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4 Departmento de Epidemiologı́a, Hospital General de Zona #1 “Emilio Varela Luján”, Instituto Mexicano del
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Abstract

Viral sepsis has been proposed as an accurate term to describe all multisystemic dysregula-

tions and clinical findings in severe and critically ill COVID-19 patients. The adoption of this

term may help the implementation of more accurate strategies of early diagnosis, prognosis,

and in-hospital treatment. We accurately quantified 110 metabolites using targeted metabo-

lomics, and 13 cytokines/chemokines in plasma samples of 121 COVID-19 patients with dif-

ferent levels of severity, and 37 non-COVID-19 individuals. Analyses revealed an integrated

host-dependent dysregulation of inflammatory cytokines, neutrophil activation chemokines,

glycolysis, mitochondrial metabolism, amino acid metabolism, polyamine synthesis, and

lipid metabolism typical of sepsis processes distinctive of a mild disease. Dysregulated

metabolites and cytokines/chemokines showed differential correlation patterns in mild and

critically ill patients, indicating a crosstalk between metabolism and hyperinflammation.

Using multivariate analysis, powerful models for diagnosis and prognosis of COVID-19

induced sepsis were generated, as well as for mortality prediction among septic patients. A

metabolite panel made of kynurenine/tryptophan ratio, IL-6, LysoPC a C18:2, and phenylal-

anine discriminated non-COVID-19 from sepsis patients with an area under the curve (AUC

(95%CI)) of 0.991 (0.986–0.995), with sensitivity of 0.978 (0.963–0.992) and specificity of

0.920 (0.890–0.949). The panel that included C10:2, IL-6, NLR, and C5 discriminated mild

patients from sepsis patients with an AUC (95%CI) of 0.965 (0.952–0.977), with sensitivity

of 0.993(0.984–1.000) and specificity of 0.851 (0.815–0.887). The panel with citric acid,

LysoPC a C28:1, neutrophil-lymphocyte ratio (NLR) and kynurenine/tryptophan ratio

discriminated severe patients from sepsis patients with an AUC (95%CI) of 0.829
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(0.800–0.858), with sensitivity of 0.738 (0.695–0.781) and specificity of 0.781 (0.735–

0.827). Septic patients who survived were different from those that did not survive with a

model consisting of hippuric acid, along with the presence of Type II diabetes, with an AUC

(95%CI) of 0.831 (0.788–0.874), with sensitivity of 0.765 (0.697–0.832) and specificity of

0.817 (0.770–0.865).

Introduction

The novel coronavirus, SARS-CoV-2, was identified for the first time in December of 2019 in

Wuhan, China. Coronavirus disease 2019 (COVID-19) is the third coronavirus infection that

causes severe respiratory illness in humans [1]. The disease was declared a health emergency

and a pandemic by the World Health Organization (WHO) causing more than 3 million

deaths worldwide by April 2021 [2]. COVID-19 emerged as a complex disease with similar

clinical characteristics of sepsis [3]. The WHO established definitions of pneumonia, acute

respiratory distress syndrome (ARDS), and sepsis that apply to COVID-19 patients to charac-

terize disease severity [4]. However, in clinical practice, it has been observed that many severe

or critically ill COVID-19 patients develop clinical manifestations of shock (i.e. cold extremi-

ties, weak peripheral pulses, metabolic acidosis, and impaired liver and kidney functions) lead-

ing to the hypothesis that viral sepsis is crucial for COVID-19 and its associated mortality [5].

In fact, sepsis has been clearly documented in deceased patients in various cohorts [6–8].

The Third International Consensus Definitions Task Force [9] defined sepsis as a “life-

threatening organ dysfunction caused by a dysregulated host response to infection”, there by

recognizing sepsis is a complex entity with both inflammatory and anti-inflammatory features.

Many patients with severe COVID-19 meet this new definition (Sepsis-3). However, it has

been described that the quick Sequential Organ Failure Assessment (qSOFA) score to clinically

categorize a septic patient is not useful to identify COVID-19 patients with poor outcomes

[10].

Proinflammatory cytokines are implicated in development of sepsis through to activation

of inflammatory pathways by increasing the number, lifespan, and activity of innate immune

cells [11]. Recent research also points to an important role of other factors, such as coagulation,

microbiome composition, and thermoregulation [12], indicating that the pathogenesis of sep-

sis is influenced by alterations in the metabolic homeostasis. Therefore, the study of the host

response (which involves both metabolic adaptations and the immune response), becomes

crucial to understand the viral mechanism of sepsis. While cytokine-storm release syndrome

(CRS) has been widely associated with sepsis, only a few studies have used a multiplex cyto-

kine/chemokine profiling approach to predict sepsis [13]. Moreover, the integration of meta-

bolomics and immune mediator’s data to identify biomarkers predictive of coronavirus-

associated has been even less explored. There is a need for a better understanding of the inter-

action between elevated inflammation signals, plasma metabolite composition, and immune

cell dysfunction.

In the present work, 13 cytokines and chemokines involved in the antiviral response were

measured in plasma samples of non-COVID-19 and COVID-19 patients with different disease

severity, along with 110 metabolites quantified by liquid chromatography coupled to tandem

mass spectrometry (LC–MS/MS) assay, to produce predictive panels of sepsis and mortality

among COVID-19 patients.
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Materials and methods

Patient enrollment and sample collection

Clinical data from 158 patients were collected retrospectively based on the epidemiologic sur-

vey done after admission to the Respiratory Triage of the Mexican Institute of Social Security

from March to November 2020. Plasma samples were obtained at an early stage of the disease,

namely, 4 days on average after symptoms onset and prior to laboratory diagnosis. A total of

37 individuals were confirmed negative (G1) for SARS-CoV-2 infection, who were suspected

due to close contact with a confirmed case, and 121 had a confirmed infection by reverse-tran-

scriptase polymerase chain reaction (RT-qPCR) from a nasopharyngeal swab specimen. From

these, 41 were outpatients that developed a mild disease (G2), and 80 patients were hospital-

ized with different levels of severity according to the WHO disease severity scale [14]; 35 were

classified as moderate/severe (G3), as these patients developed clinical symptoms of pneumo-

nia or severe pneumonia with a moderate degree of hypoxia that required oxygen therapy)

through face mask. The other 45 patients were included in the group of critical patients (G4),

as they met at least one of the following criteria: Quick Sequential Organ Failure Assessment

(qSOFA)�2 at the time admission, severe ARDS (PaO2/FIO2�100mmHg), and reported life-

threatening organ dysfunction during the illness (i.e. kidney and liver injury, and vascular and

CNS complications). According to the Sepsis-3 definition, the presence of organ dysfunction

is a key finding for the diagnosis of sepsis [9]. For these 120 infected patients, plasma samples

were collected within 2 days of hospitalization, prior to antibiotic treatment if prescribed.

The qSOFA score (i.e. Glasgow coma scale <15, systolic blood pressure <100 mmHg, and

respiratory rate>22 breath/min) obtained from the respiratory triage at emergency admission

was computed resulting in 0, 1, 2, and 3 points based on the new sepsis consensus definition

[9]. ARDS for mechanically ventilated patients was defined using the Berlin classification as

mild (200 mm Hg < PaO2/FIO2�300 mm) moderate (100 mm Hg < PaO2/FIO2�200 mm

Hg), and severe (PaO2/FIO2�100 mm Hg) [14]. A description of the clinical features includ-

ing demographic data, clinical symptoms and laboratory variables is provided in the Table 1.

