticity for the benefit of a stable and
successful behavior of an artificial agent.

First, self-regulating neurons act as homeostatic elements,
which try to maintain one of two desired activity states, one refer-
ring to low, and the other to high activity. Homeostatic regulation
is only necessary to operate when the system is confronted with
some external perturbations. Since recurrent neurocontrollers of
artificial agents have to work in the sensorimotor loop, they are
permanently driven by continuously changing sensory inputs.
A neural mechanism for homeostatic plasticity should therefore
lead to a stabilization of behavior, by providing the controller
with the means necessary to cope with these fast varying sensory
inputs.

Biological findings strongly support the existence of such
mechanisms, where the incoming signals to a neuron (Davis and
Goodman, 1998), or the neuron’s own excitability (Turrigiano
and Nelson, 2004) is homeostatically adjusted to match a func-
tionally desirable neural activation, such as maximizing the
entropy of the neural output (Triesch, 2007; Marković and Gros,
2012). Many models from theoretical neuroscience incorporate
homeostatic plasticity mechanisms in recurrent neural networks,
either in the form of synaptic scaling of afferents (Remme and
Wadman, 2012; Zenke et al., 2013), intrinsic plasticity of neural
excitability (Lazar et al., 2007; Marković and Gros, 2012; Naudé
et al., 2013; Toutounji and Pipa, 2014), or both (Lazar et al., 2009;
Zheng et al., 2013). These mechanisms also find their applica-
tion in improving time series prediction in echo state networks
(Schrauwen et al., 2008). Homeostasis has also been discussed
in the context of adaptation and learning in cybernetics (Ashby,
1960), and there are many examples of its successful contribution
to learning in recurrent neural control of robots (Di Paolo, 2000;
Hoinville and Hénaff, 2004; Williams and Noble, 2007; Vargas
et al., 2009; Santos et al., 2010; Hoinville et al., 2011).

Second, the synaptic dynamics of the self-regulating neu-
ron partially adheres to Hebb’s postulate (Hebb, 1949), where
the synapses between mutually active neurons are potenti-
ated. Homeostasis, however, prevents the overgrowth of synaptic
weights due to the constant potentiation in a fashion similar to

the BCM theory (Bienenstock et al., 1982), and its spiking neu-
rons variants (Toyoizumi et al., 2005; Clopath et al., 2010). In
robotics, learning with a variant of Hebbian plasticity is demon-
strated, for example, by Harter and Kozma (2005); Santos et al.
(2010); Hoinville et al. (2011).

While these studies favor steady-state synaptic weights, con-
trolled bifurcations of neural dynamics might be very desirable
in the context of the sensorimotor loop (Ashby, 1960). During
the autonomous agent’s lifespan, it is important that changes in
its stimulation elicit history-dependent responses, which entails a
form of working memory for the agent (Negrello and Pasemann,
2008). The importance of this functionality comes from the
fact that environmental cues are themselves temporally extended
(Buonomano and Maass, 2009; Toutounji and Pipa, 2014). As
such, an autonomous agent’s behavior must come as a response
to these temporally extended stimuli, rather than to instanta-
neous states of its environment. This directly connects to the
third point of relatedness to biological plasticity, that is, short-
term plasticity (Zucker and Regehr, 2002; Abbott and Regehr,
2004). Due to short-term plasticity, synaptic efficacy changes on
faster time scales in ways that reflect the history of the presy-
naptic activity. This history-dependence may mediate working
memory in recurrent neural networks (Mongillo et al., 2008). The
self-regulating neuron exhibits this history-dependence, where
changes in temporally extended stimuli are captured by the fast
synaptic dynamics. This synaptic dynamics then controls the neu-
ron’s bifurcation between the two desired activity states, which
leads to history-dependent adjustment of behavior.

Here, it is shown that self-regulating neurons are suitable for
the control of an autonomous agent’s behavior under the sensory
perturbations of the sensorimotor loop. The activity of neurons,
together with the synaptic efficacies, change over time, but usually
fluctuate around some average values, as has been demonstrated
for simple examples in Pasemann (2013). A self-regulating neu-
ron is able to attain and maintain a desirable level of activity even
if it is confronted with unpredictable, and more or less severe
perturbations, induced by changing sensory inputs. Furthermore,
it has different internal states at its disposal, leading to different
stable behaviors, which may be appropriate for one or the other
external situation.

The following section introduces self-regulating neurons,
together with the properties of the induced synaptic plasticity
rule. Because these self-regulating neurons have to operate as ele-
ments of neurocontrollers in the sensorimotor loop, the synaptic
weights of these neurocontrollers change dynamically accord-
ing to sensory stimuli or internal feedback loops. With this in
mind, the dynamics of simple neural modules is analyzed next
under varying stimulation, so as to reach a basic understanding
of the stability properties of these modules. This is followed by
discussing examples of successful control of behavior for synchro-
nizing coupled reflex loops, for locomotion of a hexapod walking
machine, and for obstacle-avoidance of a wheel-driven robot.

2. SELF-REGULATING NEURONS
Given a neural network N with n neurons, and a structure
matrix c, defined by cij = +1( − 1) for an excitatory (inhibitory)
connection from neuron j to neuron i and cij = 0, otherwise.
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A single self-regulating neuron i is described as a parameter-
ized discrete-time 3-dimensional dynamical system with state
variables (ai, ξi, ηi) ∈ R × R

+ × R
+ for i = 1, . . . , n, where ai

denotes its activation, and ξi and ηi its receptor and transmitter
strength, respectively. Furthermore, it may have a bias value θ̄i

that is the sum of a constant bias θi and an external drive I. The
output oi = τ (ai) of a neuron i is given by the sigmoidal hyper-
bolic tangent transfer function τ := tanh. The weight wij of the
connection from neuron j to neuron i is then defined by

wij := cij ξi ηj. (1)

We assume that there exists a desirable state a∗
i for the activation

of a neuron, and that the 3-dimensional dynamics is to be defined
so as to stabilize this state for a certain range of input signals.
Such a state defines a preferred operational range of the neurons’
dynamics. There are two canonical choices for such a desirable
state. One is for the neuron to operate around the linear domain
of the transfer function, i.e., a∗

i = 0 for the hyperbolic tangent
nonlinearity. However, recurrent neural networks are expected to
capture and respond to environmental stimuli that are riddled
by nonlinear dependencies. As such, it is reasonable to enforce
the nonlinear properties of recurrent neural networks, in order
for them to reflect, in their activity, these nonlinear environ-
mental conditions. Therefore, the desired state in the following
corresponds to an activation a∗

i for which the nonlinearity of the
transfer function τ is “maximal,” i.e., its third derivative satis-
fies τ ′′′(a∗) = 0. Since τ is an antisymmetric function, its third
derivative τ ′′′ is symmetric, and there are two such operating
points satisfying this condition and they take values

a∗ := a∗± ≈ ±0.658479 and τ (a∗) = ±
√

1

3
≈ ±0.5773503.

This means that a neuron prefers a high or low state of activity,
or, in terms of rate models, a high or low firing rate.

