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Abstract: Oxford Nanopore Technologies’ MinION has proven to be a valuable tool within human and
microbial genetics. Its capacity to produce long reads in real time has opened up unique applications
for portable sequencing. Examples include tracking the recent African swine fever outbreak in
China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we
review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed
applications in livestock agriculture for rapid diagnostics, base modification detection, reference
genome assembly and genomic prediction. In particular, we propose a future application: ‘crush-side
genotyping’ for real-time on-farm genotyping for extensive industries such as northern Australian
beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping
demonstrated promising results. SNPs were called from simulated Nanopore data, that included
the relatively high base call error rate that is characteristic of the data, and calling parameters were
varied to understand the feasibility of SNP calling at low coverages in a heterozygous population.
With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to
be correctly called with coverages as low as 6×. These results provide preliminary evidence that
Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive
livestock operations.

Keywords: crush-side genotyping; Oxford Nanopore sequencing; MinION; long-read sequencing;
livestock; genetics; SNP calling; structural variant; genome assembly

1. Introduction

DNA sequencing allows us to examine the underlying genomic information that affects important
traits in agriculture. Sequencing technology can broadly be divided into three distinct generations.
First-generation technology, such as Sanger sequencing, was characterised by the use of chain
termination, second-generation sequencers, such as Illumina, by high-throughput short reads
and third-generation sequencers by high-throughput long reads [1,2]. Two technologies have led
third-generation sequencing: Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio).
A feature of third-generation sequencing technology is that the native DNA is sequenced directly
without amplification. This has the advantage of removing the nucleotide biases and alterations in
relative abundance of DNA templates that are observed in some short-read sequence data [1,3,4].
Single-molecule sequencing also produces longer reads which can map and characterise complex
genomic regions, such as interspersed repeats, with greater specificity. Long reads have greatly
improved the de novo assembly of a number of complex genomes. Their ability to span repetitive
regions and complex structural variants (SVs) has led to the publication of more contiguous and

Genes 2020, 11, 1478; doi:10.3390/genes11121478 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-2864-7685
https://orcid.org/0000-0002-7783-5466
http://dx.doi.org/10.3390/genes11121478
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/12/1478?type=check_update&version=2


Genes 2020, 11, 1478 2 of 27

accurate reference genomes [5–8]. However, single-molecule sequencing has an associated increase in
error rate as a result of not being amplified against a DNA template.

ONT sequencing uses a biological nanopore embedded in an electrically resistant membrane [9].
A motor protein, which “unzips” the dsDNA to allow it to pass through the nanopore, is added to
the DNA template during library preparation [10]. A current flows through the nanopore, which is
disrupted in a characteristic manner by nucleotides passing through the pore (Figure 1, [10]). ONT base
calling algorithms use the characteristic disruption in electrical signal by 5 base pair k-mers passing
through the pore to interpret the DNA sequence [10]. ONT released the MinION in 2014 [10] and
it remains the smallest sequencer on the market at 105 mm × 23 mm × 33 mm [11] while also being
powered by the USB port of a computer [10]. Recently, ONT also released the MinION MK1c which
combines the MinION sequencer with a high-performance computer for base calling, a high-capacity
solid state drive and a touch screen display [12]. The MinION and MinION MK1c are to date the
only portable sequencing platforms on the market, a significant advantage over other third-generation
sequencing platforms. Some systematic errors remain a problem with ONT sequencing, in particular,
the under-representation of homopolymer repeats, caused by an inability for the base caller to identify
the breakpoints in signal between homopolymers [13]. However, ONT have continued to release
new flow cell chemistry and base calling algorithms to attempt to address this problem. Initially,
single-pass accuracies of only 68.4% (Phred score of 5) were reported with the MinION in 2015 [13].
Using the R9.4.1 flow cell chemistry and Guppy base caller, raw read accuracies of 85–90% have
been reported [14]. This is considerably less than the 99.999% accuracy in sanger sequencing [15]
and 99.92% in Illumina [16]. The release of the R10 flow cell chemistry has reportedly increased the
raw read accuracy. However, this has come at a cost to the overall flow cell yield. The error rate in
ONT sequencing makes single-nucleotide variant (SNV) and insertion/deletion (INDEL) detection
difficult and for this reason it has been largely avoided [17]. Instead, ONT sequencing’s long reads
have given it a natural application in the detection of large variants, such as SVs—defined here as
deletions, insertions, translocations, duplications and inversions greater than 50 bp [18]—in place of
short-read sequencing technologies [17].
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Figure 1. Stylized representation of Nanopore’s sequencing mechanism. Biological nanopores are
embedded in a membrane. Double-stranded DNA is enzymatically unwound and the resulting ssDNA
passes through the nanopore, disrupting the ionic flow through the nanopore in a characteristic manner
dependent on the nucleotide bases within the pore.

ONT have also released a number of other sequencing platforms, which use the same underlying
technology. For example, the GridION and PromethION, larger, benchtop cousins to the MinION,
provide higher throughput, producing 75–150 Gbp and 2.4–4.3 Tbp, respectively, per run [12,19].
Additionally, the Flongle is a flow cell compatible with both the MinION and GridION which
provides a cheaper alternative to traditional MinION flow cells where high yield is not required [12].
ONT has also developed LamPORE, their first diagnostic assay which will be aimed at detecting
SARS-CoV-2 [12]. LamPORE is compatible with both the MinION and GridION sequencers and
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combines barcoded multitarget amplification using a 15 min barcoded library preparation [20].
ONT estimate that LamPORE is capable of processing 96 samples in just over one hour [12].
To complement their line of sequencing platforms, ONT have a number of software packages
for raw read base calling (Guppy), data quality control (EPI2ME and Guppy) and analysis (EPI2ME).
An android application, F5N, has also been released to allow sequencing and rudimentary data analysis
using a smart phone paired with a MinION [21].

The MinION has already been widely used as a tool for rapid diagnostics within human and
microbial genetics [22–25]. Quick, et al. [23] identified, at a species level, a Salmonella enterica outbreak
in a hospital within 20 min of sequencing on the MinION. However, in another study, the MinION
demonstrated that accurate identification of bacteria was possible within 2 h of receiving a DNA
sample [22]. Perhaps most impressively the MinION decreased the diagnosis time in a 62-year-old
female patient with bacterial sepsis from 6.25 days to just 19 h [26]. The MinION’s portability and
ability to base call in real time has also made it popular for tracking disease outbreaks [24,27,28],
including recent outbreaks of ebola [24], zika [28] and COVID-19 [29,30] as well as more isolated
outbreaks of human metapneumovirus [31] and the fungal pathogen Candida auris [32].

