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Abstract

Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary 

epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal 

therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of 

EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/

protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most 

human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We 

demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated 

EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk 

directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR 

kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to 

cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, 

whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings 

reveal a previously unknown role of Brk in EGFR-targeted therapy.
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Introduction

Epidermal growth factor (EGF) receptor (EGFR) has been implicated in breast 

tumorigenesis for more than two decades on the basis of numerous experimental, clinical, 

and epidemiological studies; EGFR expression was reported to correlate with breast cancer 

prognosis over 25 years ago (Sainsbury et al., 1985). The most recent studies show that 

EGFR expression is correlated with breast cancer relapse in selected patients (Rimawi et al., 

2010). However, novel molecular therapeutic approaches targeting EGFR have shown no or 

limited efficacy in breast cancer clinical trials, including in patients with the basal-like 

breast cancer subtype, in which high EGFR expression is common (Normanno et al., 2005; 

Corkery et al., 2009). Since EGFR is critically important for mammary epithelial cell 

growth and survival (Taketani and Oka, 1983), we hypothesized that there exist mechanisms 

in breast cancer that can render breast cancer cells insensitive to pharmacological inhibition 

of EGFR; identification of such mechanisms may help to improve response to EGFR-

targeted therapy in breast cancer.

Activation of EGFR by its ligands at the cell surface is followed by internalization of the 

ligand-receptor complex via receptor-mediated endocytosis (Sorkin and Von Zastrow, 

2009). After internalization, EGFR traffics through a series of endosomal compartments and 

is either recycled back to the plasma membrane for continued signaling or routed to the 

lysosomes for degradation. Ligand-induced EGFR internalization followed by lysosomal 

degradation is an important negative feedback mechanism for regulating the amplitude and 

kinetics of EGFR signaling. Failure of this mechanism for EGFR downregulation can result 

in enhanced receptor signaling, which may lead to cell transformation and tumorigenesis 

(Marmor and Yarden, 2004; Polo et al., 2004).

Although not necessary for EGFR internalization, ubiquitination of EGFR is required for 

routing the receptor to sorting endosomes and, subsequently, to the lysosomal degradative 

compartment (Huang et al., 2007). Casitas B-lineage lymphoma (Cbl) is a ubiquitin ligase 

that mediates ubiquitination of several growth factor receptors, including EGFR (Levkowitz 

et al., 1998). Cbl targets activated EGFR for ubiquitination and subsequent endosomal 

sorting mainly by direct binding to Y1045-phosphorylated EGFR and additionally by 

indirect binding to the receptor through the Grb2 adaptor protein (Waterman et al., 2002; 

Grovdal et al., 2004).

Breast tumor kinase (Brk; also known as protein-tyrosine kinase 6/PTK6) is a nonreceptor 

tyrosine kinase originally identified in a screening of protein-tyrosine kinases expressed in 

human melanocytes (Lee et al., 1993). It was later cloned from a metastatic breast cancer 

cell line (Mitchell et al., 1994). Brk is overexpressed in the majority of breast tumors, 

particularly in advanced invasive and metastatic tumors, but its expression is either low or 

undetectable in normal breast epithelial cells (Mitchell et al., 1994; Barker et al., 1997; Born 

et al., 2005; Ostrander et al., 2007). High expression of Brk is also found in several other 

cancer types, including melanoma (Easty et al., 1997) and colon cancer (Llor et al., 1999). 

Originally classified as a Src-related kinase, Brk lacks the Src-characteristic N-terminal 

myristoylation consensus sequences necessary for fatty acid acylation and membrane 

association, and its SH2 and SH3 domains are atypical (Qiu and Miller, 2002; Qiu and 
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Miller, 2004). Brk is now considered a member of a novel family of soluble protein-tyrosine 

kinases distantly related to c-Src (Serfas and Tyner, 2003). Brk is activated by EGF 

stimulation of cells, and experimental elevation of Brk sensitizes immortalized 

nonmalignant human mammary epithelial cells to EGF-induced mitogenic effects (Kamalati 

et al., 1996) and protects cells from anoikis (Irie et al., 2010). Brk may regulate clathrin-

mediated EGFR endocytosis via phosphorylation of centaurin δ-2 (also known as ARAP1) 

(Kang et al., 2010). Brk interacts with EGFR, and Brk also interacts closely with other 

members of the EGFR family—HER2 (Born et al., 2005; Xiang et al., 2008) and HER3 

(Kamalati et al., 2000)—to enhance HER2-induced activation of cell signaling and to 

mediate EGF-stimulated HER3 phosphorylation. Brk can also interact with tyrosine kinase 

receptor downstream substrates, such as Akt (Zhang et al., 2005) and insulin receptor 

substrate-4 (Qiu et al., 2005), regulate heregulin-induced activation of ERK5 and p38 MAP 

kinases in breast cancer cells (Ostrander et al., 2007), phosphorylate STAT3 (Liu et al., 

2006) and STAT5b (Weaver and Silva, 2007), and phosphorylate paxillin (Chen et al., 

2004) and p190RhoGAP-A (Shen et al., 2008) to promote breast carcinoma growth, 

migration, and invasion.