The basic equations for the dynamics are then set up as follows.
The standard additive discrete-time dynamics for the activation ai

of a neuron is given by

ai(t + 1) = θ̄i + ξi(t)
n∑

j = 1

cij ηj(t)τ
(
aj(t)

)

where i = 1, . . . , n. (2)

Furthermore, it is assumed that the receptor strength ξi and the
transmitter strength ηi for i = 1, . . . , n are both positive for all
times. The dynamics of the receptor strength ξi modulates the
incoming signals to the neuron such that its response becomes
maximally nonlinear. In other words, the receptor strength is
responsible for pushing the activation ai of the neuron toward
one of the operating points a∗±, and is given by

ξi(t + 1) = ξi(t)
[
1 + β · (τ 2(a∗) − τ 2(ai))

]
where 0 < β < 1. (3)

The transmitter strength ηi communicates the neuron’s activ-
ity to its targets, i.e., it increases with the activation ai of the

neuron. It also has a decay rate (1 − γ ), which is necessary for
the convergence of the dynamics, as we show later. Thus, the
transmitter dynamics is defined by

ηi(t + 1) = (1 − γ ) ηi(t) + δ
[
1 + τ (ai)

]
where 0 < γ, δ < 1. (4)

The discrete-time dynamics f : R × R
+ × R

+ → R × R
+ × R

+
given by Equations (2-4) is called the dynamics of self-regulating
neurons or SRN-dynamics, for short.

The weight change per time step is then given by

	wij(t) = wij(t + 1) − wij(t)

= cij
(
ξi(t + 1)ηj(t + 1) − ξi(t)ηj(t)

)
. (5)

Replacing ξi(t + 1) and ηj(t + 1) by their dynamics from
Equations (3,4) leads to

	wij(t) = cijwij(t) ·
[

F
(
ai(t)

) + G
(
aj(t)

) + H
(
ai(t), aj(t)

)]
,(6)

where

F(ai) = −γ + β(1 − γ )
(
τ 2(a∗) − τ 2(ai)

)
,

G(aj) = δ

ηj

(
1 + τ (aj)

)
, (7)

H(ai, aj) = βδ

ηj

(
1 + τ (aj)

)(
τ 2(a∗) − τ 2(ai)

)
.

This demonstrates two of the biologically-inspired features of the
synaptic dynamics. The weight change depends on the product
of the presynaptic and postsynaptic activations through the (anti-
)Hebbian element H(ai, aj), which includes the term τ (aj)τ 2(ai).
In addition, the term H(ai, aj) is not always positive, since its
sign depends on the postsynaptic activity ai. When |ai| < |a∗|,
the term is positive which leads to Hebbian-like synaptic poten-
tiation. Otherwise, the term is negative and the synaptic effi-
cacy is depressed in an anti-Hebbian fashion. In other words,
the term

(
τ 2(a∗) − τ 2(ai)

)
reflects the postsynaptic-dependent

homeostatic nature of the synaptic dynamics, where a regime
of potentiation is separated from a regime of depression at the
threshold a∗.

3. RESULTS
In what follows, we rigorously analyze the dynamics of sim-
ple self-regulating neural modules. Namely, we study the sta-
ble dynamics of a SR-neuron without self connection. We then
prove that a SR-neuron with an excitatory self-connection is
bistable under certain conditions, which confirms observations
that were made in Pasemann (2013). We show in addition that a
SR-neuron with inhibitory self-connection oscillates with period-
2. We finally demonstrate the operation of networks of these
modules for the control of behavior in the sensorimotor loop.

3.1. DYNAMICS OF SELF-REGULATING NEURONS
To get a first impression of the SRN-dynamics we study the
dynamics of a single neuron with and without self-connection.
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Suppressing the neuron’s index i, the 3-dimensional dynamics
reads

a(t + 1) = θ + c ξ(t) η(t) τ
(
a(t)

) + ξ I(t),

ξ(t + 1) = ξ(t)
[
1 + β · (τ 2(a∗) − τ 2(a))

]
, (8)

η(t + 1) = (1 − γ ) η(t) + δ
[
1 + τ (a)

]
,

where I represents the inputs coming from other neurons, i.e.,

I(t) :=
∑
j �= i

cjηjτ
(
aj(t)

)
. (9)

For the moment, we assume that I is constant over time, and that
there exists a stable fixed point (a∗, ξ∗, η∗) of the 3-dimensional
SRN-dynamics, in order to derive conditions for its existence.
Throughout this section, the parameters β, γ, and δ are set to 0.1.
To determine the stability of the dynamical system (Equation 8)
at a fixed point (a∗, ξ∗, η∗), we study its linearization at a
state (a, ξ, η) ∈ R × R

+ × R
+, which is given by the Jacobian

matrix

(Df )(a, ξ, η) =
⎛
⎜⎝

cξη(1 − τ 2) cητ + I cξτ

−2βξτ (1 − τ 2) 1 + β(τ 2(a∗) − τ 2(a)) 0

δ(1 − τ 2) 0 1 − γ

⎞
⎟⎠ .

(10)

There are three possible fixed points for the dynamical sys-
tem (Equation 8). These are the two desirable fixed points x± =
(a∗±, ξ∗±, η∗±) with transmitter strength η∗± = δ

γ
(1 + τ (a∗±)), and

the trivial fixed point x0 = (θ, 0, η0) with a vanishing receptor
strength, and a transmitter strength η0 = δ

γ

(
1 + τ (θ)

)
. We refer

to the last situation as a “dead neuron,” because it is not able
to process incoming signals. Whether one of these fixed points
is asymptotically stable or not depends on the eigenvalues of
(Df )(a∗, ξ∗, η∗), as we show next.

3.1.1. Dynamics without self-connection
For a first analysis, we study a single neuron without self-
connection, i.e., c = 0, and with a fixed bias value θ . It is driven
by the input signal I. The linearization of SRN-dynamics then
reads

(Df )(a, ξ, η) =
⎛
⎜⎝

0 I 0

−2βξτ (1 − τ 2) 1 + β(τ 2(a∗) − τ 2(a)) 0

δ(1 − τ 2) 0 1 − γ

⎞
⎟⎠ .

(11)

A fixed point x∗ is asymptotically stable if all the eigenvalues λk

of (Df )(x∗) satisfy |λk| < 1. The two desirable fixed points x± =
(a∗±, ξ∗±, η∗±) for this neuron also satisfy the equation

a∗± − θ = ξ∗±I. (12)

First, one observes from condition (12) that the receptor strength
ξ∗± diverges for inputs I → 0, and thus, x± are both unstable

when I = 0. Otherwise, replacing the input I > 0 in the lineariza-
tion (Equation 11) with its value from condition (12), leads to the
following eigenvalues around the fixed points x+:

λ1,2(a∗+) = λ±(a∗+) =
1 ±

√
1 − 8β

(
1 − τ 2(a∗+)

)
(a∗+ − θ)τ (a∗+)

2
,

λ3 = 1 − γ, (13)

and similarly for I < 0 and the fixed point x−, but with λ± being
a function of a∗− instead. For both fixed points, the stability con-
dition |λk| < 1 always holds for λ− and λ3. This also stresses the
necessity of introducing the decay term parameterized by γ of
the transmitter dynamics η for the stability of the SR-neuron,
without which λ3 = 1. On the other hand, the stability condi-
tion only holds for λ+ when (a∗± − θ)τ (a∗±) < 0. It follows that
for θ ∈ (a∗−, a∗+), the SR-neuron is homeostatic, i.e., one of the
fixed points x± is stable, for all inputs I ∈ R \ {0}. We thus call
a bias θ that is within the range (a∗−, a∗+) a homeostatic bias.
Asymptotically, it acts like a binary neuron switching from low
activity a∗− to high activity a∗+ around I = 0. This is also con-
firmed by Figure 1, showing bifurcation diagrams for the output
τ (a) and the receptor strength ξ under these conditions.