Here we review a number of current applications of the MinION such as rapid diagnostics
and de novo genome assembly and discuss their potential applications to the livestock industry,
taking lessons from medical research. We discuss and review the potential for the MinION as a
rapid diagnostic tool for diseases relating to pigs, chickens and cattle as well as benefits associated
with using the MinION to genotype causative mutations including structural variants for genomic
prediction. In particular, we present a future application in “crush-side genotyping”: the rapid, on-farm
low-coverage genotyping of cattle for genomic prediction.

2. Current and Future Applications in Livestock

Within the field of agriculture, the uptake of Nanopore sequencing has been relatively slow by
comparison to medical research, and slower still within livestock. The applications of the sequencer
within livestock agriculture have largely been extensions of disease tracing and rapid diagnostics.

2.1. Rapid Diagnostics of Pathogens in Livestock

African swine fever virus is the causative agent behind the 2019 global outbreak of African
Swine Fever (ASF), a highly contagious disease endemic to several sub-Saharan African countries [33].
ASF has up to a 100% mortality rate [34], and modelling of the economic impacts of the disease indicate
that pork prices could increase by 17–85% [35] due to the current outbreak which has put an enormous
strain on global pork production [36]. Early and rapid diagnosis of ASF is a crucial step in controlling
the impact of the disease given the absence of a vaccine [37]. Results from current diagnosis methods
may take several days or even weeks due to significant logistical and economic constraints [37].
O’Donnell, et al. [38] demonstrated the potential ability for the MinION to provide rapid diagnosis of
this virus with the development of the African swine fever fast analysis sequencing tool (ASF-FAST).
ASF-FAST monitors the designated sequencing output directory for .fastq files [38]. New .fastq files
are transferred into a “Que” folder where reads are separated by barcode using Porechop [39] and
processed using the Burrows–Wheeler alignment tool [40] to perform a reference-guided assembly [38].
ASF-FAST then performs a local BLASTN of the consensus sequence against known ASFV reference
strains [38]. An output report with summary statistics in a PDF is then sent by SMS upon request [38].
Sufficient viral sequence was captured for complete resolution of the 192 kb genome [41] within
10 min of sequencing using ASF-FAST [38]. Accurate characterisation and diagnosis of porcine viral
enteric disease in piglets has also been demonstrated using the MinION [42]. The ASF-FAST pipeline
demonstrates the benefits in the MinION’s real-time sequencing ability, and could be expanded to
meet other diagnostic needs within livestock agriculture.

Avian cholera caused by the bacterium Pasteurella multocida has significant economic impacts in the
poultry industry, principally in free range operations [43]. It has had a particularly severe impact on the
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Australian poultry industry with a number of outbreaks and subsequent re-infections [43]. Whole killed
cell vaccines are currently used to prevent outbreaks. However, these only provide protection against
strains with identical or near identical lipopolysaccharide (LPS) structure [43,44]. The MinION could
be used to not only provide rapid diagnosis of diseases such as fowl cholera in poultry flocks but also
provide real-time characterisation of the LPS structure for accurate targeted vaccination.

Bovine respiratory disease (BRD) is the most common cause of mortality of cattle in North
American and Australian feedlots [45]. In North America alone BRD is estimated to cost the agriculture
industry over $1 billion USD [46]. BRD is typically induced by a combination of stress factors as well
as exposure to a range of infectious agents [47,48]. Rapid diagnosis of BRD and characterisation of the
causative agent is a key mitigation strategy for disease control in feedlots [49]. The MinION is capable
of identifying the viruses responsible for BRD using Oxford Nanopore’s rapid sequencing kit [50,51].
McCabe, et al. [50] reported that library preparation was complete in approximately 10 min and enough
reads were produced in the first hour of sequencing to correctly identify three viruses present in the
sample. Moreover, they also concluded the MinION has potential for the rapid diagnosis of viruses
in regional veterinary settings [50]. The cassava virus action project has already demonstrated that
the MinION can be used for rapid diagnostics in agriculture in the field where laboratory access is
limited [52]. Live export is another area in which the MinION’s ability to rapidly diagnose a range of
diseases could be exploited to improve animal welfare. For example, rapid sequencing diagnostics
could be applied to animals before they enter the live export supply chain or a feedlot, to prevent
disease outbreaks or identify animals not fit to travel.

In agriculture, the emergence of antibiotic resistant bacterial strains is of significant concern.
Strains of multidrug-resistant Mannheimia haemolytica have already been identified in cattle with BRD
using the MinION [53]. The MinION could reportedly predict resistance to β-lactams, tetracyclines,
lincosamides, phenicols, aminoglycosides, sulfonamides and macrolides [53]. An immediately evident
application for such abilities is mastitis in dairy cattle, where antibiotic resistant genes within an
infection could be diagnosed within hours. Effectively targeting treatments to the specific bacterial
infection has the potential to both reduce the treatment cost as well as improve veterinary outcomes by
saving needless use of broad-spectrum antibiotics and increasing the efficacy of treatment.

Other real-time analysis tools have also been developed for real-time mapping and coverage
statistics. The Read Assignment, Mapping and Phylogenetic Analysis in Real Time (RAMPART) tool [54]
runs concurrently with ONT’s MinKNOW to provide a real-time graphical overview of genome coverage
and reference matching of reads as they are base called and mapped by MinKNOW [54]. RAMPART
has been adopted by the ARTIC network project which aims to develop an end-to-end system
for tracking viral outbreaks using real-time epidemiological information [55]. The ARTIC network
pipeline is a user-friendly bioinformatics pipeline that combines reference alignment, post-processing,
variant calling and consensus building using a number of popular Nanopore-compatible tools [55].
Despite being initially developed for use in human epidemiology, reference genomes for strains of any
number of economically important livestock pathogens could be used with RAMPART to monitor
sequencing depth in real time for rapid diagnosis.