The study was performed in accordance with the Declaration of Helsinki, and the Ethics

Committee of the Mexican Institute for Social Security approved the study protocol (R-2020-

785-068). Written informed consent was obtained from all participants. All patients included

in this study were informed in writing regarding the collection of their samples for research

aims and given the right to refuse such uses.

Blood cultures were performed only in those patients with clinical and distinctive signs of

focal and/or bloodstream infections others than SARS-CoV-2 after >48 h post-hospitalization.

Blood cultures were done with BD BACTEC Peds Plus™/F culture vials (Becton, Dickinson

and Company, MD, USA) and BD BACTEC™ Plus Aerobic/F Culture Vials (Becton, Dickin-

son and Company, MD, USA) following manufacturer instructions.

Metabolomics profile in plasma samples

Metabolites were measured using a locally developed LC-MS/MS metabolomics assay called

The Metabolomics Innovation Centre (TMIC) Prime (TMIC PRIME1) Assay. The method,

adapted to work with plasma using a similar quantitative assay developed for urine samples

[15], provides quantitative results for up to 143 endogenous metabolites including biogenic

amines, amino acids, organic acids, and lipid-like compounds.

Amino acids, biogenic amines and derivatives, and organic acids were analyzed by a

reverse-phase LC-MS/MS custom assay, while glycerophospholipids, acylcarnitines, glucose

and sphingomyelins were measured by Direct Infusion Tandem Mass Spectrometry
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Table 1. Sociodemographic, epidemiological, and clinical characteristics, including laboratory analyses, of the study participants by surveyed group.

Variables G1

(N = 37)

G2

(N = 41)

G3

(N = 35)

G4

(N = 45)

p Value

Male sex, n (%) 16 (43.2) 23 (56) 16 (45.7) 29 (64.4) 0.07

Age, median years (Q1-Q3) 41 (38–54) 58 (51–64) 53 (48–61) 58 (46–64) 0.0001a

Smoking, n (%) 3 (8.1) 4 (9.7) 3 (8.6) 0 0.1

Symptoms to sampling, median days (Q1-Q3) 2 (1–5) 3 (0–6) 3 (1–6) 5 (2–7) 0.04b

Symptoms before admission (Q1-Q3) NA NA 4 (2–5) 4 (2–6) 0.8

Systolic pressure� 100, n (%) NA NA 2 (5.7) 6 (13) 0.5

Breathing frequency� 22, n (%) NA NA 15 (42.9) 36 (80) 0.0009

Altered mental state GCS <15, n (%) NA NA 2 (5.7) 10 (22.2) 0.06

qSOFA, median (Q1-Q3) NA NA 1 (0–1) 1 (1–2) 0.0001

qSOFA 0 to 1, n (%) NA NA 35 (100) 33 (73.3) 0.0008

qSOFA�2, n (%) NA NA 0 (0) 12 (26.6) 0.0008

Pneumonia, n (%) NA NA 2 (5.7) 10 (22.2) 0.06

ARDS, n (%) NA NA NA) 34 (75.5) -

PaO2/FIO2, median (Q1-Q3) NA NA NA 65 (57–82) -

Renal injury, n (%) NA NA 0 (0) 14 (30.4) 0.0002

Liver injury, n (%) NA NA 0 (0) 5 (11.1) 0.06

Organic vascular injury, n (%) NA NA 0 (0) 8 (17.7) 0.008

Central nervous system injury, n (%) NA NA 0 (0) 1 (2.2) >0.9999

Mechanical ventilation, n (%) NA NA 0 (0) 39 (86.6) <0.0001

Positive blood cultures after 48 h of hospitalization, n (%) NA NA 0(0) 1(2.2) >0.9999

Death, n (%) NA NA 8 (22.2) 28 (77.7) <0.0001

Days between hospital admission and death NA NA 8(2–15) 8(5–15) 0.7

Symptomatology, n (%)

Fever NA 22 (53.7) 21 (60) 28 (62.2) 0.4

Cough NA 30 (73.1) 27 (77.1) 41 (91.1) 0.03

Headache 27 (73.0) 30 (73.1) 21 (60) 24 (53.3) 0.03

Dyspnea 5 (13.5) 13 (31.7) 31 (88.6) 32 (71.1) <0.0001

Diarrhea 2 (5.4) 4 (9.8) 6 (17.1) 4 (8.8) 0.5

Chest tightness 2 (5.4) 6 (14.6) 12 (34.3) 8 (17.7) 0.06

Chills 4 (10.8) 14 (34.1) 15 (42.8) 10 (22.2) 0.4

Pharyngalgia 14 (37.8) 14 (34.1 15 (42.8) 12 (26.6) 0.4

Myalgia 14 (37.8) 21 (51.2) 19 (54.3) 19 (42.2) 0.7

Arthralgias 11 (29.7) 22 (53.7) 19 (54.3) 18 (40) 0.5

Rhinorrhea 6 (16.2) 8 (19.5) 6 (17.1) 2 (4.4) 0.09

Polypnea 1 (2.7) NA 6 (17.1) 8 (17.7) 0.04

Anosmya NA 10 (24.4) 7 (20) 4 (8.8) 0.05

Dysgeusia NA 10 (24.4) 7 (20) 5 (11.1) 0.06

Comorbidities, n (%)

Diabetes (self-reported) 3 (8.1) 4 (9.8) 18 (51.4) 9 (20) 0.01

Obesity (>30Kg/m2) 3 (8.1) 8 (19.5) 7 (20) 13 (28.9) 0.02

Hypertension (self-reported) 9 (24.3) 11 (26.9) 13 (37.1) 17 (37.7) 0.1

Admission Lab data, median (Q1-Q3)

Erythrocytes (million/mL) 5.1 (4.8–5.5) 5.2 (4.9–5.6) 5.1 (4.9–5.4) 5.1 (4.7–5.5) 0.9

Hemoglobin (g/dL) 15.4 (14.7–16.3) 15.3 (14.2–16.1) 15.0 (14.4–15.8) 15.3 (13.5–16.5) 0.7

Platelets (thousands/ mL) 278.8 (238.0–327.0) 257.0 (206.5–314.0) 248.5 (213.0–274.0) 243.0 (184.8–282.0) 0.06

Leucocytes (×103) 7.1 (6.05–8.4) 7.0 (5.4–8.3) 8.6 (6.7–10.4) 9.5 (7.6–12.1) 0.0002c

(Continued)
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(DI-MS/MS) analysis was performed on an ABSciex 4000 Qtrap tandem MS instrument

(Applied Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with an Agilent

1260 series UHPLC system (Agilent Technologies, Palo Alto, CA). The custom assay contained

a 96-deep-well plate with a filter plate attached using sealing tape. Reagents and solvents were

used to prepare the plate assay. The first 14 wells were used for one blank, three zero samples,

seven standards, and three quality control samples.

Sample preparation

For organic acid analysis, 150 μL of ice-cold methanol and 10 μL of isotope-labeled internal

standard mixture [16] were added to 50 μL of plasma sample for overnight protein precipita-

tion at –20˚C, followed by centrifugation at 13,000 × g for 20 minutes. A total of 50 μL of

supernatant was loaded into the center of wells of a 96-deep-well plate followed by the addition

of 3 nitrophenylhydrazine reagent. After incubation for 2 hours, butylated hydroxytoluene sta-

bilizer (2 mg/mL) and water were added before LC-MS injection. For amino acids and bio-

genic amines and derivatives, glycerophospholipids, acylcarnitines, and sphingomyelins,

samples were thawed on ice and subsequently vortexed and centrifuged at 13,000×g; 10 μL of

each sample was then loaded onto the center of the filter on the upper 96-well plate and dried

in a stream of nitrogen. Subsequently, phenyl-isothiocyanate was added for derivatization.