In the current work, we investigated the molecular mechanisms underlying the direct 

interaction between EGFR and Brk. Our results support a novel model for the interaction, 

which helps to unravel the role of Brk in mediating cell responses to EGF stimulation and 

may lead to improved EGFR-targeted therapy in breast cancer.

Results

Brk sensitizes cancer cells to EGF stimulation through inhibiting ligand-induced EGFR 
degradation

Brk is commonly expressed in human breast cancer (Mitchell et al., 1994; Born et al., 2005; 

Ostrander et al., 2007). Analysis of a panel of 16 breast cancer cell lines revealed Brk in 11 

of the 16 cell lines, often at high levels (Figure 1a). Immunohistochemical staining showed 

positive Brk staining in 67% (36/54) of breast cancer specimens from patients (Figure S1). 

To investigate the role of Brk in regulating EGFR, we used SUM102 cells, which were 

derived from an intraductal breast adenocarcinoma and are basal-like (estrogen receptor and 

progesterone receptor negative, HER2 nonamplified, and CK5/6 and EGFR positive) (Sartor 

et al., 1997; Forozan et al., 1999; Hoadley et al., 2007; Eck et al., 2009). SUM102 cells had 

a relatively low level of Brk compared to the levels in other Brk-expressing breast cancer 

cell lines and a detectable level of EGFR (Figure 1a). We found that experimental elevation 

of Brk substantially sensitized cells (SUM102-Brk) to EGF-induced stimulation of cell 

proliferation, compared to control vector-transfected cells (SUM102-neo) (Figure 1b). 

Experimental elevation of Brk raised basal levels of activation-specific phosphorylation of 

Akt and Erk and sensitized the cells to EGF-induced increases in Akt and Erk 

phosphorylation (Figure 1c). Similar results were found in non-breast-cancer cell lines, such 

as A431 human vulvar squamous carcinoma cells, which express an unusually high level of 

EGFR (Figure S2a). Conversely, knockdown of Brk expression markedly reduced EGF-

induced activation of cell signaling in SUM102 cells as well as in A431 cells (Figure 1d and 
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Figure S2b). These results strongly suggested that Brk sensitizes cells to EGFR-mediated 

signal transduction.

We found that experimental elevation of Brk markedly inhibited downregulation of EGFR 

after EGF-induced activation of EGFR tyrosine kinase in SUM102 breast cancer cells 

(Figure 1e) as well as in A431 non-breast-cancer cells (Figure S2c). We then performed a 

pulse-label and chase experiment to determine the half-life of EGFR upon EGF stimulation 

in SUM102 and A431 cells with and without Brk overexpression. Compared with control 

vector-transfected cells, in which over 80% of EGFR was degraded by the end of the chase 

period, the Brk-transfected SUM102 and A431 cells exhibited almost no change in the level 

of EGFR (Figure 1f and Figure S2d). These results strongly supported the conclusion that 

overexpression of Brk inhibits ligand-induced degradation of EGFR.

Brk inhibits ligand-induced EGFR degradation through inhibiting EGFR-Cbl association 
and Cbl-mediated EGFR ubiquitination

To elucidate the mechanism by which Brk inhibits EGFR degradation, we compared the 

levels of EGFR ubiquitination and the association of EGFR with Cbl, an E3 ubiquitin ligase 

known for regulating EGFR degradation (Levkowitz et al., 1998), in SUM102-neo and 

SUM102-Brk cells after EGF stimulation. The association between EGFR and Cbl was 

markedly reduced in SUM102-Brk cells compared with SUM102-neo cells at 15, 30, and 90 

min after EGF stimulation (Figure 2a). Consistent with the reduction in EGFR-Cbl 

association, the level of EGFR ubiquitination was lower in SUM102-Brk cells than in 

SUM102-neo cells (Figure 2a). Conversely, knockdown of endogenous Brk expression in 

SUM102 cells markedly increased the levels of EGFR-Cbl association and EGFR 

ubiquitination (Figure 2b). These results strongly indicated that Brk can inhibit EGF-

induced EGFR-Cbl association and subsequent Cbl-mediated EGFR ubiquitination.

To ascertain whether this Brk-mediated inhibition of EGF-induced EGFR-Cbl association 

and subsequent EGFR ubiquitination was directly linked to Brk kinase activity and 

expression, we examined the effects of expression of wild-type Brk, a constitutively active 

Brk mutant (Brk-Y447F), and a kinase-dead Brk mutant (Brk-K219M) on the levels of 

EGFR-Cbl association and EGFR ubiquitination in SUM102 cells (Figure 2c). To permit 

visualization of the basal levels of EGFR-Cbl association and EGFR ubiquitination in 

unstimulated SUM102 cells, the blots in Figure 2c were overexposed compared to those in 

Figures 2a and 2b. We found that the level of EGFR-Cbl association was reduced in the cells 

transfected with wild-type Brk, more profoundly reduced in the cells transfected with Brk-