In addition, keeping in mind that a∗− = −a∗+, the fixed point
x− satisfies condition (12) when I < 0, if θ > a∗+, which leads
to (a∗− − θ)τ (a∗−) < 0, and as such, |λ+(a∗−)| < 1 holds. This
entails that x− is asymptotically stable when I < 0 and θ > a∗+.
Correspondingly, x+ is asymptotically stable when I > 0 and

FIGURE 1 | Stable dynamics of a SR-neuron without self-connection

for a homeostatic bias and varying input. (A,B) Bifurcation diagrams of
the output τ (a) and the receptor strength ξ for varying input I and a positive
homeostatic bias θ = +0.5. (C,D) Bifurcation diagrams of the output τ (a)
and the receptor strength ξ for varying input I and a negative homeostatic
bias θ = −0.5.
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θ < a∗−. In other words, the SR-neuron without self-connection
is homeostatic only over half of the input domain, when θ /∈
[a∗−, a∗+]. On the other hand, the trivial fixed point x0, corre-
sponding to a dead neuron, becomes stable for all I, since the
eigenvalues of (Df )(x0) are

λ1 = 0, λ2 = 1 + β(τ 2(a∗±) − τ 2(θ)), λ3 = 1 − γ, (14)

which satisfy |λk| < 1 when θ /∈ [a∗−, a∗+].
To summarize, the SR-neuron without self connection and a

bias θ /∈ [a∗−, a∗+] is bistable over half of the input domain, where
one stable fixed point corresponds to the homeostatic state, and
the other to the trivial state. The SR-neuron would then converge
to one of the two fixed points depending on the initial conditions.
On the other half of the input domain, the neuron is globally sta-
ble at the trivial fixed point. These observations are confirmed by
Figure 2, showing bifurcation diagrams for the output τ (a) and
the receptor strength ξ under these conditions.

3.1.2. Trivial dynamics with self-connection
Adding a self-connection w := c ξ η to the SR-neuron provides
an additional input, so that the new input signal becomes I(t) +
c η τ

(
a(t)

)
, where I again corresponds to the input from other

neurons as in Equation (9).
The linearization (Equation 10) around the trivial fixed point

x0 = (θ, 0, η0) leads to the same eigenvalues (Equation 14),
regardless of whether the self connection is excitatory or
inhibitory. This entails that the SR-neuron with self-connection

FIGURE 2 | Stable dynamics of a SR-neuron without self-connection

for a non-homeostatic bias and varying input. (A,B) Bifurcation
diagrams of the output τ (a) and the receptor strength ξ for varying input I
and a positive non-homeostatic bias θ = +1.5. (C,D) Bifurcation diagrams
of the output τ (a) and the receptor strength ξ for varying input I and a
negative non-homeostatic bias θ = −1.5.

is stable at the trivial fixed point for all I, when its bias is
non-homeostatic, i.e., θ /∈ [a∗−, a∗+].

On the other hand, the linearization (Equation 10) around
the desirable fixed points x± = (a∗±, ξ∗±, η∗±) leads to complex
closed-form formulas for the eigenvalues that are of no help
regarding the stability of these fixed points. However, we may rely
on the 1-dimensional standard hyperbolic tangent neuron with
self-connection:

a(t + 1) = θ + wτ (a(t)). (15)

This neuron is parameterized by its bias θ and self-weight w,
and, for each parameterization, its asymptotic dynamics is easy
to derive. Since both neuron models, the SR-neuron and the stan-
dard neuron, share the same transfer function tanh, it is possible
to infer the stability of the former from the more familiar prop-
erties of the latter, given certain bias and self-weight values, as we
show next.

3.1.3. Dynamics with excitatory self-connection
Suppose that the fixed points x± = (a∗±, ξ∗±, η∗±) for the SR-
neuron with self-connection are asymptotically stable. These fixed
points then satisfy

a∗ = θ + ξ∗(I + c η∗τ (a∗)
)
. (16)

We start by setting θ = I = 0. Then, the following holds

c ξ∗±η∗± = a∗±
τ (a∗±)

≈ 1.14 > 0, (17)

which is only true for the case of an excitatory self-connection,
i.e., c = +1. For an increasing excitatory self-connection and
a zero bias, the standard additive hyperbolic tangent neu-
ron (Equation 15) undergoes a cusp catastrophe (Guckenheimer
and Kuznetsov, 2007) at the critical point (θc = 0, wc = 1), and
the neuron corresponds to a bistable system (Pasemann, 1993;
Hülse and Pasemann, 2002). Because the asymptotic self-weight
w∗± = ξ∗±η∗± of the SR-neuron (Equation 17) is larger than the
critical value wc = 1, the SR-neuron becomes bistable as well,
which allows for hysteresis phenomena.

The critical point (θc = 0, wc = +1) belongs to the bifur-
cation set B+, at which the standard hyperbolic tangent neu-
ron (Equation 15) changes from being monostable to being
bistable. The bifurcation set is parameterized by the bias and self-
weight, and is derived in Pasemann (1993) for a standard neuron
with logistic nonlinearity σ (a) = (1 + e−a)−1. For a hyperbolic
tangent nonlinearity, B+ is given by

θ2 = 4(w − 1)3

9w
, (18)

while, at the fixed point x±, the positive self-coupling w∗± of the
SR-neuron changes linearly with the bias according to

w∗± = a∗± − θ

τ (a∗±)
. (19)
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The SR-neuron is bistable when w∗+ or w∗− or both are above the
bifurcation set B+. As such, the intersection of the bifurcation
set B+ defined by Equation (18) and the self-coupling of an SR-
neuron as a function of the bias in Equation (19), leads to the
bias range θ ∈ [−0.11, +0.11], within which the SR-neuron is
bistable. Outside of this range, both w∗+ and w∗− are bellow B+,
resulting in the SR-neuron becoming monostable. These findings
can be verified by keeping I = 0 and varying the bias term θ as
shown in Figure 3.

We now assume that there exists a stationary input I, and that
the bias θ ∈ (a∗−, a∗+). Under these conditions, the SR-neuron is
homeostatic over the whole input domain, and it exhibits hystere-
sis phenomena over some input range, as is shown for θ = +0.5
in Figure 4. For a narrow input range, one observes that the SR-
neuron may show quasi-periodic oscillations when passing from
one operating point to the other. These oscillations depend on the
bias value and the parameters β, γ , and δ.