A current limitation of viral detection using ONT is the titre of the viral particle. This is
because the likelihood of sequencing viral DNA compared to that of the host genome is directly
related to the proportion of viral DNA in the sample. Because viral genomes are many orders of
magnitude smaller than mammalian genomes, there needs to be many orders of magnitude more
viral genomes in the sample than host genomes [50]. One possible solution to this limitation is the
upcoming release of adaptive sequencing by ONT [56]. Adaptive or read-until sequencing describes
the selective sequencing of particular genomic regions by reversing the flow of ions through specific
nanopores [56,57]. Through this, non-target DNA molecules can be ejected from the nanopore increasing
the number of available pores for target sequences. This allows enrichment of regions to a desired
coverage without additional library preparation procedures [56,57]. By using graphics processing unit
(GPU)-compatible base calling, sequences can be base called in real time and either rejected or allowed
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to continue sequencing [56]. Another approach by Kovaka, et al. [57] involves the targeting of k-mers
with an estimated similar electrical signal to the desired enrichment regions. This eliminates the need
for GPU base calling which could potentially lend itself towards regional applications of the MinION
with adaptive sequencing. As a result, adaptive sequencing could be used to target viral diseases with
significant economic effects on the livestock industry, including swine flu, foot-and-mouth, brucellosis,
tuberculosis and bovine viral diarrhoea virus [58–60]. To date, these protocols have only been applied
to medical research. However, they hold great promise for the realisation of in-field diagnostics.

Pipelines such as RAMPART and ASF-FAST demonstrate the proven ability for the MinION to
significantly decrease diagnostic times and increase treatment specificity. Applications from human
medical research can be applied directly to agricultural diagnostics. Importantly, the MinION not only
presents an opportunity to lower disease burden, but also provides a mechanism for the reduction in
broad-spectrum antibiotic treatment in agriculture. Currently, the high sequencing error rate as well
as the relatively higher cost per sequencing run are two hurdles on the path to the wider adoption
of ONT sequencing in agriculture. However, it is hoped that the release of adaptive sequencing will
address these issues.

2.2. Reference Genomes

Reference genome assemblies are essential in understanding an organism’s genetic diversity.
Genome assemblies allow us to characterise genetic variants and also reduce the computation time
required to analyse sequence data [61]. Through characterising genetic variants, they have allowed
us to better understand genetic diseases and in agriculture, in particular, to leverage heritability for
accelerated genetic gain. In livestock, genome assemblies exist for all of the major domesticated species:
cattle [62], chicken [63], sheep [64], goats [61] and pigs [65]. A number of sequencing platforms have
been used to develop reference genomes, each with their respective advantages and disadvantages
(Table 1). Historically, reference assemblies were created using short-read sequencing technology and
were less accurate than what can be achieved now with long-read technologies. An estimated 14.4 Mbp
of the chicken (Gallus gallus) reference assembly was discovered to be misassembled contigs; while in
the bovine (Bos taurus) reference assembly, 39 Mbp was estimated to be misassembled contigs [66].

ONT sequencing’s unparalleled read length has allowed for the assembly of a number of complex
genomes such as the protozoan parasite Trypanosoma cruzi [7] and the mountain-spinach Atriplex
hortensis [8]. The ability to sequence complex genomes is in part due to long reads being able to span
large repetitive regions which second-generation sequencing technologies typically fail to accurately
assemble. The inability for short reads to map complex regions results in uneven sequencing coverage
in comparison to long reads (Figure 2). A comparison of two genome assemblies using Nanopore
and PacBio sequencing in rice found the Nanopore assembly to be more contiguous, having only
18 contigs [67], whereas the PacBio assembly featured 394 contigs [67]. The Nanopore assembly also
reportedly had fewer assembly errors caused by long repetitive regions [67]. The individual base
accuracy of the ONT assembly, however, was lower than the PacBio assembly, despite polishing the
ONT assembly with 70 × Illumina short reads [67]. Single-nucleotide errors in the ONT assembly
formed clusters of which 94% were in complex genomic regions and therefore had Illumina short-read
coverage of <5 × [67]. This highlights the importance of selecting an appropriate sequencing platform
to meet the desired level of assembly contiguity and individual base accuracy.

Relatively high sequencing coverage is necessary for accurate assemblies when using Nanopore
data as a result of the high sequencing error rate. For small genomes, this is easily achieved. However,
for larger genomes, the higher cost per Gb for Nanopore sequencing means cheaper, highly accurate
platforms such as Illumina are now used alongside Nanopore data, such as in the case of the snow
sheep (Ovis nivicola) genome assembly [68]. This decreases the cost of sequencing and increases the
individual base accuracy of genome assemblies. Reference genomes for the endangered giant redwood
(Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum), both trees native to California,
were also created using Illumina and Nanopore data [69]. These genomes were 8.2 and 26.5 Gbp,
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respectively, demonstrating an ability for the MinION to be used for very large genomes [69]. The giant
sequoia’s reference genome also features the longest scaffolds assembled in any organism to date with
the largest being 985 Mbp and the scaffold N50 being 690.55 Mb [69].

Table 1. Comparison of bench top second-generation sequencers as well as some of PacBio’s and
ONT’s platforms.

Sequencing
Platform Read Length Data Output Run Time Single-Pass

Error Rate (%) Reference

Illumina Hiseq 2000 2 × 150 bp 150–200 Gb 1–6 days 0.16 [70,71]
Illumina NextSeq 550 2 × 150 bp 120 Gb 15–18 h 0.16 [70,71]

Pacbio RS II 10–15 kb on
average 0.5–1 Gb 0.5–4 h 10 [16,71]

PacBio Sequel 10–15 kb on
average 15 Gb Up to 20 h 10 [72]

PacBio Sequel II 10–15 kb on
average 80–100 Gb Up to 30 h 10 [73]

Oxford Nanopore
MinION

10–20 kb on
average

20–30 Gb
(per flow cell)

Up to 1 flow cell/run
Up to 96 h 5–20 [12,74]

Oxford Nanopore
GridION

10–20 kb on
average

20–30 Gb
(per flow cell)

Up to 5 flow cells/run
Up to 96 h 5–20 [12,74]

Oxford Nanopore
PromethION

10–20 kb on
average

100–180 Gb
(per flow cell)

Up to 48 flow cells/run
Up to 96 h 5–20 [12,74]

ONT’s ability to characterise complex genomic regions has the potential to increase the accuracy
of reference genome assemblies in livestock. The ability of all three major ONT sequencing platforms:
the MinION, PromethION and GridION, to facilitate accurate genome assemblies may help identify
targets for future breeding and selection. More accurate assemblies will also facilitate the incorporation
of more complex genomic variants into genomic prediction and increase the power of genomic variant
association studies [75].
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2.3. Structural Variants

Beyond applications in improving the accuracy of reference genomes and rapid diagnostics,
the unique mixture of read length and real-time data acquisition leans towards potential uses in
calling genomic variants in real time. In particular, the MinION lends itself towards accurate SV
characterisation and calling, which has already been demonstrated in humans [77,78]. SVs are estimated
to contribute between 0.5 and 1% of genomic differences between individuals while comparatively
single-nucleotide variations contribute only 0.1% [18]. This highlights the potential genetic variation
that, for the most part, is poorly characterised to date, particularly in species other than model
organisms and humans.