After incubation, the filter spots were dried again using an evaporator. Extraction of the

metabolites was then achieved by adding 300 μL of extraction solvent. The extracts were

obtained by centrifugation into the lower 96-deep-well plate followed by a dilution step with

the MS running solvent (0.2% formic acid in water, 0.2% formic acid in acetonitrile).

LC-MS/MS method

An Agilent reversed phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 μm parti-

cle size, 80 Å pore size) with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-col-

umn (4 mm × 3.0 mm) were used. The LC parameters used were as follows: mobile phase A

Table 1. (Continued)

Variables G1

(N = 37)

G2

(N = 41)

G3

(N = 35)

G4

(N = 45)

p Value

Neutrophils (%) 60.1 (54.5–66.0) 66.6 (56.2–75.6) 79.4 (75.3–83.0) 85.4 (81.4–90.8) <0.0001d

Lymphocytes (%) 30.5 (25.8–36.0) 25.1 (15.4–34.5) 14.3 (10.6–16.8) 8.8 (5.2–11.8) <0.0001e

Neutrophils-Lymphocytes Ratio 1.7 (1.5–2.2) 3.0 (1.6–3.7) 6.7 (4.5–7.4) 11.2 (6.7–16.7) <0.0001d

Monocytes (%) 6.8 (5.3–8.7) 7.1 (4.8–8.8) 5.1 (3.0–6.1) 3.5 (2.6–5.0) <0.0001d

Glucose (mg/dL) 93.0 (85.0–103.0) 112.0 (95.8–125.5) 134.3 (97.0–136.6) 150.0 (113.0–247.0) <0.0001f

Creatinine (mg/dL) 0.9 (0.7–1.0) 0.87 (0.7–1.0) 0.85 (0.7–0.9) 1.0 (0.8–1.5) 0.01g

Continuous variables were compared using Mann-Whitney U tests or Kruskal-Wallis tests and categorical variables (sex, smoking, death, symptoms, and comorbidities)

were compared using the chi-square test for trend, with p values of less than 0.05 considered statistically significant and shown in bold. The analyses were conducted

using GraphPad Prism version 8.0.1 for Windows (GraphPad Software, La Jolla California USA.
a [G1 vs. G2; G1 vs. G3; G1 vs. G4];
b [G1 vs. G4];
c [G1 vs. G4; G2 vs. G4];
d [G1 vs. G3; G1 vs. G4; G2 vs. G3; G2 vs. G4];
e [G1 vs. G3; G1 vs. G4; G2 vs. G3; G2 vs. G4; G3 vs. G4];
f [G1 vs. G3; G1 vs. G4; G2 vs. G4]; and
g [G3 vs. G4].

https://doi.org/10.1371/journal.pone.0256784.t001
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was 0.2% (v/v) formic acid in water, and mobile phase B was 0.2% (v/v) formic acid in acetoni-

trile. The gradient profile was as follows: t = 0 min, 0% B; t = 0.5 min, 0% B; t = 5.5 min, 95%

B; t = 6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven was set at

50˚C. The flow rate was 500 μL/min, and the sample injection volume was 10 μL. For the anal-

ysis of organic acids, the mobile phases used were A) 0.01% (v/v) formic acid in water, and B)

0.01% (v/v) formic acid in methanol. The gradient profile was as follows: t = 0 min, 30% B;

t = 2.0 min, 50% B; t = 12.5 min, 95% B; t = 12.51 min, 100% B; t = 13.5 min, 100% B; t = 13.6

min, 30% B and finally maintained at 30% B for 4.4 min. The column oven was set to 40˚C.

The flow rate was 300 μL/min, and the sample injection volume was 10 μL.

DI-MS/MS method

The LC autosampler was connected directly to the MS ion source by red PEEK tubing. The

mobile phase was prepared by mixing 60 μL of formic acid, 10 mL of water, and 290 mL of

methanol; and the flow rate was programmed as follows: t = 0 min, 30 μL/min; t = 1.6 min,

30 μL/min; t = 2.4 min; 200 μL/min; t = 2.8 min, 200 μL/min; and t = 3.0 min, 30 μL/min. The

sample injection volume was 20 μL.

Quantification

To quantify organic acids, amino acids, and biogenic amines and derivatives, individual seven-

point calibration curve was generated for each analyte. The ratios of each analyte’s signal inten-

sity to its corresponding isotope-labelled internal standard mixture were plotted against the

specific known concentrations using quadratic regression with a 1/x2 weighting. Lipids, acyl-

carnitines, and glucose were analyzed semi-quantitatively. Single point calibration of a repre-

sentative analyte was built, using the same group of compounds that share the same core

structure, assuming linear regression through zero. All data analysis was done using Analyst

1.6.2 and MultiQuant 3.0.3.

Cytokine and chemokine quantification in plasma samples

A premixed LEGENDplex™ Human Inflammation Panel (13-plex) (Biolegend, USA) was used

to measure plasma cytokine and chemokine levels. The 13 cytokines and chemokines assayed

simultaneously include IL-1β, IFN-α, IFN-γ, TNF-α, MCP-1 (CCL2), IL-6, IL-8 (CXCL8), IL-

10, IL-12p70, IL-17A, IL-18, IL-23, and IL-33. Samples, reagents, and immunoassay proce-

dures were prepared and performed according to the manufacturer’s instructions. Briefly,

plasma samples or standard mixture of the analytes were mixed with beads coated with capture

on a 96 well filter plate for 2 hours. Beads were washed and incubated with biotin-labeled

detection antibodies for 1 hour, followed by a final incubation with streptavidin-PE. Data was

acquired using a FACS CANTO II flow cytometer (4-2-2 configuration, (BD Biosciences,

USA) with FirePlex software. Analysis was performed using the LEGENDplex analysis soft-

ware v8.0, which distinguishes between the 13 different analytes on basis of bead size and

internal dye. The limit of detection (LOD) and the limit of quantitation (LOQ) were calculated

from standard curves. All regression analyses showed an R2 value >0.99.

Statistical analysis

Medians (interquartile ranges [IQRs]) and frequencies (%) were used to describe baseline

characteristics of non-COVID-19 subjects and patients for continuous and nominal data,

respectively. Normality was assessed using the D’Agostino-Pearson normality test. Continuous

variables were analyzed using Mann-Whitney U or Kruskal-Wallis tests. For nominal variables
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(i.e. sex, smoking, death, symptoms, and comorbidities) chi-square tests for trends were used.

P-values of less than 0.05 considered statistically significant. Analyses were conducted using

GraphPad Prism version 8.0.1 for Windows (GraphPad Software, La Jolla California USA).

Metabolites with more than 50% of missing values were excluded from statistical analysis. For

metabolites with less than 50% of missing values, these were imputed by using half of the mini-

mum concentration value for that metabolite. Log transformation, and auto-scaling were

applied for data scaling and normalization. Univariate analysis of continuous and categorical

data was performed by Mann–Whitney rank sum and Fisher’s exact tests, respectively. Princi-

pal component analysis (PCA) and two-dimension partial least squares discriminant analysis

(2-D PLS-DA) scores plots were used to compare plasma metabolite data across and between

study groups; 2000-fold permutation tests were used to minimize the possibility that the

observed separation of the PLS-DA was due to chance. Coefficient scores and least absolute

shrinkage and selection operator (LASSO) algorithm were used to identify the most discrimi-

nating metabolites for group comparisons. Metabolite data analyses were done using Meta-

boAnalyst [16].