Y447F, and only minimally reduced in the cells transfected with Brk-K219M. The changes 

in the level of EGFR ubiquitination correlated well with the reductions in the level of 

EGFR-Cbl association. Similar results were found in A431 cells (Figure S3a). Inhibition of 

EGFR ubiquitination with overexpression of wild-type Brk was stronger in A431 cells than 

in SUM102 cells, likely because the wild-type Brk was activated by autocrine TGF-α, which 

is known to exist in A431 cells (Figure S3a). Indeed, similar to the findings after EGF 

treatment, TGF-α-induced EGFR-Cbl association and EGFR ubiquitination were also 

inhibited by Brk (Figure S3b).
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Together, these findings indicated that Brk inhibits ligand-induced EGFR degradation after 

EGFR activation through interfering with EGFR-Cbl association and subsequent Cbl-

mediated EGFR ubiquitination and that the kinase activity of Brk plays an important role in 

the process.

Brk inhibits Cbl-mediated EGFR ubiquitination through competing with Cbl for binding to 
the Y1045 phosphorylation site on EGFR

To elucidate the mechanism by which Brk inhibits Cbl-EGFR association, we first examined 

the dependence of EGFR-Brk association on EGFR activity. EGF-induced EGFR-Brk 

association was strongly inhibited by a small-molecule EGFR tyrosine kinase inhibitor, 

gefitinib, in SUM102-Brk cells (Figure 3a) as well as in A431-Brk cells (Figure S4), 

indicating that EGFR kinase activity is required for EGFR-Brk association. Next, we asked 

whether Brk kinase activity is also required for EGFR-Brk association. Because no Brk 

specific inhibitor is currently available, we used a genomic approach to coexpress wild-type 

EGFR and wild-type Brk or wild-type EGFR and kinase-dead Brk (Brk-K219M) in Chinese 

hamster ovary (CHO) cells, which have no detectable level of endogenous Brk or EGFR. 

Experimental elevation of EGFR can induce receptor activation due to receptor 

homodimerization, which led to a moderate EGFR-Brk association in Brk 

immunoprecipitates from unstimulated cells cotransfected with wild-type EGFR and wild-

type Brk (Figure 3b); the association was markedly increased after EGF stimulation. In 

contrast, in cells cotransfected with wild-type EGFR and kinase-dead Brk, no EGFR-Brk 

association was seen in unstimulated cells, and only a minimal level of EGFR-Brk 

association was seen after EGF stimulation. Similar results were seen in EGFR 

immunoprecipitates (Figure 3b), although the difference was not as marked as in Brk 

immunoprecipitates, possibly because immunoprecipitation of myc-tagged EGFR with anti-

myc antibody was less complete than immunoprecipitation of Brk with anti-Brk antibody. In 

any case, the data supported the conclusion that Brk kinase activity is required for EGFR-

Brk association.

Because phosphorylated Y1045 on EGFR is a major docking site for Cbl (Levkowitz et al., 

1998), we tested the hypothesis that Brk inhibits Cbl-mediated EGFR ubiquitination by 

competitively binding to Y1045-phosphorylated EGFR. We used CHO cells with 

coexpression of wild-type EGFR or EGFR-Y1045F mutant with Brk to eliminate potential 

interference from endogenous levels of related proteins. Using the same experimental 

approach as in Figure 3b, we found massive amounts of wild-type EGFR, but not EGFR-

Y1045F, in Brk immunoprecipitates of cells after EGF stimulation (Figure 3c). Reciprocal 

EGFR immunoprecipitation showed that an increased amount of Brk coimmunoprecipitated 

with wild-type EGFR but not with EGFR-Y1045; however, as in Figure 3b, the difference 

was not as marked as in Brk immunoprecipitates. Furthermore, we found that activation-

specific phosphorylation of Brk Y342 was increased in EGF-stimulated CHO cells 

cotransfected with Brk and wild-type EGFR but not in EGF-stimulated CHO cells 

cotransfected with Brk and mutant EGFR-Y1045F (Figure 3c). These findings supported a 

model wherein EGFR Y1045 phosphorylation is essential not only for EGFR-Brk 

association but also for activation of Brk after EGF treatment.
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We next asked whether Brk and Cbl competitively bind to the same phosphorylated Y1045 

site on EGFR. We correlated the level of EGFR-Cbl association with the level of EGFR-Brk 

association in CHO cells transfected with increasing amounts of Brk constructs. Figure 3d 

clearly shows an inverse relationship: with stepwise increases in the levels of Brk 

expression, the levels of EGFR-Brk association also increased, whereas the levels of EGFR-

Cbl association correspondingly decreased. These findings indicated that Brk can compete 

with Cbl for binding to the phosphorylated Y1045 site on EGFR. Thus, Brk competes with 

Cbl for binding to Y1045-phosphorylated EGFR, thereby interfering with Cbl-mediated 

ubiquitination and subsequent degradation of EGFR.