The proportion of genetic variation explained by SNP markers is often referred to as h2
m,

while variance explained by genome-wide-significant SNPs is referred to as h2
GWS [79]. Heritability

studies within families reveal a difference between total additive genetic variance (h2) and h2
GWS

which is referred to as “missing heritability” [79]. Ultimately these studies reveal h2
GWS < h2

m < h2 [79],
which is hypothesised to be the result of genomic variants that are not well tagged by SNPs [79].
Even traits such as fertility in dairy cattle, which could be assumed to be under selective pressure
with reasonable confidence, have some missing heritability [80]. A possible source of this missing
heritability is larger genomic variants such as SVs [81,82]. SVs range in size from tens to millions of
base pairs [83] or even entire chromosomal restructuring [84]. This means that the possible genetic
variation explained by SVs may be magnitudes more than that of single-nucleotide variants.

SVs, such as SNPs, can alter the gene itself [85], but may also affect the enhancer or promoter
or change its proximity to the gene [86]. The best understood mechanism through which SVs may
alter phenotypes is by copy number alteration of a dosage sensitive gene or cluster of genes [86–88],
such is the case in Williams–Beuren syndrome [89], Smith–Magenis syndrome [90] and systemic lupus
erythematosus [91]. SVs have also been found to alter 3D chromatin structure [92,93]. Large deletions
and inversions demonstrate detectable effects on chromatin contacts; however, we do not yet understand
the impacts of these alterations on an individual’s phenotype [92]. Significant work has been carried
out in human genetics to ascertain relationships between a number of complex diseases and SVs [94–96].
For example, the age of onset of Alzheimer’s disease is poorly modelled by SNPs alone, but with
consideration of structural variants [97,98], the age of onset of Alzheimer’s disease can now be
accurately predicted in over 90% of the at-risk population [98]. Similarly, it is hypothesised that SVs are
accountable for missing heritability in sporadic amyotrophic lateral sclerosis [81]. Generally speaking
the mechanistic and molecular links between SVs and phenotypes are still poorly understood,
particularly outside of humans and model organisms [18]. More accurate characterisation of SVs may
help to clarify these links.

Short-read technologies struggle to identify SVs, in particular copy number variants in comparison
to the MinION. In 14 Drosophila melanogaster genome assemblies, more than 20,000 SVs were
identified by long-read sequencing of which almost 40% were reportedly undetectable using
short-read sequencing [99]. The SV allele frequency in the D. melanogaster population relative to
amino acid polymorphisms also suggested that SVs are more likely to impact phenotype than
non-synonymous SNPs [99] making them candidates for being rare alleles with large phenotypic
effect [99]. This highlights the potential power of using long-read sequencing platforms such as the
MinION to better characterise SVs.

Voichek, et al. [100] compared the correlation between SNPs and phenotypic traits to the correlation
between larger genomic variants such as insertions, deletions and rearrangements to phenotypic traits
in a genome wide association study. They developed a range of k-mers that represented structural
variations and tested the association between the k-mers and desirable phenotypes in Arabidopsis
thaliana, tomato and maize [100]. K-mers typically had stronger statistical association with phenotype
than SNPs and a number of new associations were found exclusively using k-mers [100]. K-mers have
the potential to reveal new alleles associated with desirable phenotypic traits in maize [100]. However,
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the short-read sequencing which was used produced a high fraction of non-uniquely mapped reads in
the maize population [100]; a challenge that would likely be overcome using long Nanopore reads [101].

In livestock, there are only a handful of well-characterised structural variants with known
economically significant effects. A 10 bp duplication in the Pax7 gene is associated with increased body
weight, body height and hip width in a number of Chinese cattle breeds [102]. Another phenotype
of economic importance in agriculture caused by an SV is the poll phenotype in cattle. The poll
phenotype, a desirable trait in both the dairy and beef industries, describes a lack of horns in
cattle [103–105]. It is controlled at the poll locus on bovine chromosome one [105,106] by at least three
known autosomal dominant poll (P) alleles [107,108]. All three alleles are SVs ranging in size from a
212 bp duplication replacing 10 bp [108] to an 80 kb duplication [109]. The poll phenotype is an example
of well-characterised SVs with both economic and animal welfare importance in agriculture [109].
Being a highly desirable Mendelian dominant trait, homozygous poll (PP) animals are of greater value
than heterozygous (Pp) cattle. This makes it an ideal candidate for real-time calling as there is no
phenotypic way to distinguish poll homozygotes from heterozygotes. Recently, another example of
an economically important SV was characterised in sheep using Nanopore sequencing [110]. The SV,
a 7.9 kb deletion was found to be responsible for a novel BCO2/enJSRV hybrid protein that was found
to cause undesirable yellow discolouration of adipose tissue [110]. A genetic test for this trait will
allow on-farm management decisions before the trait is detected at time of slaughter. A number of SVs
linked to coat colour have also been characterised in cattle [111,112], while of arguably less economic
significance the phenotypes caused by these SVs may be of interest to stud breeders. Two complex
SVs involving the KIT locus (B. taurus chromosome 6) have been found to cause colour sidedness in a
number of European breeds [111,113]. A quadruplication of a 6 kb region upstream of the TWIST2
gene in cattle is strongly associated with a second coat-related phenotype: an area of unpigmented
skin and coat around the animals’ mid-section [112,114]. These studies highlight both the additional
predictive power that may be leveraged using larger genomic variants but also the suitability of the
MinION sequencer to this application [115]. This application could be harnessed further by using the
MinION to incorporate causative mutation (particularly SV) calling into genomic selection.