3.1.4. Dynamics with inhibitory self-connection
For an inhibitory self-connection, i.e., c = −1, and no input,
Equation (16) can be solved when θ /∈ [a∗−, a∗+]. However, the
trivial fixed point x0 is stable at this bias domain, as shown in
section 3.1.2, and an inhibitory self-connection can never satisfy

FIGURE 3 | Stable dynamics of a SR-neuron with excitatory

self-connection for varying bias. Bifurcation diagrams of (A) the output
τ (a), (B) the positive self-weight w = +ξ η, (C) the receptor strength ξ , and
(D) the transmitter strength η for varying bias θ . The gray-shaded area
corresponds to the bias domain θ ∈ (a∗−, a∗+) at which the SR-neuron is
homeostatic. The cyan-shaded area marks the hysteresis domain
θ ∈ [−0.11, 0.11] at which the SR-neuron is bistable. The neuron shows a
narrow range of quasi-periodic behavior when passing from a∗− to a∗+. (B)

The red curve denotes the bifurcation set B+ that marks the parameters
domain, where a standard additive hyperbolic tangent neuron is bistable.
The SR-neuron ceases from exhibiting bistability, when the positive
self-coupling weight becomes lower than the bifurcation set.

the bistability condition bounded from below by the bifurcation
set B+ (Equation 18). This rules out the possibility for a∗± being
stable, which entails that the SR-neuron is never homeostatic
under these conditions. However, with no bias and a self-weight
w ≈ −1.14, the state a∗+ is mapped to a∗− and vice versa, as sug-
gested by Equation (17). Thus, we expect a period-2 oscillation
between the two states. Regarding the stability of this oscilla-
tion, we return to the standard additive hyperbolic tangent neu-
ron (Equation 15). For an increasing inhibitory self-connection,
neuron (Equation 15) undergoes a supercritical period doubling
bifurcation at the critical point (θc = 0, wc = −1), and the neuron
corresponds to a period-2 oscillator. This supports the existence
of a stable period-2 oscillation for the SR-neuron when (θ = 0,

w ≈ −1.14), since this point lies within the period-2 parameter
range of a standard hyperbolic tangent neuron.

Figure 5 demonstrates that the SR-neuron does oscillate with
period-2 on the bias domain ( − 0.95, 1.5) when I = 0. For
zero bias, the self-weight oscillates due to the SR-dynamics
with an average of w ≈ −1.14 < wc = −1, as is suggested by
Equation (17). Interestingly, the oscillatory dynamics for non-
zero bias allow the SR-neuron’s output to reach average values that
are different from the canonical τ (a∗±) and the trivial τ (θ).

For a stationary input I, and a bias θ ∈ (a∗−, a∗+), a solution of
Equation (16) may exist, and the SR-neuron acts as a homeostatic
unit for a certain input domain. Also, since the bias is within the
oscillation domain for no input, the SR-neuron should oscillate
with period-2 for some input range around 0. In fact, as shown

FIGURE 4 | Stable dynamics of a SR-neuron with excitatory

self-connection for a homeostatic bias and varying input. Bifurcation
diagrams of (A) the output τ (a), (B) the positive self-weight w = +ξ η,
(C) the receptor strength ξ , and (D) the transmitter strength η for
varying input I and a positive homeostatic bias θ = +0.5. The
cyan-shaded area marks the hysteresis domain at which the SR-neuron is
bistable. The neuron shows a narrow range of quasi-periodic behavior
when passing from a∗− to a∗+.
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FIGURE 5 | Stable dynamics of a SR-neuron with inhibitory

self-connection for varying bias. Bifurcation diagrams of (A) the output
τ (a), (B) the negative self-weight w = −ξ η, (C) the receptor strength ξ ,
and (D) the transmitter strength η for varying biasthe θ . The cyan-shaded
area marks the domain at which the SR-neuron may oscillate with a
period-2 between the two gray branches. The gray-shaded area marks the
homeostatic bias domain θ ∈ (a∗−, a∗+) where the SR-neuron is globally
oscillating. Outside of this domain, and depending on the initial conditions,
the neuron may converge to the trivial fixed point (θ, 0, η0), corresponding
to the black branches. (A) The red dots mark the oscillation in activity
between a∗+ and a∗− when θ = 0.

in Figure 6, the homeostatic domain overlaps with the oscillatory
domain for a narrow input range.

3.2. SYNAPTIC DYNAMICS IN THE SENSORIMOTOR LOOP
In this section, we demonstrate for three examples how SR-
neurons are able to operate successfully within the sensorimo-
tor loop. On specific network structures, SR-neurons generate
a desired behavior for coupled pendula, a hexapod walking
machine, and a wheel-driven robot.

3.2.1. Coupled reflex loops
Self-excitatory SR-neurons are good candidates for building oscil-
latory reflex loops. This was already shown in Pasemann (2013),
where a single SR-neuron with excitatory self-connection was
used to drive a pendulum with damping to oscillate with a con-
stant amplitude. An angular position sensor is coupled to the
reflex loop which drives the angle-controlled servomotor of the
pendulum. Reflex loops generate smooth oscillatory movements
which can be used for the control of limbs (von Twickel and
Pasemann, 2007). There are two important mechanisms involved
in the generation of these oscillations. First, the integration of
properties of the body—the body’s inertia in the case of pendula
or limbs—and the environment by means of the sensorimotor
loop. Second, the nonlinearity of the neural elements, leading to
a hysteresis effect. Stated differently, oscillations do appear if the

FIGURE 6 | Stable dynamics of a SR-neuron with inhibitory

self-connection for a homeostatic bias and varying input. Bifurcation
diagrams of (A) the output τ (a), (B) the negative self-weight w = −ξ η, (C)

the receptor strength ξ , and (D) the transmitter strength η for varying input
I and a positive homeostatic bias θ = +0.5. The cyan-shaded area marks
the domain at which the SR-neuron oscillates with a period-2 between the
two gray branches. The neuron shows a narrow range of input at which the
oscillatory and homeostatic activity are overlapping.

system can “jump” from one fixed point to another by following
the slow transients generated by the inertia of the body. If there is
no hysteresis but the sigmoid is steep as in Figures 1A,C, oscilla-
tions may appear, but with much smaller amplitudes, since there
is no bistability interval to make the transients longer, and these
oscillations will not be sufficient to provide the full swing of a
limb for successful locomotion. In the case of an SR-neuron, hys-
teresis is provided by an excitatory self-connection (see Figure 4),
which leads to bistable motor outputs. The time delay in the sen-
sorimotor loop due to the physical characteristics of the body, its
inertia namely, then causes the slow oscillations, referred to as
reflex oscillations.