Metabolites with the highest VIP score and LASSO scores were used to create metabolite

panels for sepsis COVID-19 status or outcomes using multivariate logistic regression.

Receiver-operating characteristic (ROC) analyses were performed and sensitivity (Se), specific-

ity (Sp) and the area under curve (AUC) with 95%CI were measured using MetaboAnalyst to

identify the best metabolite/cytokine/chemokine combination panel predictive of COVID-19

group. In this analysis, balanced sub-sampling-based Monte Carlo cross validation (MCCV)

was used to generate the ROC curves. Spearman correlations coefficients between concentra-

tion levels of metabolites and cytokines/chemokines were computed using the R package

“corrr”, and correlations plots were done using the “corrplot” package. Selected correlations

for G2 and G4 were plotted in scatterplot using the package “ggplot2”. Each analysis and plot

were done in R studio (1.3.959).

Spearman correlations coefficients between concentration levels of metabolites and the dis-

ease severity (categorized as ordinal scale 1,2 and 3) was performed using GraphPad Prism ver-

sion 8.0.1 for Windows (GraphPad Software, La Jolla California USA).

Results

Patients

Critically ill patients (G4) were more frequently male than those in the other groups. Comor-

bidities such as obesity, hypertension, and type II diabetes were more commonly found in

patients that required hospitalization. Neutrophil: lymphocyte ratio (NLR) levels were higher

among critically ill patients. Hospitalized patients (G3 and G4) showed pronounced lympho-

penia and lower monocyte counts compared with non-hospitalized individuals (G2), but neu-

trophil counts were increased. The median time (IQR) from symptom onset to admission was

4 days (2–6). Three-quarters (34 patients) from the G4 group developed severe ARDS; two

developed moderate ARDS, three died when intubated, and six developed hepatic, renal, and/

or vascular complications. In the G4 group, 39 patients were mechanically ventilated (86%);

hospital mortality in this group was 60%. A statistically higher proportion of deaths was seen

in G4 compared with G3. G4 patients manifested common characteristics of sepsis, including

increased heart rate, respiratory failure, fever, leukopenia, hypotension and leukocytosis.

Patients with the above complications meet the diagnostic criteria for sepsis [9]. Clinical and

demographic characteristics comparing survivors versus non-survivors from the G4 group of

patients, is presented in S1 Table.
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Metabolomics profile in COVID-19 patients

Differences in metabolite concentrations by disease severity were studied. For the comparison

between G1 and G2, univariate analysis showed 30 metabolites significantly dysregulated after

corrections for multiple comparisons (FDR< 0.05) including, kynurenine, kynurenine: tryp-

tophan ratio, phenylalanine, propionic acid, beta hydroxybutyric acid, alpha-ketoglutarate,

and alpha aminoadipic acid with higher concentrations in G2, while values for HPHPA, tryp-

tophan, p-hydroxyhippuric acid, proline, histidine, threonine, citrulline, and lysine were

higher in G1. Among lipids, one acylcarnitine (C10:1) and one lysophosphatydilcholine

(LysoPC a 26:0) were upregulated in G2, but PC aa 36:0, PC aa 32:2, PC aa 36:6, LysoPC a 14:0,

LysoPC a 16:0, LysoPC a 16:1, LysoPC a 17:0, LysoPC a 18:0, LysoPC a 18:1, LysoPC a 18:2

and SM C (20:2) were so in G1. Multivariate analysis distinguished well between both groups

(Fig 1A) with good performance parameters (accuracy:0.90, R2:0.85, Q2: 0.54). Variable

importance in projection plots (Fig 1B) displays the 20 most dysregulated metabolites between

G2 and G1. The metabolic pattern associated with disease severity was investigated by compar-

ing outpatients with mild disease with hospitalized patients with moderate/severe illness (G2

vs. G3). Seven metabolites were dysregulated after corrections for multiple comparisons

(FDR< 0.05). Among lipid species, three acylcarnitines (C10:2, C5, C4), were upregulated in

Fig 1. Multivariate analyses from plasma metabolome profile of G1 versus G2, G2 versus G3, and G3 versus G4 patients. (A) Score scatter plot

based on PLS-DA models to explain the diagnosis (G1: green, G2: yellow) (B) rank of to 20 metabolites identified by PLS-DA according to VIP score on

x-axis. (C) Score scatter plot based on PLS-DA models to explain the prognosis (G2: yellow, G3: orange), (D) rank of top 20 metabolites identified by

the PLS-DA according to VIP score on x-axis. (E) Score scatter plot based on PLS-DA models to explain the prognosis (G3: orange, G4: red), (F) rank of

top 20 metabolites identified by PLS-DA according to VIP score on x-axis. The most discriminating metabolites are shown in descending score order.

The color boxes indicate whether metabolite concentration was increased (red) or decreased (blue). Figures were produced in MetaboAnalyst software

v 4.0 (https://www.metaboanalyst.ca/).

https://doi.org/10.1371/journal.pone.0256784.g001
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G3. Among amino acids, methionine-sulfoxide, and isoleucine were upregulated in G3.

Butyric acid was also upregulated in G3, but pyruvic acid was downregulated. Multivariate

analysis distinguished between G2 and G3 patients (Fig 1C) with good performance parame-

ters (accuracy:0.96, R2:0.86, Q2: 0.70). VIP plots (Fig 1D) display the 20 most dysregulated

metabolites between G2 and G3 patients. For the comparison between G3 and G4 patients, 10

metabolites were dysregulated (p<0.05), but none of them remained significant after correc-

tions for multiple comparisons (FDR < 0.05). Among lipid metabolites, LysoPC a 26:0,

LysoPC a 26:1, LysoPC a 28:0, LysoPC a 28:1, PC aa 36:0, PC ae 36:0 and C10:2 were elevated

in G4 patients (p< 0.05). Kynurenine and the kynurenine:tryptophan ratio were also elevated

in G4 patients, but butyric and citric acid decreased in this group. Multivariate analysis par-

tially differentiated between both groups (Fig 1E). VIP plots (Fig 1F) show the 20 most dysre-

gulated metabolites between G3 and G4.

To further understand how disease severity influenced the abundance of some metabo-

lites, we evaluated the relationship among disease severity and the concentrations of

metabolites. For this, a correlation analysis was performed. A very clear pattern emerged

showing significant correlations (P<0.05) in 22 metabolites. As shown in Table 2 the plas-

matic concentrations for metabolites are displayed for upward or downward trends with

disease severity. The Spearman correlation coefficients (r) and p values are shown for this

purpose.

Table 2. Plasma concentration values (micromoles) of dysregulated metabolites according to disease severity.