In addition, we found a positive correlation between Brk cDNA dose-dependent expression 

and EGF-induced EGFR phosphorylation (Figure 3d, blot for EGFR-Yp), suggesting that 

Brk may have a direct role in regulating EGFR phosphorylation and functional 

consequences.

Brk phosphorylates EGFR on Y845 independently of Src or HER activity

As previously mentioned, experimental elevation of wild-type EGFR alone can induce 

EGFR autophosphorylation due to receptor homodimerization; however, we found that 

coexpression of EGFR with the constitutively active Brk mutant Brk-Y447F resulted in 

higher levels of total and site-specific EGFR tyrosine phosphorylation (particularly at Y845 

and Y1045) than expression of EGFR alone or coexpression of EGFR with the kinase-dead 

Brk mutant Brk-K219M (Figure 4a; lanes 2-4, short exposures of blots of EGFR-Yp and 

EGFR-Y845p). This finding indicated that Brk-Y447 likely enhances EGFR 

autophosphorylation, directly phosphorylates EGFR, or both. Because wild-type Brk, when 

cotransfected with EGFR, can be moderately activated in CHO cells without EGF 

stimulation (Figure 3b, blot for Brk-Y342p), we used Brk-K219M instead of wild-type Brk 

as a negative control for Brk-Y447F in this experiment and the following experiments.

To determine whether EGFR can be a substrate for Brk, we used a kinase-dead EGFR 

mutant (EGFR-K721A), which produced no EGFR autophosphorylation when expressed 

alone (Figure 4a, lane 5). EGFR total and Y845 phosphorylation levels were higher when 

EGFR-K721A was coexpressed with Brk-Y447F than when EGFR-K721A was coexpressed 

with Brk-K219M (Figure 4a, lanes 5-7, long exposures of blots of EGFR-Yp and EGFR-

Y845p; note: only the long-exposed films that had positive findings are shown). Although 

EGFR total and Y845 phosphorylation levels were low in the absence of EGFR kinase 

activity, this result clearly indicated that Brk-Y447F can phosphorylate EGFR Y845. No 

increased phosphorylation of EGFR on Y992, Y1045, Y1068, or Y1173 was detected by 

their respective phosphorylation site-specific antibodies (Yamaoka et al., 2011) when 

EGFR-K721A was coexpressed with Brk-Y447F (Figure 4a).

To further confirm that Y845 of EGFR can be phosphorylated by Brk-Y447F, we created an 

EGFR-K721A/Y845F double mutant. As expected, no Y845 phosphorylation was observed 

when EGFR-K721A/Y845F was coexpressed with Brk-Y447F in CHO cells; however, total 

tyrosine phosphorylation on EGFR-K721A/Y845F was not completely eliminated despite 

being clearly decreased (Figure 4a, lanes 8-10 of the short- and long-exposed EGFR-Y845p 

and EGFR-Yp blots). These findings indicated that Y845 of EGFR-K721A was 
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phosphorylated when EGFR-K721A was coexpressed with Brk-Y447F but that additional 

tyrosine site(s) may also have been phosphorylated by Brk-Y447F.

Y845 of EGFR is a known Src phosphorylation site (Tice et al., 1999; Biscardi et al., 1999). 

We found that coexpression of EGFR-K721A and Brk-Y447F resulted in similar levels of 

Y845 phosphorylation on EGFR-K721A in cells with and without siRNA-mediated 

knockdown of Src (Figure 4b, lane 3 versus lane 5 of the EGFR-Y845p blot), indicating that 

Brk may phosphorylate EGFR Y845 independently of Src. Because the siRNA-mediated 

transient silencing of Src expression may be incomplete, and also because multiple members 

of the Src family, as well as the members of the HER family, may also phosphorylate Y845 

of EGFR, we further treated cells with dasatinib (a Src family inhibitor) and lapatinib (a 

HER2/EGFR dual inhibitor) to confirm our findings. Figure 4c shows that, despite strong 

inhibition of Src by dasatinib (lanes 4-6 of the Src-Y416p blot), Y845 of EGFR-Y721A was 

still phosphorylated in cells cotransfected with EGFR-Y721A and Brk-Y447F (lane 5 of the 

EGFR-Y845p blot), whereas it was not phosphorylated in cells cotransfected with EGFR-

Y721A and vector control (lane 4) or Brk-K219M (lane 6). There was a weak cross-

inhibition of Brk-Y447F by dasatinib (lane 5 versus lane 2 or 8 of the Brk-Y342p blot; note: 

similar results were observed in cells treated with PP2, another Src inhibitor; data not 

shown). Thus, Y845 phosphorylation was less in dasatinib-treated cells (lane 5) than in 

vehicle-treated (lane 2) or lapatinib-treated cells (lane 8); however, the data clearly 

supported the conclusion that Y845 phosphorylation of EGFR in CHO cells cotransfected 

with Brk-Y447F and EGFR-Y721A is primarily Src independent.