Before utilizing the SRN-dynamics and reflex loops for the
locomotion of a hexapod walking machine, we demonstrate that
the coupling of two such reflex loops leads to synchronization or
anti-synchronization, depending on whether the coupling is exci-
tatory or inhibitory. Coupling the hysteresis elements of two reflex
loops by symmetric excitatory connections (or a unilateral con-
nection for that matter) will enforce the synchronization of the
resulting oscillations. Correspondingly, inhibitory coupling will
result in anti-synchronization. Two pendula are driven by servo-
motors placed at each pendulum’s pivot and are angle-controlled
(see Figure 7A). Each servomotor is driven by a motor neuron
whose output range ( − 1,+1) is mapped to the desired angle
range ( − 180◦,+180◦). The desired angle is achieved through
the servomechanism of position feedback, which applies a force of
up to 0.5 N, until the error between the actual and desired angle is
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FIGURE 7 | Coupled reflex loops. (A) Simulator of two identical pendula.
The bob mass m1,2 = 0.2 kg and the rod length l1,2 = 0.5 m. (B,C) Coupled
reflex loops for controlling the two identical pendula. Angular velocity sensors
are linear buffers. The self-excitatory and the motor neurons are SR-neurons.
(B) Lateral excitation leads to synchronization. (C) Lateral inhibitory leads to
anti-synchronization. (D,E) Outputs of the angular velocity sensors, the
SR-neurons, and the motor neurons of the two identical pendula, oscillating

anti-synchronously due to inhibitory coupling. The parameters of the
SRN-dynamics are set such that (D) δ/γ = 0.1, or (E) δ/γ = 0.5. (F) Fourier
analysis of the signal coming from the sensor (top) and the motor (bottom)
for δ = 0.001. (G) The effect of the quotient δ/γ on the amplitude and
frequency of the oscillations. (H,I) Nonidentical pendula. The effect of
changing (H) the bob mass ratio and (I) the rod length ratio on the phase shift
between the two pendula and on the relative amplitude of their oscillation.

minimized. The parameters for the pendula are fixed to 0.2 kg for
the bob mass and 0.5 m for the rod length. The angular position
sensors are linear buffers, while the self-excitatory and the motor
neurons are SR-neurons, as shown in Figures 7B,C.

Figures 7D,E demonstrate the dependence of the oscillation
amplitude, and consequently its frequency, on the SR-neurons
parameters. β and γ are fixed to 0.1 and 0.01, respectively. δ is
either 0.001 (Figure 7D) or 0.005 (Figure 7E). The behavior of
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each pendulum is captured by its respective angular position sen-
sor. By comparing the sensory signals, coming from the angular
position sensors (top panel in Figures 7D,E), to that of the output
of the motor neurons (bottom panel in Figures 7D,E), one notices
that, despite the presence of damping, the pendula are oscillat-
ing harmoniously (sinusoidal motion with constant amplitude),
although the outputs of the motor neurons show a different
behavior. This can be confirmed by performing a Fourier anal-
ysis on the signals, which shows a single dominant frequency in
the signal produced by the sensor, indicating that the pendulum
generates a sinusoidal motion, i.e., a simple harmonic oscillation,
while the motor produces multiple harmonies. This is illustrated
in Figure 7F for δ = 0.001. One also observes that the ampli-
tude of oscillation depends on the quotient δ/γ . For growing
quotient δ/γ ≤ 1, the amplitude increases, and correspondingly,
the frequency decreases (Figure 7G). For δ/γ > 1, the hystere-
sis domain widens to the point where the changing input is not
enough for the dynamics to cross the bistable region, so it con-
verges to one of the stable fixed points, and oscillations stop.
These results, illustrated on the anti-synchronous case with lat-
eral inhibition, also apply to the synchronous case with lateral
excitation. The two cases are demonstrated in Movie S1.

Interestingly, for pendula with non-identical bob masses and
rod lengths, one observes the emergence of phase-locking phe-
nomena, but with differing oscillation amplitudes of the two
pendula, as shown in Figures 7H,I and also in Movie S1. A math-
ematical analysis of this result is currently under development.

3.2.2. Controlling a hexapod walking machine
It was demonstrated in Pasemann (2013) that reflex loops of
SR-neurons can drive the three joints of a single leg to induce
locomotion of the modular hexapod walking machine OCTAVIO

(von Twickel et al., 2012), shown in Figure 8A. Having observed
that excitatory (inhibitory) coupling of SR-neurons in reflex loops
leads to their synchronization (anti-synchronization), it follows
that this method may be used to couple the neurocontrollers of
single legs to get a walking behavior from the 18 degrees of free-
dom of the hexapod walking machine. For setting up a promising
coupling structure, we assume that the protractor/retractor joint,
named the ThCx-joint, of the left and right frontal legs, L1 and
R1, respectively, gives the leading signals for the middle and hind
legs (L2,R2 and L3,R3), and that the movement of these joints
(of L1 and R1) needs to anti-synchronize. Thus, reflex loops of
ThCx-joints of L1 and R1 are laterally coupled by inhibitory con-
nections. The reflex loop of the ThCx-joint of the middle leg L2
(R2) receives an inhibitory synapse from the reflex loop of the
ThCx-joint of L1 (R1), while the corresponding reflex loop of
L3 (R3) receives an excitatory synapse from its counterpart in
L1 (R1). This coupling scheme, shown in Figure 8B, should then
lead to a typical tripod gate. The rationale behind this is as fol-
lows. The controller of each leg consists of three reflex loops. This
entails that a leg could be considered as a high-dimensional reflex
oscillator. According to the results from the previous section, cou-
pling two reflex oscillators with an inhibitory connection would
lead to their anti-synchronization, and with excitatory connec-
tion would lead to their synchronization. In other words, L1 and
L3 would synchronize, due to the excitatory coupling between

the two. L1 would also synchronize with R2, since the former
is coupled to the latter by a chain of two inhibitory connec-
tions, which is equivalent to an excitatory coupling. The synaptic
delay between L1, R2, and L3 is maximally two time steps,
which has no effect and can be ignored, given the period of
the reflex oscillations. This entails that the triplet (L1,R2,L3)
would go through the stance phase simultaneously, while the anti-
synchronous triplet (R1,L2,R3) would be in the swing phase,
which results in a tripod gate.

Starting with a single leg reflex loop controller, and demand-
ing the same controller structure for all the six legs, the described
coupling scheme did not immediately lead to successful walk-
ing. To circumvent this, the evolution environment of the NERD
Toolkit (Rempis et al., 2010) was utilized for evolving the struc-
ture further, and optimizing the bias values. The fitness function
was given as “the distance walked in forward direction in a given
number of time steps.” Regarding bias terms, a symmetry con-
straint was set to have identical left and right leg modules. As
for the network structure, a constraint is set such that all legs
are identical, and they follow the structure of L1. Other con-
straints, such as distance of the central body from ground or
allowed joint angles, were not used in this case (also compare
von Twickel et al., 2011, 2012). Text S1 outlines the details of the
evolution process. Following evolution, the bias values of frontal,
middle, and hind legs turned out to be different for achieving
better forward walking. This is due to the fact that their task
is different: frontal legs pull the body, while hind legs push the
body. Figure 8B displays the complete modular neurocontroller.
The resulting modules have identical structures for all legs due to
the imposed constraints, and one of these modules is detailed in
Figure 8C. SRN-parameters for this controller are set to β = 0.1,
γ = 0.1, and δ = 0.2, which matches their values in the reflex
loop controller of a single leg (Pasemann, 2013).