2.4. DNA/RNA Modification

Another benefit of ONT sequencing is the ability to directly sequence both DNA and RNA
molecules to identify molecule modification. Over 17 and 160 post-transcriptional modifications
have been characterised in DNA and RNA, respectively [116], with the most common being
methylation [117]. These modifications influence DNA-protein interactions and play a crucial role in
biological development [118] and ageing [119,120]. Bisulfite sequencing is generally regarded as the
gold standard for DNA methylation profiling [121,122]. However, bisulfite DNA reads often have a
lower mapping rate, uneven genome coverage and sequence biases [116]. Alternatively, methylated
DNA immunoprecipitation can also be used for methylation profiling. However, this method does
not provide base resolution information [123]. RNA modifications are generally also captured using
immunoprecipitation alongside reverse transcription and sequencing [123]. However, these processes
often only interrogate a specific group of modifications at any one time [116]. The MinION’s
ability to sequence DNA and native RNA means it can deliver sequence information as well as
post-transcriptional modification profiling. In the case of DNA sequencing, this means methylation
profiling can be performed alongside genotyping, which could be incorporated into pipelines
for predicting predisposition to premature ageing [124,125], disease [126] or desirable phenotypic
traits [127]. Methylated CpG sites have also been demonstrated to be a significant contributor to
Nanopore SNP errors and masking of methylation regions has been shown to decrease the error
rate of Nanopore sequencing [25], using this method SNP calling accuracy using the MinION could
be increased.

One example where understanding the importance of methylation on a trait for economic benefit
might be ossification. Ossification is a measure of physiological age of a beef carcass and extensive
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ossification is an undesirable quality in beef cattle. Ossification is associated with increased dark
cutting which is the discolouration of meat as a result of high pH post-mortem [128]. Dark cutting
results in a shorter shelf life and bland flavour [129] and therefore producers are often penalised
$0.5 AUD /kg of carcass weight [128]. With a strong correlation between ageing and methylation already
established in humans [130–132], methylation markers for pre-mature ageing and ossification could be
developed and called using the MinION. Evidence also suggests that methylation may play a role
in stress-related psychiatric disorders and stress-induced depressive behaviour [133,134]. Therefore,
methylation markers for livestock welfare and temperament could also be called using the MinION.

2.5. Genomic Prediction and Crush-Side Genotyping

Genomic prediction, initially proposed by Meuwissen, et al. [135], has been extensively used
within a number of livestock industries such as poultry and dairy. Current genomic prediction typically
uses SNP arrays to genotype a large number of markers throughout the genome. These markers
are used to calculate the genomic relatedness of animals in a reference population with known
phenotypes [135]. By comparing the genomic relatedness of animals with unknown phenotypes to
those in the reference population, a genomic estimated breeding value (GEBV) can be calculated [135].
This has allowed some intensive agricultural industries to transition from purely phenotypic trait
selection to genomic selection (provided large reference populations of genotyped and phenotyped
individuals are established [136]).

A number of limitations to using SNP arrays for genomic prediction exist [136]. A key economic
limitation of SNP arrays is that the larger or denser a SNP array, the more expensive it becomes [137].
A further limitation to SNP array genotyping is the inability to accurately genotype SNPs whose
flanking regions align to multiple regions in the genome. As an example, it is common practice to
remove between 30 and 40 k SNPs from the Brassica 60 k SNP array [138]. Furthermore, SNPs on
SNP arrays are typically only selected if both alleles are common and therefore cannot be in complete
linkage disequilibrium (LD) with a causal variant with one rare allele [79]. Therefore, SNPs discovered
using SNP markers in a GWAS are unlikely to account for all genetic variation as rare variants likely
will not be tagged by the genotyped SNPs [79]. The MinION’s ability to generate whole genome
sequence data could mean, with sufficient computing power, both common and rare SNPs as well as
structural variants could be called, decreasing the missing heritability in genomic prediction. However,
the achievable accuracy of genomic predictions given the high error rate of Nanopore sequencing must
be investigated before this application can be adopted.

Outside the biological limitations of SNP genotyping by array, this method is also impractical in
some industries. For example, in Australia’s northern beef industry, cattle are often only handled once
a year, in a mechanical restraint commonly referred to as a ‘crush’. Additionally, northern Australian
cattle enterprises will typically only make a mail ‘run’ once or twice a fortnight. This makes proximity
to laboratories and turnaround time significant limitations to implementing genomic selection in
practice. To address this need, we propose the future application of the MinION sequencer to rapidly
on-farm genotype cattle for genomic selection in Australia’s northern beef industry, which we term
“crush-side genotyping” (Figure 3). Such a method would allow point of management decisions
such as culling and young bull selection to be informed by GEBV, in industries where laboratory
turnaround time has limited the use of SNP array genotyping. For example, groups of cattle held
in a holding yard could be genotyped overnight. This would allow for management decisions to be
made the following morning, rather than weeks later, by which time the cattle would be released
and not seen until the following year. Using the MinION, whole genome sequence data could be
imputed from SNPs, INDELS or copy number variants (CNVs) which are reliably called for each animal.
This would require additional computation, but could be highly parallelised. The concept is similar to
that proposed by Ros-Freixedes, et al. [139], where very low sequence coverage is used to genotype
animals. A method similar to hybrid peeling, a technique for pedigree-based imputation [140,141],
could also be incorporated for fast imputation, phasing and calling. Li, et al. [142] demonstrated
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that low-coverage (0.5–1 ×) short-read, second-generation sequencing, can increase the power of
GWAS and decrease the measurement error of polygenic risk scores for coronary artery disease in
humans when compared to SNP arrays. Although these results were reported using highly accurate
second-generation sequencing, the ability for long reads to map more accurately would likely increase
the accuracy of phasing haplotypes at low coverage. The use of the MinION would additionally allow
the incorporation of larger genomic variant markers or causative mutations into genomic selection for
increased accuracy.
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To date, true real-time crush-side genotyping is not feasible as two major limitations exist:
cost and the development of a rapid wet-lab pipeline. The pipeline turnaround time is being actively
addressed by a number of groups globally. The application of the MinION in disease outbreaks
has driven development of rapid protocols for DNA extraction [143], in-field computing [144] and
library preparation [145]. For example, Boykin, et al. [146] have demonstrated the PDQeX nucleic
acid extractor (MicroGEM, Dunedin, New Zealand), which is capable of extracting DNA from up to
24 different tissue samples in less than 20 min, can rapidly extract DNA for use with the MinION.
Additionally, Zou, et al. [143] have developed a cellulose paper-based DNA purification technique
that is able to extract and purify DNA in 30 s, another example of available rapid DNA extraction
methods. Another development that could increase the speed of the wet-lab turnaround time is
ONT’s VolTRAX [12], which completely automates the library preparation and flow cell loading steps.
Ideally the VolTRAX could be combined with Nanopore’s field sequencing library preparation kit.
The field sequencing kit is capable of library preparation in 10 min and requires no cold storage and
limited laboratory equipment [12], although this protocol currently produces a lower sequencing
yield. The VolTRAX and rapid sequencing kit will increase the reproducibility of sequencing runs
and decrease the library preparation requirements and turnaround time. The release of the MinION
Mk1c has also addressed the hurdle of infield sequence acquisition with its GPU base calling ability
and 1 TB solid state drive (SSD) built in with the sequencer. The transition towards GPU-compatible
base calling packages has shortened the analysis turnaround time by an order of magnitude [147].
Base calling speeds have increased from 120,000 bases/s using a central processing unit (CPU) in 2017
to over 1,000,000 bases/second using ONT’s GPU basecaller Guppy [148]. A lack of internet connection
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in remote locations presents an obvious hurdle to crush-side genotyping analysis. However, an offline
metagenomics analysis tool, MINDS (MinION Detection Software), has already demonstrated that
offline analysis of MinION data is currently possible [149]. From 173,000 reads, MINDS correctly
identified 19 of 20 species from the MSA-2002 mock metagenomic community in 15 min, without internet
connection [149]. Although, this clearly demonstrates the current ability to efficiently analyse MinION
data while offline, the significant increase in data throughput necessary in the context of crush-side
genotyping means that considerable optimisation would be required.