Although CHO cells express HER2, we did not detect any phosphorylated HER2 when the 

cells were transfected with EGFR-Y721A and control vector, Brk-Y447F, or Brk-K219M 

(Figure 4c, blots of HER2 and HER2-p), nor did we detect any effect of lapatinib on Brk-

Y447F-induced EGFR Y845 phosphorylation (lanes 7-9 of the EGFR-Y845p blot). This 

experiment rules out involvement of HER2 in Brk-Y447F-mediated Y845 phosphorylation 

of EGFR.

Lastly, to confirm that Brk can directly phosphorylate Y845 of EGFR, we conducted an in 

vitro Brk kinase assay by incubating GST fusion proteins containing the kinase domain of 

EGFR-K721A or EGFR-K721A/Y845F with a recombinant Brk protein in the presence or 

absence of ATP (Figure 4d). Consistent with the findings in Figure 4a, after incubation with 

recombinant Brk and ATP, Y845 EGFR phosphorylation was detected in the GST protein 

fused with EGFR-K721A kinase domain but not in the GST protein fused with EGFR-

K721A/Y845F kinase domain, strongly indicating that Brk can directly phosphorylate Y845 

of EGFR. Interestingly, the Y845-phosphorylated EGFR antibody also detected 

phosphorylated Brk, which was autophosphorylated in the presence of ATP. In vitro 

incubation of full-length EGFR-K721A and EGFR-K721A/Y845F proteins 

immunoprecipitated from CHO cells also confirmed phosphorylation of EGFR on Y845 as 

well as on some not-yet-identified sites by recombinant Brk (Figure S5); the additional 

phosphorylation sites will be determined in separate studies.
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Brk phosphorylation of EGFR-Y845 potentiates EGFR functions

To investigate the role of Brk-induced EGFR Y845 phosphorylation in EGFR function, we 

analyzed EGF-induced association between EGFR and Brk in CHO cells cotransfected with 

wild-type Brk and either wild-type EGFR or EGFR-Y845F mutant. Figure 5a shows that the 

EGF-induced association between Brk and EGFR-Y845F was substantially less than the 

EGF-induced association between Brk and wild-type EGFR, suggesting that Brk-induced 

EGFR Y845 phosphorylation is important, although not essential, for EGFR-Brk 

association. Both Brk Y342 and EGFR Y1045 were phosphorylated following EGF 

stimulation of cells cotransfected with Brk and EGFR-Y845F mutant, but the levels were 

less than those in cells cotransfected with Brk and wild-type EGFR (Figure 5a).

Because EGF-induced association between EGFR and Brk is EGFR Y1045 phosphorylation 

dependent (Figure 3c), we next compared the levels of EGFR-Brk association in CHO cells 

expressing various combinations of EGFR constructs (wild type, EGFR-Y1045F, and 

EGFR-Y845F) and Brk constructs (Brk-Y447F and Brk-K219M) to further analyze the roles 

of Brk kinase activity and Brk-induced EGFR Y845 phosphorylation in EGFR-Brk 

association (Figure 5b). These experiments with various combinations of EGFR and Brk 

constructs produced three main findings. First, while there was only a minimal association 

between wild-type EGFR and kinase-dead Brk-K219M, there was a marked association 

between wild-type EGFR and constitutively active Brk-Y447F (Figure 5b, lanes 2-4 of the 

blots of EGFR for Brk immunoprecipitates [I.P. α Brk] and Brk for EGFR 

immunoprecipitates [I.P. α EGFR]), and phosphorylation of EGFR on both Y845 and 

Y1045 was higher with wild-type EGFR and Brk-Y447F than with wild-type EGFR and 

Brk-K219M (lanes 2-4 of the blots of EGFR-Y845p and EGFR-Y1045p). Second, mutation 

of EGFR Y1045 abolished the association between EGFR and Brk-Y447F (Figure 5b, lanes 

5-7 versus lanes 2-4 of the blots of EGFR for Brk immunoprecipitates [I.P. α Brk] and vice 

versa) but did not affect Brk-Y447F-induced phosphorylation of EGFR Y845 (lane 3 versus 

lane 6 of the EGFR-Y845p blot). Compared with the result in Figure 3c, which showed that 

activation of wild-type Brk by EGF is EGFR Y1045 phosphorylation dependent, this finding 

with constitutively active Brk-Y447F indicated that, once activated, Brk can phosphorylate 

Y845 of EGFR independently of Y1045 phosphorylation. Third, mutation of EGFR Y845 

markedly reduced the association between Brk-Y447F and EGFR (Figure 5b, lanes 8-10 

versus lanes 2-4 of the blots of EGFR for Brk immunoprecipitates [I.P. α Brk] and vice 

versa) and also markedly reduced Brk-Y447F-induced phosphorylation of EGFR Y1045 

(lane 3 versus lane 9 of the EGFR-Y1045p blot). These findings indicated that Brk-Y447F-

induced EGFR Y1045 phosphorylation is dependent on prior Brk-Y447F-induced EGFR 

Y845 phosphorylation.