In addition to the simple reflex loops of the three joints
from which evolution started, we find here an additional neu-
ron SRN4 with inhibitory self-connection, which forms an odd
2-ring with the neuron SRN1 (the reflex loop of the ThCx-joint).
This self-inhibitory neuron SRN4 and its connections were added
by structure evolution. This additional structure induces period-2
oscillations, which at the first sight, might appear as superficial or
destructive. However, all controllers that succeeded in achieving
the forward motion of the body included this oscillatory neuron,
and analysis shows that inhibiting these oscillations will result
in a break down of walking. Figure 8F depicts the oscillatory
odd 2-ring network, and Figures 8D,E show the bifurcation dia-
grams of its SR-neurons’ output for a changing input signal. One
observes that the module behaves as a period-2 oscillator over
most of the input domain. It oscillates around positive ampli-
tudes for negative inputs and around negative amplitudes for
positive inputs. The asymptotic dynamics also shows a narrow
regime of quasi-periodicity in the middle, which has no effect on
behavior, since the dynamics passes over this domain for a short
transitory period. This becomes clearer from Figure 8G, which
illustrates the effect of a sensory signal sweeping over the inter-
val [−1, 1] on the oscillatory module. The sensory signal sweeps
over the interval with a frequency comparable to that of the
ThCx-joint oscillations. This further highlights the dependence
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FIGURE 8 | Hexapod walking. (A) The physical simulation of the hexapod
walking machine OCTAVIO (top), and of a single leg with the three joints
marked (bottom). (B) The SRN-controller for the hexapod machine,
highlighting the coupling scheme between the legs. (C) The SRN-controller of
a single leg. (D,E) Bifurcation diagrams for varying sensory input I coming to

the neuron SRN1. (D) The output of SRN1, and (E) the output of SRN4 in the
leg module L1. (F) The oscillatory odd 2-ring network in the leg module L1.
(G) The outputs of SRN1 and SRN4 for a sweeping sensory signal with a
frequency comparable to that of the ThCx-joint oscillations. (H) Sensory and
(I) motor signals of the left frontal leg module L1 during the hexapod walking.

of the oscillation amplitudes on the sensory signal. We postulate
that these oscillations are necessary for behavior, because they
increase the range of admissible outputs. By having a changing
mean value, which depends on the input strength, SRN4 allows
for motor signals that are not restricted to the τ (a∗±) values pro-
vided by reflex loops. Furthermore, the oscillatory effect of SRN4

is not seen anymore on the sensory signals coming from the joint
angle sensors, as illustrated in Figure 8H. The oscillatory signal
also has no direct effect on behavior in the sensorimotor loop.
As demonstrated in Figure 8I, it only results in small amplitudes
at the motors, and the effective motor signal corresponds to the
mean value of these oscillations.

Walking starts with the feet having ground contact. That the
walking pattern is not a perfect tripod gate, but still represents a

reasonably good walking behavior, can be read from Figure 9. As
the walking pattern of OCTAVIO in Figure 9 indicates, the stance
phase of the middle legs are considerably shorter than those of
the frontal and hind legs. Nevertheless, there is a uniform tim-
ing of the phases, so that walking on a flat surface is stable. That
is, one notices that the stance phases of the triples (L1,R2,L3)
and (R1,L2,R3) proceed almost periodically from one step to the
next, which is a signature of stable tripod forward locomotion (see
Movie S2 for demonstration).

In summary, although the suggested basic neural structure,
i.e., the simple reflex loops, does not produce the desired behav-
ior, an additional structure, even when adding oscillations, will
generate this behavior. Here, it appears that walking is driven by
mean values of fast oscillations. The amplitudes are small at the
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FIGURE 9 | Tripod gate of OCTAVIO. The walking pattern resulting from the
neural control network of OCTAVIO. Black regions mark the stance phase of
the corresponding leg, which is the time span the foot is in contact with the
ground.

motors and integrated away by the body, as can be seen from the
(noisy) sensory signals. One can also observe that inputs crossing
bifurcation points, as is shown for instance in Figure 8G, do not
derogate the desired behavior.

3.2.3. Obstacle-avoidance with a wheel-driven robot
The SRN-dynamics is not restricted to the control of cou-
pled reflex loops. We now show how a network of SR-neurons
can be used by a wheel-driven robot (Figure 10A) to navigate
its environment and avoid obstacles (Figure 10B). The wheel-
driven robot is called ALICE (see Figure 10A). ALICE is endowed
with five long-range distance sensors in the frontal part of
the body, used for detecting obstacles. Each of ALICE’s two
wheels is controlled independently by a motor neuron that drives
a velocity-controlled servomotor. Each motor neuron’s output
range (−1,+1) is mapped to the corresponding servomotor’s
desired velocity range (−20◦, +20◦) per time step. The desired
velocity is achieved through the servomechanism of position
feedback, which applies a torque of up to 2 N·m, until the error
between the actual and desired velocity is minimized. A pre-
liminary example for a Khepera robot was also presented in
Zahedi and Pasemann (2007), where the neurons had a different
SRN-dynamics and a logistic sigmoidal nonlinearity, and a sim-
pler neurocontroller was used. In what follows, we elaborate on
the role of the current SRN-dynamics in achieving a successful
obstacle-avoidance behavior, and we compare the behavior to the
previous approach.

Figure 10C shows the control network using SR-neurons for
obstacle-avoidance. It consists of three layers. The sensory layer
assembles the five distance sensors into three groups correspond-
ing to left, center, and right distance sensors, i.e., Sleft, Scenter, and
Sright, respectively. The input layer projects into a layer of hid-
den neurons of the self-regulating type. The hidden layer in its
turn projects to the motor layer. The three sensor neurons and
the motor neurons Mleft and Mright are standard additive neurons
with a hyperbolic tangent transfer function.

In order to understand the functioning of this network in
controlling obstacle-avoidance, and the role of the self-regulating
dynamics in achieving this, we look in more detail into the hid-
den layer. It consists of two SR-neurons: SRNleft and SRNright.
Both are receiving input from Scenter. SRNleft is connected to the
left-side distance sensors and in turn projects to the right motor.
The reverse is true for SRNright. The SR-neurons are self-coupled

with excitatory synapses. As shown in Figure 10D, an obstacle
approached from the left side inhibits SRNleft and the sign of its
output changes into negative. This in turn leads the velocity of the
right wheel to become negative, which corresponds to a backward
rotation of the wheel. Due to the lateral inhibition of SRNright by
SRNleft, the left motor neuron Mleft is excited, and the left wheel
rotates faster in the forward direction. The combination of the
backward rotation of the right wheel and the forward rotation of
the left leads ALICE to turn to the right and away from the left-side
obstacle.