The second key limitation, cost, will likely be addressed by parallelising the sequencing. Currently,
SNP genotyping is available in a variety of densities, from ultra-low ~ 200 SNP parentage arrays to
high density 777 k, where density refers to the number of SNPs genotyped and therefore the degree
of separation between markers. Traditionally, the beef industry, in particular Australia’s Northern
beef industry, use commercial 50 k SNP arrays to achieve acceptable genomic prediction accuracies.
These 50 k SNP arrays today cost $35–55 AUD [150], a significant drop from $400–500 AUD per animal
for 10,000 SNPs in 2006 [151]. For crush-side genotyping to be feasible, the cost per sequencing run will
not necessarily have to approach the cost of SNP array genotyping. Instead, in industries where SNP
array genotyping has not been used due to the limitations discussed, it will only need to cost less than
the increase in profitability resulting from genomic selection. Peñagaricano [152] estimated genomic
selection has resulted in the doubling of annual genetic gain for economically important traits in dairy
cattle since its implementation. Most notably, a 3-fold to 4-fold increase in genetic gain for traits that
can only be measured late in life, such as female fertility, have been reported [152]. Currently, a single
MinION sequencing run costs ~$700 USD [12] and can consistently yield over 20 Gb using R9.4 flow
cells [12]. This yield has increased dramatically from less than 1 Gb in 2014 using ONT’s R6.0 flow
cells [153]. Alongside the increase in sequencing yield, in the last six years, the single-pass error rate
from Nanopore sequencing has decreased almost 4-fold from 38.2% using the R6.0 flow cells [154] to
9–10% using R9.4 flow cells [155].

We see the possible introduction of adaptive sequencing as a key link in the chain to significantly
reduce the cost of sequencing and the required whole genome coverage. A number of markers
spread evenly throughout the genome, similar to SNP array genotyping, could theoretically be
enriched in real time using adaptive sequencing. This would produce accurate marker genotypes
at comparatively ultra-low whole genome coverages. Another method that could be used for rapid
selective enrichment is LamPORE’s loop-mediated isothermal amplification (LAMP). LamPORE uses
a 35 min LAMP to amplify three highly conserved genes in SARS-CoV-2 for rapid diagnosis [12].
The LAMP method has been optimised to be highly parallelised (9000 samples can be barcoded in
24 h) [12], which is very attractive for crush-side genotyping. However, the additional wet-lab steps
are currently also a limitation of this technique. The affordable characterisation of rumen microbiome
and rapid diagnosis of pathogens in livestock could be more suitable applications of this method.
Alternatively, CRISPR-Cas9-targeted enrichment is another method in ONT’s toolkit which could be
used in place of adaptive sequencing [156]. Currently, CRISPR-Cas9-targeted enrichment provides
greater enrichment of desired loci than adaptive sequencing [56,156,157], but introduces additional
wet-lab steps [156]. CRISPR-Cas9 could potentially be used where relatively few enriched loci are
required, for example in parentage verification or the targeted introduction/eradication of specific
genotypes (e.g., deleterious mutations) in a herd.

This method of enrichment shares similarities with genotype by sequencing (GBS), a cost-effective
method for low-coverage genotyping [158–160]. GBS uses restriction enzyme cleavage to reduce
genome complexity for sequencing on short-read sequencing platforms [158–160]. This method of
low-coverage sequencing has the advantage of not requiring a priori: a reference genome in the case of
adaptive sequencing and CRISPR-Cas9 enrichment [161]. This means that GBS can simultaneously be
used for variant discovery as well as genotyping [158]. Additionally this method is currently more
cost effective than the proposed crush-side genotyping. However, a number of limitations to GBS exist.
Most importantly, the second-generation sequencing platforms used for GBS are currently not portable,
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which is the major drawkback crush-side genotyping aims to solve. The real-time nature of adaptive
sequencing also means that the chosen enriched loci can be changed during the sequencing run [56].
Enrichment could also be turned off once sufficient sequencing coverage is achieved to capture genome
wide variants.

Targeted sequencing enrichment on the MinION would allow for the sequencing of multiple
samples per flow cell. This could be combined with ONT’s barcoding library kits. Up to 96 samples can
currently be multiplexed using ONT’s PCR barcoding kit. However, this requires an additional 60 min
library preparation and PCR. The rapid barcoding kit (10 min library preparation) currently only uses
12 barcodes, but would likely be more suitable to ensure the pipeline remains rapid and portable [12].
It is likely that the number of samples that can be barcoded with the rapid kit will increase over time.
If 6× coverage is assumed to be the minimum requirement for accurate genotype calling on the majority
of loci using the MinION and an average of 50,000 SNP markers are needed for accurate genomic
prediction then—given reported sequencing enrichment rates [56,156,157]—we estimate that 1.8 Gb
will be necessary per animal. We assume the maximum theoretical yield from a single MinION flow
cell is 20 Gb. MinION sequencing of cattle tail hair DNA has yielded up to 45 Gb per flow cell using
non-targeted sequencing. Based on these assumptions, multiplexing 11 animals per flow cell is possible.
At this multiplexing level, the sequencing cost per animal is approximately $90 USD. Additionally,
minimum coverages for accurate genotyping may decrease with improvements in sequencing accuracy
and software advances. Furthermore, accurate genomic prediction is regularly achieved with as little
as 4000 SNP markers in cattle, which would decrease the price further. Crush-side genotyping, may not
yet be feasible and relies heavily on emerging technology. However, we believe the rapid development
of the technology means crush-side genotyping will be feasible in the short to mid-term.