Our data in Figure 4 indicated that Brk-Y447F-induced EGFR Y1045 phosphorylation is 

EGFR kinase dependent because it was not seen with EGFR-K721A (Figure 4a, lanes 2-4 

versus lanes 5-7 of the EGFR-Y1045p blot). In contrast, Brk-Y447F-induced EGFR Y845 

phosphorylation was not EGFR kinase dependent because it was seen with EGFR-K721A 

(Figure 4a, lanes 5-7 of the long-exposed EGFR-Y845p blot). However, Brk-Y447F-

induced EGFR Y845 phosphorylation was markedly higher on wild-type EGFR than on 

EGFR-K721A (Figure 4a, lane 3 versus lane 6 of the long-exposed EGFR-Y845p blot), 
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indicating a role of EGFR kinase in Y845 phosphorylation. We thus further compared the 

levels of Brk-Y447F-induced EGFR Y845 and Y1045 phosphorylation in CHO cells with 

and without inhibition of EGFR kinase activity with gefitinib. Figure 5c shows that gefitinib 

treatment markedly decreased Brk-Y447F-induced EGFR Y845 phosphorylation, although 

EGFR Y845 phosphorylation could still be detected in gefitinib-treated cells (lane 6 versus 

lane 3 of the EGFR-Y845p blot). In contrast, Brk-Y447F-induced EGFR Y1045 

phosphorylation was barely detected in the gefitinib-treated cells (lane 6 versus lane 3 of the 

EGFR-Y1045p blot). These findings confirmed that EGFR kinase activity is required for 

Brk-Y447F-induced EGFR Y1045 phosphorylation and indicated that EGFR kinase activity 

affects the level of but is not required for the occurrence of Brk-Y447F-induced EGFR 

Y845 phosphorylation. These findings also explained why Brk-Y447F can induce EGFR 

Y845 phosphorylation but the phosphorylation is much weaker in the kinase-dead EGFR-

K721A than in the kinase-functional wild-type EGFR (Figure 4a). In addition, it appears that 

there was a slightly increased phosphorylation of EGFR Y1045 with Brk-K129M, 

supporting a previously described adaptor function for the kinase-dead protein (Harvey and 

Crompton, 2003; 2004).

Taken together, these findings indicated that Brk phosphorylates EGFR on Y845, which in 

turn enhances EGFR phosphorylation on Y1045, which is EGFR kinase dependent. 

Phosphorylation of EGFR Y1045 leads to further increase in EGFR-Brk association and Brk 

activation, which decreases EGFR-Cbl association and EGFR ubiquitination. Thus, the 

repetitive cycles between Brk activation and EGFR Y845/Y1045 phosphorylation constitute 

a positive feedback loop, through which EGFR activation-induced cell signaling is sustained 

and amplified.

Knockdown of Brk sensitizes breast cancer cells to EGFR-targeted therapy

The above-described novel functions of Brk suggested that Brk could sustain activated 

EGFR signaling and thus augment cell response to EGF stimulation and reduce the 

dependence of cells on new EGFR activation. To substantiate this critical role of Brk in 

breast cancer cells, we knocked down endogenous Brk in SUM102 breast cancer cells and 

confirmed that the knockdown did lower the level of EGF-induced EGFR phosphorylation 

at Y845, Y1045, Y1068 and Y1173 (Figure 6a). Knockdown of Brk sensitized SUM102 

cells to cetuximab, an EGFR-blocking antibody that is approved for treatment of several 

types of human solid tumors, as shown by greater induction of apoptosis (measured by two 

independent apoptosis assays: DNA fragmentation and PARP cleavage) in cells treated with 

Brk siRNA and cetuximab than in cells treated with either treatment alone (Figure 6b). 

Conversely, experimental elevation of Brk lowered the levels of inhibition of Akt and Erk 

phosphorylation by cetuximab in SUM102 cells compared with the levels in control vector-

transfected SUM102 cells (Figure 6c). Consistent with the results of Western blot analysis, 

the Brk-transfected SUM102 cells required higher doses of cetuximab to achieve the same 

level of growth inhibition as observed in the control vector-transfected cells, and this effect 

was more apparent in the cells transfected with constitutively active Brk-Y447F (Figure 6d). 

Similar results were found in A431 cells (Figure S6). Together, these data confirmed that 

knockdown of Brk can sensitize breast cancer cells to EGFR-targeted therapy whereas a 
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high level of Brk expression can lower the sensitivity of cancer cells to EGFR-targeted 

therapy.

Discussion

In this study, we found that Brk plays important roles in regulating EGFR function in both 

breast cancer cells and non-breast-cancer cells. Our data suggest a new model, depicted in 

Figure 7, through which Brk sustains activated EGFR signaling, sensitizes cancer cells to 

EGF stimulation, and renders Brk-overexpressing cells less sensitive to EGFR-blocking 

antibodies than cells with low or no Brk expression.