The switch of the sign of a self-regulating neuron in the hid-
den layer is particularly important when approaching a narrow
corner. It is simply not sufficient for the output of the neuron to
decrease due to the inhibition from the distance sensors. If this
switch did not occur, ALICE would turn right, but it would keep
going forwards with less velocity, and it would not be able to avoid
the sharp corner. In addition, the hysteresis effect resulting from
the self-excitation allows the SR-neuron to memorize the history
of its input, which is necessary for the avoidance behavior to con-
tinue in the same direction, preventing the robot from getting
stuck (see Movie S3). Figures 10E,F show how the dynamics of
SRNleft changes when a narrow corner is approached from the left
(Figure 10G). The bifurcation diagram shows a hysteresis phe-
nomenon where the neuron’s output is bistable for a narrow range
of input (recall the analysis of self-excitation above). The sign of
the output SRNleft only changes when the input is strong enough
to cross the hysteresis domain. Bistability, and the resulting hys-
teresis, which are necessary for behavior, cannot be explained
by a particular component of the 6-dimensional dynamical sys-
tem that is the hidden layer. The same network structure with
no self-regulating connectivity could achieve the same effect if
the weights were fine-tuned by hand or through evolution. For
instance, it was shown in Hülse and Pasemann (2002) that with
a similar controller, but with standard hyperbolic tangent neu-
rons, the self-connections should be set above the critical value
of wc = 1 for the hysteresis phenomenon to occur. Figures 10E,F
show, however, that with SR-neurons, the phenomenon occurs
without the self-connection crossing the critical value. These
observations are also confirmed in the plots in Figure 10D. In
other words, these properties emerge from the SRN-dynamics.
In the previous study by Zahedi and Pasemann (2007), the dif-
ferent SRN-dynamics and neurocontroller were also capable of
memorizing the history of the stimulus, allowing the Khepera
robot to avoid narrow corners. However, due to the logistic sig-
moidal nonlinearity being strictly positive, the robot was only
capable of slowing down when turning away from narrow cor-
ners. On the other hand, the ability of the current model to
generate a negative motor output allows ALICE to turn in place,
and as shown in Figure 11, to avoid more challenging obstacle
scenarios, where the robot is at a close proximity to the walls and
corners.

4. DISCUSSION
We demonstrated that SR-neurons have a wide range of functions,
depending on their bias terms and inputs coming from sensors
or other neurons in the network. Without self-connection, they
can serve as self-regulating units that are able to stabilize their
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FIGURE 10 | Obstacle-avoidance with a wheel-driven robot. (A) The
two-wheeled robot ALICE with distance sensors and wheels shown. (B)

A typical navigation environment with obstacles. (C) A SRN-controller
for obstacle-avoidance. Both sensory and motor layers have standard
neurons. (D) Plots illustrating the dynamics of obstacle-avoidance
behavior. From top to bottom: Output of the distance sensors; Output
of the self-regulating neurons; Output of the motor neurons; Strength
of the self-coupling of the SR-neurons. The shaded areas mark the

time when Sleft or Sright are sufficiently being stimulated, and are
color-coded to match the side from which the obstacle is being
approached. (E,F) Bifurcation diagrams for varying input from the sensor
Sleft of (E) the output τ (a) and (F) the self-weight w = +ξ η of SRNleft.
The shaded area marks the bistable domain. (G) The hidden layer of
the obstacle-avoidance control network at which the bifurcations (E,F)

are observed. A narrow corner approached from the left is emulated by
stimulating the sensor Scenter and varying the input from Sleft.

activation around two desired outputs, which, in a way, corre-
spond to low (a∗−) and high (a∗+) activity. For bias terms outside
the interval (a∗−, a∗+), SR-neurons may get dysfunctional, i.e.,
their receptor strength converges to zero. Adding self-excitation
to a neuron preserves the neuron’s homeostatic properties, and
introduces bistability, which allows the neuron to exhibit a hys-
teresis effect over a certain input range. A second operational
mode of SR-neurons, due to self-inhibition, is that of a period-
2 oscillator with varying and shifted amplitudes, depending on
the bias and input.

Afterwards, we studied the properties of SR-neurons when
operating in the sensorimotor loop. That is, SR-neurons are

driven by changing sensory inputs, and they generate motor sig-
nals accordingly, which in their turn drive the actuators of an
animat. From experiments with pendula, single legs (Pasemann,
2013), and hexapod walking machines, one concludes that SR-
neurons are suitable for coupling reflex loops, because desired
sensory inputs do change frequently or are oscillating. As a result,
and due to SRN-dynamics, appropriate mean values of synap-
tic efficacy adjust themselves properly. However, examples from
networks controlling wheel-driven robots demonstrate that the
function of SR-neurons is not restricted to reflex loops. Even
if sensory inputs are not often changing, as is the case when
no obstacles are present, mean values of the synaptic efficacies
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FIGURE 11 | Robot trajectory during obstacle-avoidance behavior. The
robot is capable of avoiding sharp corners, while being at a close proximity
to the walls, due to hysteresis effects of the neurocontroller and the
hyperbolic tangent nonlinearity. The latter allows the robot to stop and turn
in place.

self-adjust, depending on the connectivity and the bias values, so
that a desired behavior is achieved. It is worth noting that in the
example of the wheel-driven robot, motor neurons are not self-
regulating. However, choosing them to be self-regulating leads
qualitatively to the same behavior.

The SR-neuron with excitatory self-connection is of particu-
lar importance for the control of an animat in the sensorimotor
loop. The hysteresis effect, which such a module exhibits, pro-
vides the neuron with a working memory of the stimulus history,
which allows it to produce oscillatory output. The period of these
reflex oscillations depends on the width of the hysteresis domain,
which is a function of the SR-neuron’s parameters. This was
the basis for generating the locomotion behavior of the hexa-
pod walking machine. This dependence on input history also
allowed the wheel-driven robot to turn in place and away from
sharp corners by “remembering” the direction of the obstacle
long enough to swing away from it. An SR-neuron with excita-
tory self-connection is a particular instance of a class of systems
that exhibit bistability, and as a corollary, hysteresis. Namely, every
ring of standard sigmoidal neurons undergoes a bifurcation for
some values of the weights and biases, if and only if the number
of inhibitory synapses is even, which leads to the existence of two
fixed point attractors (bistability), in addition to coexisting peri-
odic attractors (Pasemann, 1995). The bistability phenomenon is
also relevant for genetic networks, and is shown to exist in these
systems under similar conditions (Angeli et al., 2004). The signifi-
cance of SRN-dyanamics is that it pushes the neuron’s parameters
autonomously toward the bistable regime, allowing it to imple-
ment a form of short-term plasticity, and the resulting working

memory of input history (Zucker and Regehr, 2002; Abbott and
Regehr, 2004; Mongillo et al., 2008).

The design of the SR-neurons with two operating points pro-
vides a natural implementation of the principles of step mecha-
nisms and ultrastability, suggested by Ashby (1960) as main ingre-
dients of adaptive behavior. These concepts are better explained
through the example of obstacle-avoidance by the wheel-driven
robot. The essential variables of this system are the readings of the
distance sensors, which should remain close to their minimum
for the survival of the robot. When the stability of the moving-
forward behavior is broken, due to the approach of an obstacle
from the left, it triggers a change in the value of a step mechanism
implemented in the left SR-neuron by the SRN-dynamics, while
no change occurs at the right SR-neuron, i.e., a new behavior,
turning-right, becomes stable. In other words, while the actions
of the robot are continuous, only four stable modes of behavior
are identified by the two step mechanisms provided by the two
SR-neurons. These allow the robot to keep its essential variables
within the desired range: the robot’s behavior is ultrastable.