One limitation to the current application of crush-side genotyping is reduced flow cell yields
when using enrichment methods. Payne, et al. [56] reported a significant drop in sequencing efficiency
while using adaptive sequencing: markedly lower enrichment was achieved towards the end of the
sequencing run. This was attributed to the degradation and blocking of pores [56]. Payne, et al. [56]
overcame this issue by washing the flow cells with nuclease. Further optimisation of these recently
published methods: adaptive sequencing, Cas9 enrichment and LAMP sequencing, will see the
feasibility of crush-side genotyping increase shortly.

The ability of the MinION to call SNPs at known loci at low coverage in Brassica napus L.
has already been assessed [138]. Despite having higher error rates than other sequencing platforms,
the MinION achieved an accuracy of 96% in calling SNPs at four million known locations [138]. However,
a predominantly homozygous canola population was used in this study, which would result in a higher
accuracy than would be expected in outbred populations [138]. However, the ability for the MinION
to accurately genotype SNPs in a heterozygous population at low coverage has not been investigated.
Therefore, we conducted a preliminary investigation into the feasibility of crush-side genotyping using
simulated Nanopore read data to assess the accuracy of SNP calling in heterozygous populations.

3. Materials and Methods

We conducted a simulation study to test the hypothesis that SNP genotypes can be accurately
identified in a diploid species using MinION data; and that changing the filtering and calling parameters
used to call SNPs will affect the accuracy of the identified SNP.

An artificial diploid of chromosome 28 was generated by randomly inserting 10,000 SNPs into
ARS-UCD1.2 chromosome 28 using the package SimuG [162]. A deep learning neural network based
Nanopore read simulator, Deepsim [163], was used to simulate the Oxford Nanopore reads. The package
is able to simulate Nanopore reads using a pore model which models the expected current signal when
given a reference genome input [163]. Both the reference and mutated chromosome 28 were used as
the reference genome input for the pore model in order to simulate a heterozygous diploid. The default
base caller Albacore (version 2.3.1) was used to base call the raw current signal in the FAST5 files and
generate the final reads in fastq format. An exponential read length distribution, used to simulate
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reads in humans [163], was used. The error profile of the simulated reads closely resembled that of
reads generated with the MinION from cattle (Table S1, Figures S1–S3) and summary statistics were
generated using NanoStat and NanoPlot [164]. To simulate a realistic on-farm sequencing preparation
a mean read length of 2000 bp was used and various coverages (2 ×, 4 ×, 6 ×, 8 ×, 10 ×, 12 × and
20 ×) were simulated. The simulated Nanopore reads were mapped back to the original ARS-UCD1.2
chromosome 28. Samtools Mpileup [165] and BCFtools call [166] were used to produce VCF files
with allele counts at each SNP loci. The individual base quality threshold (Q) was varied between
5, 7, 10 and the default 13 in the mpileup command. The probability of SNP discovery (P) in the
BCFtools call command was set to 1 to allow discovery of all variants. An R script was used to call
genotypes based on observations of reference or alternate alleles from the VCF file (Figure 4; Table S2).
All heterozygous calls were categorised as either accurate or false positives (Figure 4) based on the
observed allele matching the known substituted allele. This accounted for false positive heterozygous
calls, caused by sequencing errors at the loci of interest.
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Figure 4. Flow chart for the genotype calling script that was used with the VCF files generated by
Samtools and BCFtools.

An additional 10,000 base positions on chromosome 28 were also genotype called from each
alignment as controls. All of these 10,000 positions were homozygous for the ARS-UCD1.2 reference
allele. These positions were examined to determine the effect of sequencing errors on homozygous
genotypes. The same genotype calling methods and parameters were used.

4. Results and Discussion

4.1. Heterozygous Positions

The Q score threshold did not have a significant effect (p > 0.01) on the overall number of
SNPs called (Figure 5), but did have a significant effect on the percentage of loci called correctly as
heterozygous (p < 0.01), while sequencing coverage had a significant effect on both the overall number
of SNPs called and the number of SNPs called correctly (p < 0.01). Accuracies of 85% were achieved
with coverage as low as 6× and a Q score threshold of 5. The number of incorrect homozygous
reference genotype calls was consistently higher than incorrect homozygous alternate calls (Figures 5
and 6). This was thought to be an artifact of training and mapping to the reference genome ARS-UCD
1.2. Therefore, the same reads were mapped to the mutant chromosome where the proportion of
homozygous reference to homozygous alternate alleles was more even (Figure 7 and Figure S4).
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This suggests that the bias between homozygous reference and homozygous alternate calls is related
to the mapping of reads to a particular reference genome.Genes 2020, 11, x FOR PEER REVIEW 14 of 27 
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Figure 5. Genotype calling results from the 10,000 heterozygous loci (left) and 10,000 homozygous sites
(right) at different sequencing coverages. (A) The percentage of SNPs correctly identified (heterozygous).
(B) The percentage of false heterozygous alternate calls. (C) The percentage of false homozygous
reference calls. (D) The percentage of false homozygous alternate calls. (E) The percentage of false
homozygous reference calls. (F) The percentage of accurate homozygous reference calls.