There are several key novel findings of this study. First, we demonstrated that the EGF-

induced EGFR-Brk association is EGFR Y1045 phosphorylation dependent. One early study 

compared several growth factor-mediated cell signaling pathways, including those of 

fibroblast growth factors (acidic or basic), nerve growth factor, platelet-derived growth 

factor-BB, insulin, and macrophage colony-stimulating factor (Kamalati et al., 1996), and 

found that Brk enhanced the cellular response only to EGF stimulation and that Brk was 

activated only by EGF stimulation. Our current work now provides a mechanistic insight 

into this observation by demonstrating the unique requirement of EGFR Y1045 

phosphorylation for EGFR-Brk association and Brk activation by EGFR. Second, we 

unraveled a novel interaction between EGFR, Brk, and Cbl. We showed that Brk can inhibit 

ligand-induced EGFR degradation after receptor activation. We demonstrated that binding 

of Brk to the Y1045 site of EGFR inhibits Cbl binding to the same site. The competition 

between Brk and Cbl for binding to EGFR constitutes a novel mechanism of uncoupling of 

activated EGFR from ubiquitination and degradation. One recent study showed that Brk can 

also inhibit EGFR endocytosis (Kang et al., 2010). Together, these findings indicate that Brk 

inhibits EGFR downregulation through multiple interacting mechanisms. Third, we showed 

that the Y845 site of EGFR can be directly phosphorylated by Brk. Brk-mediated EGFR 

Y845 phosphorylation further potentiates EGFR function and the interaction between EGFR 

and Brk. Lastly, we showed that knockdown of Brk sensitized breast cancer cells to 

cetuximab treatment whereas experimental elevation of Brk conferred resistance to 

cetuximab treatment.

The effect of nonreceptor protein-tyrosine kinases on uncoupling activated EGFR from 

endocytosis and degradation is emerging as an integral part of the oncogenic activation of 

EGFR, together with EGFR gene amplification and protein overexpression or mutation; 

however, such mechanisms have not yet been explored in the context of targeted therapy. 

Given that Brk is widely expressed in breast cancer (Mitchell et al., 1994; Barker et al., 

1997; Ostrander et al., 2007), that EGFR plays critical roles in breast tumorigenesis, and that 

targeting EGFR has been disappointing overall in breast cancer, our findings justify the 

development of novel Brk inhibitors, which may be used alone and in combination with 

EGFR inhibitors for treating patients with breast cancer.
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Materials and methods

Materials

EGF was obtained from Calbiochem. Cetuximab and gefitinib were obtained from ImClone 

Systems, Inc., and AstraZeneca Pharmaceuticals, respectively. The antibodies directed 

against EGFR, site-specific tyrosine-phosphorylated EGFR (Y845, Y992, Y1045, Y1068, 

and Y1173), total and S473-phosphorylated Akt, Erk2, T202/Y204-phosphorylated Erk, the 

Myc-tag (9B11), and ubiquitin (P4D1) were obtained from Cell Signaling Technology, Inc. 

Antibodies directed against total and Y342-phosphorylated Brk were obtained from Santa 

Cruz Biotechnology, Inc., and Millipore/Upstate Biotechnology, Inc., respectively. The anti-

Cbl antibody was obtained from BD Biosciences/Transduction Laboratories. All other 

materials were purchased from Sigma-Aldrich, unless otherwise specified.

Cell lines and cell culture

All cell lines were purchased from American Type Culture Collection, except SUM102, 

SUM149, and SUM190 cells, which were kindly provided by Dr. Steven P. Ethier 

(Karmanos Cancer Institute). All the cells were maintained in DMEM culture medium 

supplemented with 10% fetal bovine serum (FBS). For treatment of cells with EGF, the cells 

were typically cultured in 0.5% FBS for overnight before stimulation with EGF.

cDNA constructs and transfection

The Brk constructs (wild-type, Y447F, and K219M) were kindly provided by Dr. Mark R. 

Crompton (Royal Holloway, University of London). Myc-tagged EGFR-K721A, EGFR-

Y1045F, EGFR-Y845F, and EGFR-K721A/Y845F mutants were created with Stratagene’s 

site-directed mutagenesis kit following the instructions provided by the manufacturer. Brk 

siRNA oligonucleotides (targeting sequence AAGGTGATTTCTCGAGACAAC) were 

ordered from Dharmacon/Thermo Fisher Scientific. Transfection of these constructs was 

performed with Lipofectamine 2000 (Invitrogen) following the instructions provided by the 

manufacturer.

Immunoblotting and immunoprecipitation

Lysates from cultured cells were prepared with a lysis buffer as previously described (Li et 

al., 2008). Equal amounts of cell lysate were subjected to immunoprecipitation or 

immunoblot analysis as previously described (Li et al., 2008).