Metabolites G1

N = 37

G2

N = 41

G3

N = 35

G4

N = 45

Correlation with disease severity

(Spearman coefficient (r), p value (p))

Kynurenine:Tryptophan 0.034±0.007 0.08 (0.05–0.11) 0.075 (0.05–0.12) 0.13 (0.08–0.19) 0.5, <0.0001

Glutamic acid 129.0 (104.0–157.0) 143.0 (109.5–202.0) 196.0±69.6 201.5 (134.5–243.8) 0.4, <0.0001

Phenylalanine 61.05 (54.33–68.8) 76.10 (61.45–91.70) 83.9 (70.23–102) 94.15±27.37 0.5, <0.0001

Kynurenine 1.76 (1.62–2.14) 2.86 (2.22–4.14) 3.09±1.62 4.12 (2.64–5.47) 0.4, <0.0001

Butyric acid 0.67±0.24 0.75 (0.55–0.94) 1.02 (0.89–1.28) 0.89 (0.72–1.17) 0.4, <0.0001

Pyruvic acid 101.6±23.2 132 (107.5–230.5) 107.9±25.93 108 (82.9–132) 0.02, 0.8

LysoPC a C26:1 0.06 (0.05–0.09) 0.081±0.03 0.09±0.03 0.11±0.03 0.5, <0.0001

LysoPC a C26:0 0.12 (0.091–0.17) 0.17±0.052 0.18±0.059 0.20 (0.17–0.24) 0.4, <0.0001

LysoPC a C28:1 0.14±0.043 0.14 (0.11–0.19) 0.13 (0.12–0.20) 0.19±0.065 0.3, <0.0001

LysoPC a C28:0 0.16±0.039 0.19±0.060 0.19±0.067 0.23±0.069 0.3, <0.0001

PC ae C36:0 1.28±0.28 1.24±0.28 1.37±0.35 1.72±0.53 0.3, <0.0001

C4 0.18 (0.15–0.29) 0.20 (0.14–0.28) 0.23 (0.19–0.29) 0.38 (0.19–0.51) 0.2, 0.003

C5 0.09 (0.07–0.14) 0.10 (0.08–0.13) 0.19 (0.13–0.26) 0.22 (0.15–0.33) 0.5, <0.0001

C10:2 0.089 (0.07–0.10) 0.10 (0.08–0.13) 0.16±0.032 0.17±0.026 0.7, <0.0001

C10:1 0.18±0.039 0.21 (0.18–0.27) 0.22 (0.18–0.29) 0.25 (0.21–0.35) 0.4, <0.0001

C10 0.17 (0.14–0.24) 0.223±0.095 0.26 (0.120–0.35) 0.29 (0.19–0.38) 0.4, <0.0001

trans-Hydroxyproline 11.5 (6.21–17.85) 6.52 (3.6–10.04) 4.54 (3.15–7.12) 4.55±1.73 -0.4, <0.0001

Aspartic acid 18.5 (13.7–26.2) 15 (10.55–19.6) 12.59±4.37 11 (7.57–16.4) -0.3, <0.0001

Tryptophan 50.54±12.35 39.63±13.58 36.98±13.57 34.46±15.45 -0.4, <0.0001

Citric acid 128.8±29.22 112 (84–136.5) 100.2±29.7 81.9±26.09 -0.5, <0.0001

LysoPC a C14:0 4.12±1.62 1.78 (1.25–3.111) 1.98 (1.51–2.34) 1.83 (1.55–2.44) -0.4, <0.0001

LysoPC a C16:1 3.63 (2.77–4.25) 2.34 (1.59–3.35) 2.15±0.84 1.98 (1.59–2.57) -0.3, <0.0001

LysoPC a C18:2 25.09 (19.3–30.9) 15.9 (9.14–22.5) 12.71 (8.31–17.0) 11.18 (7.77–13.9) -0.5, <0.0001

LysoPC a C18:1 20.95 (17.5–23.7) 14.9 (11.0–20.6) 14.9 (11.5–19.06) 14.62±4.65 -0.3, <0.0001

https://doi.org/10.1371/journal.pone.0256784.t002
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Cytokines and chemokines linked to antiviral response are differentially

produced in COVID-19 patients and are associated with disease severity

In order to analyze the immune regulatory circuits activated with antiviral immune responses,

we measured the cytokine and chemokine responses in the plasma of non-COVID 19 and

COVID 19 patients (Fig 2). Several immune mediators were analyzed, including Type I, II and

III interferons, inflammatory cytokines and cytokines chemokines associated with/ neutrophil

migration and differentiation. No differences were identified for Type I IFN α and β. Among

Fig 2. Plasma concentration of types I, II and III interferon response cytokines, inflammatory response cytokines, and neutrophil

response cytokines. (A) IFN-λ1 (B) IFN-α2(C) IFN-λ2/3 (D) IFN-β (E) IL-6(F) IL-10 (G) IL-1β (H) TNF-α (I) IP-10 (J) IFN-γ (K) IL-12p70 (L)

IL-8 (M) GM-CSF. All measurements were made using a multiplex flow cytometry assay (LEGENDplex). Results were obtained in a BD FACS

Canto II flow cytometer and processed using the LEGENDplex Data Analysis Software v8.0. Graphs were constructed in GraphPad Prism v8.0.

The � p value<0.05, �� p value<0.01, ��� p value<0.001 and ���� p value<0.0001 was calculated using Kruskall Wallis tests with a Dunn´s

post-tests.

https://doi.org/10.1371/journal.pone.0256784.g002
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type III IFNs, only IFNλ-1 showed differences among study groups. Also, no differences were

seen for IFN- γ and IL-12p70. However, a marked increase with severity was seen for IP-10

(CXCL10), a chemokine that is produced in response to IFN- γ activation. The cytokine release

storm (CRS)-related, IL-6, IL-10, and IL-18, displayed a gradual increase with severity from

G1 to all other three groups. Among cytokines regulating inflammatory responses, no differ-

ences were observed for IL-1β and TNF-α. However, IL-6 and IL-10 showed a marked increase

by COVID-19 severity. IL-8 was also significantly increased in G3 and G4 patients compared

with G1 individuals. For GM-CSF, differences also observed between the G1 and the other

groups, yet with decreasing GM-CSF concentration as COVID-19 severity increased.

Correlation between metabolites and cytokines profile showed a host

response dysregulation associated with disease severity

Differences between G2 individuals (i.e. those that had well-coordinated response) and G4

patients (i.e. dysregulated response) were assessed using correlation matrices of metabolites

and cytokines/chemokines. Fig 3 shows the pattern of correlations between metabolites/lipids

and cytokines in G2 and G4, displaying only metabolites/lipids and cytokines/chemokines

with correlation coefficients above 0.35 and p<0.05. Overall, 6 positive and 6 negative signifi-

cant correlations were found between metabolites and cytokines/chemokines and NLR in G2

individuals, but 10 positive and 2 negative significant correlations were seen in G4 patients,

pointing to a stronger cross-talking between metabolic and immune mediators in severe forms

of the disease. S1 and S2 Figs shows more detailed comparison between metabolites and lipids

respectively, with cytokines/chemokines, in G2 and G4 patients.

Fig 3. Patterns of correlations among all metabolites and cytokines/chemokines measured in the study. (A) Correlation between

metabolites and cytokines/chemokines/ neutrophil to lymphocyte ratio (NLR) in mild patients (G2). (B) correlation between lipids and

cytokines/chemokines/NLR in critically ill patients (G2). (C) correlation between metabolites and cytokines/chemokines/NLR in mild patients

(G4). (D) correlation between lipids and cytokines/chemokines/NLR in critically ill patients (G4). The correlations between the concentration

levels of the metabolites and cytokines and chemokines were done by Spearman’s Correlation Coefficient using the R package “corrr”,

correlations plots were done using the “corrplot” package. Each analysis and plot were done in R studio (1.3.959).

https://doi.org/10.1371/journal.pone.0256784.g003
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Logistic regression models to predict sepsis and in-hospital mortality

caused by sepsis

Logistic regression models were built by combining metabolic and immune mediators to pre-

dict a) the occurrence of sepsis associated with SARS-CoV-2 infection, and b) the mortality in

COVID-19 sepsis patients. Models were built using PLS-DA and LASSO scores, and metabo-

lites/cytokines/chemokines plus clinical variables or co-morbidities with significant statistical

differences across disease severity. When comparing G1 controls with G4 patients (considered

as sepsis patients), a panel (Model A) made of kynurenine: tryptophan (OR = 5.59, p = 0.039,

SE = 0.69), IL-6 (OR = 6.91, p = 0.019, SE = 0.82), LysoPC a C18:2 (OR = 0.06, p = 0.022,

SE = 1.23), and phenylalanine (OR = 7.63, p = 0.019, SE = 0.83) was built. The AUC and 95%

CI for the training/discovery set was 0.991 (0.986–0.995), the Se was 0.978 (95% CI 0.963–

0.992) and the Sp was 0.92 (0.89–0.949). For 10-fold cross validation, the AUC was 0.967

(0.923–1.000), Se was 0.978 (0.978–1.000) and Sp was 0.917 (0.826–1.000). The equation for

this model was: logit(P) = log (P / (1—P)) = 1.694 + 1.721 kynurenine:tryptophan + 1.933 IL-6

(pg/mL) - 2.838 LysoPC a C18:2 + 2.033 phenylalanine, where the numeric value of each

metabolite in the equation was the concentration after log transformation and auto-scaling

(Fig 4A).