4.2. Homozygous Positions

Analysis of the genotype calls at the 10,000 homozygous loci demonstrated greater accuracy at
lower coverages. However, at higher coverages, the method used to call heterozygotes meant there
was an increase in heterozygous calls as a result of sequencing errors (Figures 5–8). As coverage
increased, the likelihood of at least one observation of an alternate allele from a sequencing error
increased, consequently increasing the number of false heterozygous calls. The Q score threshold
also had a significant effect (p < 0.01) on the number of false heterozygous calls, with a Q score
threshold of 5 having far more false heterozygous calls than other Q scores. This is likely a result of the
sequencing errors having a low base quality and therefore more sequencing errors being called with
more relaxed Q score cut offs. Accuracies of almost 95% were achieved for these loci at coverages as
low as 6 ×, very similar to results reported by Malmberg, et al. [138]. The percentage of homozygous
alternate calls remained extremely low across all sequencing coverages with a maximum of just over
0.1% at 4 × sequencing coverage. These results suggest that a low Q threshold is favourable for
heterozygous calling. However, a more stringent Q threshold is necessary to prevent false heterozygous
calls at homozygous loci. False homozygous calls at low-coverage heterozygous loci are a considerable
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limitation of low-coverage genotyping [167]. A number of studies have proposed the maximum
likelihood (ML) method as a solution [166,168]. The use of allele dosage/ probability based genotyping,
as is often implemented when using Illumina data [169] would likely decrease the number of false
homozygous genotypes. Wang, et al. [167] demonstrated that this method for genotype correction
in GBS data increased the rate of correct genotypes as well as the accuracy of genomic prediction.
However, SNP array genotyping was more accurate than the corrected GBS genotypes for coverages
below 10 × [166]. Alternatively, Dodds, et al. [161] describe a method for calculating unbiased estimates
of relatedness by using only SNPs with genotype calls in both individuals. They refer to this method
as kinship using GBS with depth adjustment (KGD) [161]. Despite being developed specifically for
use in GBS data, the similarities between GBS and the crush-side genotyping method proposed here
suggest KGD could adapted for crush-side genotyping.
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Figure 6. (A) A breakdown of the different calls (Table S2) for each sequencing coverage at a Q threshold
of 13 for the 10,000 heterozygous loci. (B) A breakdown of the different calls (Table S2) for each
sequencing coverage at a Q threshold of 10 for the 10,000 heterozygous loci. (C) A breakdown of the
different calls (Table S2) for each sequencing coverage at a Q threshold of 7 for the 10,000 heterozygous
loci. (D) A breakdown of the different calls (Table S2) for each sequencing coverage at a Q threshold of
5 for the 10,000 heterozygous loci.
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Figure 7. Genotype calling results from the alignments to chromosome 28 of ARS-UCD 1.2 and to the
mutant chromosome at the 10,000 heterozygous sites. (A) The percentage of SNPs correctly identified
(heterozygous). (B) The percentage of false homozygous alternate calls. (C) The percentage of false
homozygous reference calls. (D) The percentage of SNP loci with coverage less than 2×.

Overall, these simulations have highlighted genotype calling using Nanopore data is possible
in both homozygous and heterozygous populations. However, a more refined method for genotype
calling is required to increase the accuracy of genotype calling in highly heterozygous populations.
At high coverage (>6×) the error rates reported here for heterozygous and homozygous positions
appear to be within the tolerable threshold of genomic prediction given imputation error rates of
5.5–0.9% are commonly reported [161,170–174]. Validation of the results reported here on real datasets
is still required. However these results provide preliminary evidence that Oxford Nanopore sequencing
has potential for on-farm SNP genotyping for current GBLUP predictions. Importantly, even read
lengths that are relatively short for MinION data did not result in decreased SNP calling accuracy.
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Figure 8. (A) A breakdown of the different calls (Table S2) for each sequencing coverage at a Q threshold
of 13 for the 10,000 homozygous loci. (B) A breakdown of the different calls (Table S2) for each
sequencing coverage at a Q threshold of 10 for the 10,000 homozygous loci. (C) A breakdown of the
different calls (Table S2) for each sequencing coverage at a Q threshold of 7 for the 10,000 homozygous
loci. (D) A breakdown of the different calls (Table S2) for each sequencing coverage at a Q threshold of
5 for the 10,000 homozygous loci.

5. Conclusions

The MinION has opened new applications for sequencing technology as well as providing benefits
to current sequencing applications. Its portability, read length and real-time base calling capabilities
have cemented it as a new rapid diagnostic tool, particularly in humans, despite the high error rates.
A number of studies have also now demonstrated potential applications in agriculture as a diagnostic
tool for disease and antibiotic resistance [38,42,53]. In particular, O’Donnell, et al. [38] demonstrated
the effective use of the MinION to monitor the 2019 outbreak of ASF and developed a real-time rapid
diagnostic tool, ASF-FAST. Furthermore, the MinION provides enormous benefits in characterising
complex genomic regions for genome assemblies. The snow sheep, giant redwood and giant sequoia
genome assemblies have all demonstrated increased contiguity as a result of using long Nanopore
reads [5–7]. More accurate genome assemblies will also allow the MinION to be used effectively
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in the characterisation and calling of structural variants to increase our understanding of genetic
variation [110], which is of particular interest in livestock. This may help quantify some of the missing
heritability in a number of common diseases and economically desirable traits. Additionally, the ability
to directly capture base modifications in real time could help to one day incorporate methylation
and epigenetics into genomic predictions. With strong evidence suggesting a correlation between
premature ageing and methylation [130–132], we see carcass ossification as an obvious application
of this.

With the ability to rapidly genotype both SNPs and SVs, we propose the use of the MinION for
crush-side genotyping in Australia’s Northern cattle industry to deliver on-farm genomic prediction.
The capacity to sequence, map and process reads in real time means that crush-side genotyping can
provide rapid genomic prediction to industries where laboratory turnaround time is a major limitation.
The power to call causative mutations rather than SNPs sharing LD and rapidly incorporate new
markers using a script rather than developing entirely new SNP arrays will have significant merit as
new causal mutations are discovered.

Our preliminary in silico investigation assessed the feasibility of low-coverage SNP genotyping in a
heterozygous population using simulated Nanopore data. An artificial diploid of B. taurus chromosome
28 with 10,000 SNPs was created using the package SimuG and filtering and calling parameters were
altered to investigate genotyping accuracies. The results suggested that coverages as low as 6× can
produce genotyping accuracies greater than 85%. These results provide preliminary evidence that
MinION sequencing has the potential to be used for rapid on-farm crush-side genotyping for genomic
prediction in Australia’s northern beef industry.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1478/s1,
Figure S1: Read length histogram for real and simulated Nanopore data, Figure S2: Average read quality versus
aligned length for real and simulated Nanopore data, Figure S3: Average read quality versus read length for
real and simulated Nanopore data, Figure S4: Comparison of genotype calls for heterozygous positions aligned
to different reference genomes, Table S1: Comparison between the simulated and real Nanopore read statistics,
Table S2: Definitions of Genotype Calls.
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