Synaptic plasticity with homeostatic regulation has been
applied several times in the context of evolutionary robotics
(Di Paolo, 2000; Harvey et al., 2005; Santos et al., 2010), and
has been related to Ashby’s theory (Ashby, 1960) as well. In these
studies, neurocontrollers for autonomous robots are evolved such
that each synapse is assigned a synaptic plasticity rule from a
set of possible variants of Hebbian plasticity. Synaptic dynamics
get activated only when neural output diverges from a selected
homeostatic domain. Others investigated comparable mecha-
nisms where homeostasis was also discussed in the context of
walking behavior (Hoinville and Hénaff, 2004; Hoinville et al.,
2011). Our approach differs from those in that homeostatic sta-
bility is achieved using a single plasticity mechanism, and in that
it is written completely in dynamic terms. The SRN-dynamics
is also related in part to the BCM theory (Bienenstock et al.,
1982; Cooper et al., 2004). Both the BCM rule and SRN-dynamics
achieve stability of synaptic weights through a quadratic depen-
dence on postsynaptic activity, and on a threshold that separates
the regimes of synaptic depression and potentiation. However,
unlike BCM learning, it is not necessary for the threshold a∗± of
SRN-dynamics to be sliding. This is due to the fact that homeo-
static stability, as is the case in Triesch (2007), is explicitly imple-
mented in the receptor dynamics. However, the SRN-dynamics
differs functionally from the BCM rule, in that the latter is a
learning rule, while the former is not.

Obstacle-avoidance with wheel-driven robots is a benchmark
task in neural control, and successful controllers were found
either through synaptic plasticity of the weights that connect
sensors to built-in reflexes (Harter and Kozma, 2005), the home-
ostatic regulation of a GasNet control networks with artificial
chemicals during evolution (Vargas et al., 2009), or maintain-
ing homeostasis by modulating the random reconfiguration of
the conroller’s parameters by artificial hormones (Pitonakova,
2013). The SRN-dynamics control of the wheel-driven robot does
not incorporate learning as in Harter and Kozma (2005); and
unlike (Vargas et al., 2009; Pitonakova, 2013), where the robot
has to carry out multiple tasks concurrently, ALICE’s behavior is
restricted to obstacle-avoidance. However, in these studies, the
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neurocontrollers are derived and tested in spacious maze-like
environments (Harter and Kozma, 2005), or in a featureless rect-
angular arena (Vargas et al., 2009; Pitonakova, 2013), and would
not avoid narrow impasses or sharp corners. On the other hand,
neural control with SR-neurons exploits the full potential of the
recurrent neural network, as well as the bistability resulting from
the synaptic dynamics, thus succeeding where other controllers
would fail.

A hallmark of the current study is the derivation of a stable for-
ward walking behavior of a hexapod with 18 degrees of freedom,
corresponding to the 18 joints of the insect-like robot OCTAVIO.
Beer and Gallagher (1992) used an evolutionary process to derive
a neurocontroller to achieve stable walking of a hexapod. While
that hexapod also contained 18 degrees of freedom, it only had
6 joints. Achieving stable behavior of a quadruped or a hexapod
with multiple joints per leg is far from trivial. For instance, Shim
and Husbands (2012) used intrinsic chaos of weakly-coupled
central pattern generators to search for a neurocontroller of a
quadruped with eight degrees of freedom, and later stored the
successful controllers in the connections between the oscillators,
using a form of synaptic plasticity. While the same strategy led
to a stable forward locomotion of a swimming robot, Shim and
Husbands (2012) reported that the behavior of the quadruped
broke after some time. However, a stable 18-joints hexapod for-
ward locomotion is achieved using Walknet (Schilling et al.,
2013a). Walknet allows for a variety of behaviors and extensions
to match the behavioral repertoire of a stick insect (Schilling et al.,
2013b). This flexibility comes with the price of a highly com-
plex and heavily engineered controller with many non-neuronal
elements. On the other hand, the SRN-controller of OCTAVIO

provides from simple design intuitions, and a small contribution
from evolution (a single hidden neuron for each leg), a min-
imal architecture with dynamic synapses that is, to this point,
unprecedented.

From the experiments described here, it is obvious that an
effective control also depends on convenient SR-parameters,
which were currently picked by hand. However, these parame-
ters can, in principle, be optimized using evolutionary techniques
provided, for instance, by the NERD Toolkit (Rempis et al., 2010).
The same applies to bias terms. An alternative is to find suit-
able bias dynamics, which is a topic of current research. Often,
there are reasonable constraints on the structure of more complex
neural controllers. The NERD evolution environment allows the
use of functional substructures, symmetry constraints, modular-
ization, specific synaptic communication lines or nerve bundles,
and a variety of different neuron types, such as sensor neurons,
bias neurons, standard neurons, and SR-neurons (Rempis et al.,
2010). These capabilities were used, for instance, for the control of
forward/backward locomotion of a single leg (Pasemann, 2013),
and the current control of locomotion of the hexapod walking
machine.

In addition, the connectivity of the network is equally essen-
tial for the synaptic dynamics for deriving an effective control.
Instead of finding solutions in a high-dimensional real-valued
parameter space, evolution can be utilized to find only those
( − 1, 0,+1) connectivity structures on which the SRN-dynamics
leads to a satisfactory behavior. However, finding the real-valued

bias terms remains a bottleneck, due to the lack of an appro-
priate bias dynamics. An alternative approach to evolution in
refining an agent’s behavior is the introduction of propriocep-
tive units that dissipate artificial neuromodulatory signals. These
units are placed within preconfigured networks that are separate
from the robot’s neurocontroller, and are responsible for moni-
toring the robot’s behavior. For instance, a monitoring network
may be responsive to the robot’s failing to avoid an obstacle, or
approach food sources. When either undesired behavior occurs,
the monitoring network stimulates its corresponding propriocep-
tive unit. The latter would then release a signal that initiates the
learning of SR-parameters, bias terms, or connectivity structure
during the lifespan of the robot. The neuromodulatory signals
stop, when the robot’s behavior is appropriate and the monitoring
networks are deactivated (Rempis et al., 2013).

In the context of connectivity, an interesting property of a SR-
neuron is that it can turn off its input by reducing its receptor
strength down to zero, thereby becoming a “dead neuron.” This
fact may be used to facilitate the evolution of effective connec-
tivity structures. For example, starting with a fully connected
network, the bias term of a neuron may enter the dead neu-
ron domain, either through evolution or by accommodating bias
dynamics. Taking such a SR-neuron, which can no longer con-
tribute to a behavior-relevant synaptic dynamics, out of the net-
work will correspond to a mechanism similar to a programmed
death of a cell and it will prune the network structure.
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