When comparing G2 with G4 patients, the panel (Model B) made of C10:2 (OR = 74.26,

p<0.001, SE = 1.14), IL-6 (OR = 2.58, p = 0.0329, SE = 0.44), NLR (OR = 2.73, p = 0.021,

SE = 0.43), and C5 (OR = 2.36, p = 0.048, SE = 0.43) was produced. The AUC and 95% CI for

the training/discovery set was 0.965 (0.952–0.977), with Se of 0.993 (0.984–1.000) and Sp of

0.851 (0.815–0.887). For 10-fold cross validation, the AUC was 0.941 (0.886–0.997), Se of

0.978 (0.978–1.000) and Sp of 0.854 (0.745–0.962). The equation for this model was: logit(P) =

log (P / (1—P)) = 0.239 + 4.308 C10:2 + 0.949 IL-6 (pg/mL) + 1.005 NLR + 0.86 C5, where the

numeric value of each metabolite in the equation was the concentration after log transforma-

tion and auto-scaling (Fig 4B).

When comparing G3 with G4 patients, a panel (Model C) with citric acid (OR = 0.43,

p = 0.009, SE = 0.31), LysoPC a C28:1 (OR = 2.12, p = 0.008, SE = 0.28), NLR (OR = 1.66,

p = 0.06, SE = 0.27), and kynurenine:tryptophan ratio (OR = 1.78, p = 0.038, SE = 0.27) was

produced. The AUC and 95% CI for the training/discovery set was 0.829 (0.800–0.858), with

Se of 0.738 (0.695–0.781) and Sp of 0.781 (0.735–0.827). For 10-fold cross validation, the AUC

was 0.785 (0.685–0.884), Se = 0.733 (0.733–0.863) and Sp = 0.771 (0.632–0.911). The equation

for this model was: logit(P) = log (P / (1—P)) = 0.385–0.833 citric acid + 0.753 LysoPC a

C28:1 + 0.509 NLR +0.576 kynurenine:tryptophan, where the numeric value of each metabo-

lite in the equation was the concentration after log transformation and auto-scaling (Fig 4C).

The clinical parameter to assess the patients’ severity at the emergency unit was the qSOFA.

The model built with qSOFA (Fig 4D) showed an AUC of 0.74 (95% CI 0.66–0.82) (p =

3.1286E-5), which was slightly lower than the logistic Model C (Fig 4C) built with metabolites

and NLR.

When G4 survivors (n = 17) were compared with non-survivors (n = 28), PLS-DA showed

a partial separation between both groups (S3A Fig). VIP scores identified the metabolites

responsible for the separation between both groups (S3B Fig). The panel (Model D) shown in

Fig 4E included hippuric acid (OR = 0.36, p = 0.03, SE = 0.47), and Type II Diabetes (OR =

2.67, p = 0.05, SE = 0.51. The AUC and 95% CI for the training/discovery set was 0.831 (0.788–

0.874), with Se of 0.765 (0.697–0.832) and Sp of 0.817 (0.770–0.865). For 10-fold cross valida-

tion, the AUC was 0.813 (95% CI 0.669–0.957), Se of 0.765 (0.765–0.966) and Sp of 0.821

(0.680–0.963). The equation for this model was: logit(P) = log (P / (1—P)) = -0.821 + 0.983
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Fig 4. Multivariate and univariate models. (A) Multivariate ROC curve of model A: G1 vs. G4. (B) ROC curve of

model B: G2 vs. G4. (C) ROC curve of the model C: G3 vs. G4. (D) Univariate ROC curve explaining the performance

of qSOFA to predict sepsis in G3 and G4. (E) Multivariate ROC curve of model D: non-survivors vs. survivors from

G4. (F) Univariate ROC curve explaining the performance of qSOFA to predict mortality in G4. Figures were made in

MetaboAnalyst software v 4.0 (https://www.metaboanalyst.ca/).

https://doi.org/10.1371/journal.pone.0256784.g004
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Type II DM—1.032 hippuric acid. This model showed a better performance than qSOFA to

predict mortality among G4 patients, with an AUC of 0.55 (95% CI 0.39–0.70) (Fig 4F).

Finally, the proposed models were also adjusted for obesity and diabetes, to address the

influence of these comorbidities in immune and metabolic differences found in patients with

different disease severity grades. S2 Table shows the adjusted models considering diabetes and

obesity. When comorbidities were considered by separate, obesity is an important risk factor

to discriminate between G1 and G4, while diabetes is the important factor to discriminate

between G3 and G4. However, none of these comorbidities significantly contribute to the

logistic regression models built with the different panels of metabolites and cytokines. This

was also confirmed by the analysis of metabolomic profile of COVID-19 patients with diabetes

and obesity (58 patients) and without these comorbidities (53 patients). S4A Fig shows that in

the PLS-DA there is no clear separation between COVID-19 patients with diabetes and obesity

(COVID-DO) and COVID-19 patients without diabetes and obesity (COVID-WDO), also

demonstrated by the 10-cross-validation (S4B Fig). In the univariate analysis, only four metab-

olites were significant after FDR correction: glucose, C4OH, TMAO, and lysoPC a 18:0

(S4C Fig).

Discussion

This study assessed 110 plasma metabolites and 13 cytokines/chemokines implicated in the

antiviral response of COVID-19 patients at various levels of disease severity with the ultimate

goal of producing predictive panels of sepsis and mortality among critically ill patients. The

plasma samples analyzed in the present study were collected within four days of symptoms

onset and in the first 24 h after hospitalization. Patients were confirmed SARS-CoV-2 positive

by qRT-PCR, demonstrating the presence of a viral infection. No other symptoms suggesting

bacterial co-infections were detected, at least at the moment of blood sampling. Increased lym-

phopenia was observed in COVID-19 patients, implying possible damage of lymphocytes by

the SARS-CoV-2 virus as has been previously hypothesized [17]. Since the patients arrived at

the respiratory TRIAGE with a positive SARS-CoV-2 test, no blood cultures were indicated by

protocol upon admission. Only four patients had blood cultures drawn at least two weeks after

hospitalization (1.2% had a positive blood culture), being Kleibsella oxytoca the microorganism

detected. This is a gram-negative bacterium, closely related to Kleibsella pneumoniae, causing

nosocomial infections mainly in diabetic patients, critically ill patients or under antimicrobial

therapies.

In line with our findings, a study from New York City hospitals reported very low rate of

true bacteremia (1.6%) among COVID-19-positive patients [18]. In a study done by Yang et al.

[19], bacteremia was seen in 3% cases among non-survivors of COVID-19 patients. In another

study, among 267 patients hospitalized with COVID-19 pneumonia, 38 had early blood cul-

tures drawn. No clinically relevant microorganism was isolated from blood and contaminant

microorganisms were recovered in 18% of patients, suggesting no evidence of bacteremia in

patients with COVID-19 pneumonia [20]. Drake et al [21] also reported higher rate of compli-

cations primarily driven by non-infectious complications, as the rates of secondary bacterial

infection in patients with COVID-19 were lower than those described in influenza infection.

The incidence of secondary pulmonary infections reported by Chong et al [22] was 16% for

bacterial infections and lower for fungal infections (6.3%) in hospitalized COVID-19 patients.

The Global Sepsis Alliance has stated that SARS-CoV-2 causes sepsis (available at: https://

www.global-sepsis-alliance.org/covid19), either directly (because is an infectious agent dem-

onstrated by qRT-PCR), or indirectly, due to the damage to tissues, immune system, etc. The

increased lymphopenia observed in COVID-19 patients may lead to secondary infections
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during hospitalization [23]. We cannot rule out with the present work the existence of late

bloodstream infections since we only sampled in the first 24 h after hospitalization, and conse-

quently, the immunometabolic signatures reported by us belong to this first hospitalization

hours. Invasive devices, diabetes, glucocorticoid treatment, and combination of antibiotics

have been found to be significant predictors of nosocomial infections [24]. Intestinal damage

due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-medi-

ated diffuse vascular damage may increase intestinal permeability and precipitate bacterial

translocation [25] enhancing the susceptibility to secondary pulmonary infections that are pre-

dominantly seen in critically ill hospitalized COVID-19 patients.

The plasma metabolic signature reported by us is consistent with a septic process, as it has

been previously described for bacterial [26–28] or viral [29, 30] sepsis. As shown in Table 3,

several works have examined the alterations in metabolite levels associated to sepsis or septic

shock induced by different etiologic agents, for example bacteria and fungi. To date, no single

Table 3. Comparison of metabolic and immune mediators in sepsis caused by bacterial, fungal and viral infections.

ETIOLOGY METABOLITES AND/OR CYTOKINES REFERENCE

Sepsis (pulmonary infections) glucose, citrate, glycine, histidine, 3-hydroxybutyrate, creatinine [36]

SIRS or sepsis (Streptococcus pneumoniae, Escherichia coli and

Staphylococcus aureus)
Cis-4-decenoylcarnitine, 2-methylbutyroylcarnitine, butyroylcarnitine,

hexanoylcarnitine, lactate, age, and hematocrit

[37]

Community-acquired Pneumonia (CAP) in sepsis or severe sepsis/

septic shock

lysoPC a C26:1 [38]

Bacteremic sepsis myristic acid, citric acid, isoleucine, norleucine, pyruvic acid and a

phosphocholine like derivative

[39]

Sepsis or septic shock (different causes) isoleucine, alanine, acetylcarnitine, lactic acid, pyruvic acid, LysoPG (22:0) and

LysoPC (24:0)

[40]

CAP Kynurenate, urea, fumarate [41]

Sepsis (AKI, ARDS) leucine, glutamic acid, cysteine, methionine, phenylalanine, putrescine, and

aspartic acid, serine, tryptophan, glutamine, d-Proline, (N-methoxycarbonyl-,

octyl ester) and asparagine, lactic acid, adipic acid, and 3-hydroxypropionic

acid, pyruvic acid and nicotinamide adenine dinucleotide phosphate (NADP)-

NADPH

[42]

Sepsis caused by P. aeruginosa burn trans-4-hydroxyproline, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate,

and indole-3-propionate

[26]

Bacteremic sepsis (4E,8E,10E-d18:3) sphingosine [43]

Oleoylcarnitine/ elaidic carnitine

PC(O-18:0/0:0)

PC(19:0/0:0)

Arachidonic acid methyl ester

Septic shock by different causes including bacterial pneumonia isobutyrate, myo-inositol, proline, urea, 3-hydroxybutyrate, O-acetylcarnitine,

2-hydroxybutyrate phenylalanine.

[31]

IP-10, HGF, IL-18, IL-1 and IL-1Ra, IL-2Ra.

Bacterial sepsis (Klebsiella pneumoniae, Staphylococcus aureus,
Neisseria meningitidis, Pseudomonas aeruginosa, Stenotrophomonas
maltophilia, Streptococcus pneumoniae, Streptococcus pyogenes)
And Viral sepsis (Adenovirus, Coronavirus, Herpes Simplex Virus,
Influenza A, Respiratory Syncytial Virus, Rhinovirus, Varicella Zoster
Virus)

bacterial infection from controls: myo-inositol, phenylalanine, lactate, pyruvate

and 2-hydroxyisobutyrate

[44]

viral infections from controls: 3-hydroxybutyrate, urea, valine

2-methylglutarate and isobutyrate.

Viral versus bacterial sepsis: 2-hydroxyisovalerate, alanine, citrate, creatine

phosphate, creatinine, histidine, isoleucine, ornithine and tyrosine.

Bacterial sepsis patients with pulmonary infection (Gram negative

bacteria) and SARS-CoV-2 sepsis patients

IL-1β, IL-2R, IL-6, IL-8, IL-10, and tumor TNF-α) were observed in both

bacterial sepsis and SARS-CoV-2 sepsis groups, but were lower in the latter

group than in the former

[45]

COVID-19 critically ill patients with acute respiratory distress

syndrome (ARDS) or sepsis due to other causes

There were no statistically significant differences in baseline levels of IL-1β, IL-

1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and

critically ill controls with ARDS or sepsis

[46]

https://doi.org/10.1371/journal.pone.0256784.t003
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compound has shown sufficient sensitivity and specificity to be used as a routine biomarker

for early diagnosis and prognosis of septic shock. In terms of immunometabolism, only a few

works have been published [31, 32] demonstrating that a combination of metabolic and

immune biomarkers, may improve the identification and the prognosis for sepsis. Validated

markers to differentiate between viral or bacterial sepsis have not been developed up to date.

In the Table 3 we can observe that, in general, metabolic pathways, such as glycolysis, TCA

cycle, fatty acid oxidation, and amino acid pathways, play important roles in sepsis and septic

shock associated with different causal agents. Regarding inflammatory cytokine levels, several

authors are challenging the major role of cytokine storm in the disease pathogenesis [33], since

the levels found in COVID-19 patients have been significantly lower than those reported for

bacterial sepsis or ARDS [34, 35]. However, it is important to acknowledge that in the present

work we found higher IL-6, IL-8, IL-1 β and TNF- α levels, compared and consistent to those

commonly described for sepsis.

It has been described that the biochemical features distinctive of COVID-19 sepsis point to

a state of acute inflammation with a cytokine storm associated with an altered metabolism [47]

that modulates immune responses against infectious agents, increasing or decreasing the

release of pro- and anti-inflammatory cytokines [48]. During this process, activated immune

cells undergo extensive metabolic rewiring for energy and biomass generation whereby metab-

olites become important regulators of immunity and disease [49]. However, in the context of

the COVID-19 pandemic, there is limited data exploring the interplay between metabolism

and immune system [50–54]. Metabolic signatures showing alterations in plasma levels of

kynurenine, phenylalanine, lysophosphatidylcholines species and acylcarnitines have already

been reported in different settings of septic shock patients [37, 55–57] suggesting an overall

derangement of energy circuits and lipid homeostasis as indicators of disease severity, as sum-

marized in Fig 5.

An elevated concentration of phenylalanine appears to be the result of an accelerated rate of

protein breakdown often caused by infections and inflammatory states [31, 58]. The metabo-

lites referred here have been altered in sepsis patients [59], and are believed to have prognostic

value for sepsis, especially amino acids and derivatives, lipids and lipid-like molecules, and

organic acids and derivatives [40]. Lysophosphatydilcholines are bioactive lipids for their

immune activation enrollment and are considered mediators during the development of sepsis

[60]. Some studies reported that serum concentrations of LPC subtypes 16:0, 18:0, 18:1, and

18:2 were lower in septic patients compared with healthy controls [61, 62] suggesting that

impaired metabolic homeostasis can cause the sustained low levels of LPC in septic patients

[63]. One study reported that glycerophospholipid LysoPC a C26:1 discriminated well patients

with community acquired pneumonia from those with other etiologies of sepsis with high Se

and Sp [38]. A possible association between plasma acylcarnitine levels and organ dysfunction,

systemic inflammation, and sepsis has also been reported in animal models studies [64]. More-

over, increased plasma levels of short- and medium-chain acylcarnitines have been associated

with hepatobiliary dysfunction, renal dysfunction, thrombocytopenia, and hyperlactatemia in

septic patients too [65]. The results of this study support the idea of the mitochondrial manipu-

lation by the virus for replication purposes. Mitochondrial dysfunction, dysregulation in oxi-

dative phosphorylation, and associated oxidative stress appear to drive the production of

proinflammatory cytokines that ultimately play a key role in the immune response. Evidence

indicates that mitochondrial dysfunction is essential for the induction and propagation of sep-

sis-induced organ injury, which has been demonstrated in both animal and human studies

[66–69].

Among cytokines, IL-6 serves as an important mediator during the acute phase of response

to inflammation in sepsis, and its clinical value has been assessed in patients with various septic
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conditions in several studies [70–72]. Authors have reported that serum IL-6 levels discrimi-

nated sepsis (AUC 0.83–0.94, p< 0.001; cut-off value, 52.6 pg/mL, 80.4% Se, 88.9% Sp) from

controls, and also distinguished septic shock (AUC 0.71–0.89; cut-off value, 348.92 pg/mL,

76.1% Se, 78.4% Sp) from sepsis [73]. In the context of COVID-19 epidemic, other researchers

found that the maximal level of plasma IL-6 was higher in critical cases than in severe cases

(median 1072.98 pg/mL (IQR 453.85–9163.64) vs. 49.14 pg/mL (IQR 27.98–101.30);

p = 0.001) [74]. Such findings point to host sepsis as contributing to the extraordinary eleva-

tion of plasma IL-6 in critically ill patients with COVID-19.

Over the past decade, the field of immunometabolism has produced knowledge of the vari-

ous mechanisms by which cells modulate metabolism to achieve effector functions necessary

to fight infection and maintain homeostasis, and now it is accepted that all immune cells

depend on specific and efficient metabolic pathways to perform an appropriate response [75].

The use of this knowledge is thus relevant for the understanding of COVID-19 pathophysiol-

ogy given the complexity of the disease and the involvement of viral and host factors associated

with the disease severity and outcome. The correlation analysis between metabolites and cyto-

kines/chemokines in our study showed a significant crosstalk between metabolism and

immune system principally in patients who developed a severe disease. Some metabolites

involved in amino acid, energy, and lipid metabolisms, are implicated in the initiation of the

Fig 5. Differential metabolites involved in sepsis associated to COVID-19 infection. Black arrows represent the trend (increasing

or decreasing) in critically ill patients. The figure was created with BioRender.com under a CC BY license, with permission from

BioRender, original copyright 2021.

https://doi.org/10.1371/journal.pone.0256784.g005
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immune response. The dysregulated metabolites found have been previously associated with

mTOR activation, which has a unique intracellular signaling position, and it is a critical regula-

tor of the immune response by playing a central role in the sensing nutrient availability, cyto-

kine/growth factor signaling, and costimulatory factors. The metabolic activities promoted by

mTOR allow the accumulation of biomass necessary for cell division or activation. It is acti-

vated by nutrients (i.e. glucose, amino acids, and lipids), growth factors, insulin, and inflam-

matory cytokines [76].

The data presented here suggest that metabolic rewiring of the cells metabolic pathways

may account for such observed changes and impaired functions. For this reason, the building

of predictive models for sepsis, including not only metabolites, but also cytokines, chemokines

and NLR can show higher performances. Considerably elevated NLR (>10) suggests the pres-

ence of severe systemic stress (as could be caused by septic shock) [77]. The results of ROC

analysis presented here indicate the best sensitivity, specificity, accuracy and the highest

AUROC values for the integrated metabolomics-cytokine/chemokine/NLR approach com-

pared to the diagnostic and prognostic power of qSOFA scores. So far, their performance (Se

and Sp) has not been adequate to predict sepsis [78]. Recently, it was reported that COVID-19

patients who developed ARDS had a mean qSOFA score of one on ICU admission, and no dif-

ferences between those who were mechanically ventilated compared with those without venti-

lator support [79], leading to the suggestion that qSOFA was not appropriate to predict

COVID-19 patient with poor outcomes typical of sepsis.

In the present work we also demonstrated that there is not differentiation between diabetic

and obese COVID-19 patients from those COVID-19 patients without these comorbidities.

Only four metabolites were detected as significantly altered between both groups: glucose,

TMAO, lysoPC a 18:0 and C4OH. These metabolites have been previously associated with obe-

sity and diabetes [80–82] and may contribute to the inflammatory state described in these

patients. Other authors have also explored how the presence of these comorbidities influences

the metabolomics differences found in COVID-19 patients concerning healthy controls and

patients with different severity grades. Shi et al [83] compared the serum metabolome profiles

of COVID-19 patients with and without comorbidities. The results showed that none of the

groups of patients with hypertension, diabetes or fatty liver disease could be distinguished

from patients without comorbidities. Similarly, Marin Corral et al [84] showed similar results

in metabolic pathways when analyzing COVID-19 non-obese and obese patients separately.

These results suggest that the effect of SARS-CoV-2 infection on the metabolome profile is

much greater than pre-existing conditions such as diabetes and obesity.

Conclusions

Our results integrate immune and metabolic signatures of COVID-19 associated sepsis and

provide supporting evidence for the recognition of sepsis in patients who develop a critical dis-

ease. Our results also demonstrated the cross-talking between metabolic and immune response

against the viral infection with SARS-CoV-2. The metabolic alterations observed in critically

ill patients are in accordance with previously described alterations for sepsis/septic shock

caused by viral or bacterial agents. Based on our integrative study, we propose the use of differ-

ent panels for 1) early categorization of at risk patients, 2) prioritize care and 3) accurately

assess prognosis of sepsis and mortality with high predictive values.

Limitations of the study

One limitation is the cross-sectional exploratory nature of the study design. This design pre-

vented a longitudinal metabolite and cytokine/chemokine assessment and so further
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prospective observational designs, such a cohort with repeated measures would be needed to

follow-up on the measured metabolite/cytokine concentrations throughout the progression

of the infection and to better distinguish those with severe COVID-19 who will recover and

those with higher risk of death. There is also limited data regarding if organ failure was due to

COVID-19 or due to pre-existing chronic disease and worsened by COVID-19. We also recog-

nize the lack of a control group classified as septic patients due to a viral confirmed disease.

However, we provide here a comparison of the metabolic pattern associated to sepsis reported

in previously published studies for sepsis caused by viral or bacterial agents others than SARS-

CoV-2.
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Formal analysis: Ana Sofı́a Herrera-Van Oostdam, Jiamin Zheng, Lun Zhang, Julio César Fer-

nández-Ruiz.

Funding acquisition: Yamilé López-Hernández.
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