Cell survival and proliferation assays

Cell survival and proliferation assays were performed in 24-well culture plates with 

experimental conditions described in the figure legends. Upon completion of the desired 

treatments, the cells were exposed to 1 mg/ml 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (Sigma-Aldrich) in culture medium (500 μl/well) for 2 h at 

37°C in a CO2 incubator and then lysed in 500 μl/well of lysis buffer containing 20% 

sodium dodecyl sulfate in dimethylformamide/H2O (1:1, v/v), pH 4.7, in a 37°C incubator 

for at least 6 h. The lysates’ optical density was determined with a microplate reader at a 

wavelength of 570 nm.
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Apoptosis assays

Apoptosis was measured by using an enzyme-linked immunosorbent assay kit (Roche 

Diagnostics Corp., Indianapolis, IN) that quantitatively measures cytoplasmic histone-

associated DNA fragments (mononucleosomes and oligonucleosomes) and by Western 

blotting with an antibody that recognizes both uncleaved and cleaved PARP after various 

treatments, as previously described (Li et al., 2008; Lu et al., 2010).

35S-Methionine metabolic-labeling and pulse-chase analyses

Cells were metabolically labeled with 100 μCi/ml 35S-labeled methionine (PerkinElmer) in 

methionine-free medium for 90 min. After removal of the 35S-labeled methionine-

containing medium, the cells were chased with or without 10 nM EGF in culture medium for 

various time intervals prior to harvest. EGFR immunoprecipitates were washed and 

separated by SDS-PAGE for autoradiography.

In vitro Brk kinase assay

The cDNA of EGFR kinase domain (amino acid 689-955) for EGFRK721A and 

EGFRK721A/K845F was subcloned into the pGEX vector (GE Healthcare). GST fusion 

protein containing the kinase domain of EGFR-K721A or EGFR-K721A/K845F was 

induced using 1 mM IPTG in BL21 (DE3) cells at 4°C for 24 h and then purified using 

glutathione resin (GE Healthcare) following the manufacturer’s instructions. Brk in vitro 

kinase assay was carried out in a kinase buffer (25 mM Tris [pH 7.5], 5 mM β-

glycerophosphate, 2 mM DTT, 0.1 mM Na3VO4, 10 mM MgCl2) with 2 μg of GST fusion 

protein, 0.1 μg of Brk recombinant protein (Millipore/Upstate Biotechnology), and 1 μl of 

10 mM ATP (or not) in a total volume of 40 μl for 30 min at 30°C. After reaction, the 

reaction products were resolved by SDS-electrophoresis followed by immunoblot analysis 

with antibodies described in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Brk sensitizes breast cancer cells to EGF stimulation by inhibiting ligand-induced EGFR 

degradation. (a) Brk was overexpressed more often than EGFR in breast cancer cell lines. 

Expression of Brk and EGFR in the indicated breast cancer cells was detected by Western 

blotting. β-actin was used as a loading control. (b) Brk sensitizes breast cancer cells to EGF-

induced cell proliferation. SUM102-neo and SUM102-Brk cells were cultured in the 

presence or absence of the indicated concentrations of EGF in 0.5% FBS medium for 5 days. 

Relative cell growth and survival were determined by an MTT assay. (c) Brk enhances EGF-

induced activation of cell signaling. Following transient transfection with Brk or vector for 

24 h, SUM102 cells were treated with the indicated concentrations of EGF in 0.5% FBS 

medium for 10 min and then harvested for Western blotting with the indicated antibodies. 

(d) Knockdown of Brk expression decreases EGF-induced activation of cell signaling. 

Forty-eight hours after knockdown of Brk by siRNA, SUM102 cells were treated with the 

indicated concentrations of EGF in 0.5% FBS medium for 10 min and then harvested for 

Western blotting with the indicated antibodies. (e) Brk sustains activated EGFR level and 

signaling. SUM102 cells were treated with 10 μM cycloheximide for 30 min prior to 

incubation with 10 nM EGF in 0.5% FBS medium for the indicated time periods. Cell 

lysates were harvested for Western blotting with the indicated antibodies. EGFR-Yp = total 

phosphorylated EGFR. (f) Brk inhibits EGF-induced EGFR degradation. 35S-labeled 

methionine metabolic-labeled SUM102 cells were pulse-chased for up to 120 min in the 

presence or absence of 10 nM EGF in 0.5% FBS medium. The levels of EGFR 

immunoprecipitated at 30, 60, and 120 min were quantified by densitometry and plotted 

against the pulse-chase time period. Note: The ratios in this figure and in other figures 

represent quantitative analysis of densitometric values of specific band intensities 

normalized to the densitometric value of the leftmost lane in the same gel, which has a 

densitometric value and was arbitrarily set at 1. All of the experiments in this figure and in 

other figures were repeated at least once with similar findings.
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Figure 2. 
Brk inhibits EGF-induced EGFR-Cbl association and Cbl-mediated EGFR ubiquitination. 

(a) Brk inhibits EGF-induced EGFR-Cbl association and EGFR ubiquitination. SUM102 

cells were transiently transfected with wild-type Brk or neo control vector for 24 h. The cells 

were then stimulated with 10 nM EGF in 0.5% FBS medium for the indicated time periods. 

EGFR immunoprecipitates (I.P. α EGFR) or whole cell lysates were subjected to Western 

blotting with the indicated antibodies. (b) Knockdown of Brk expression enhances EGF-

induced EGFR-Cbl association and EGFR ubiquitination. SUM102 cells were subjected to 

Brk knockdown or control siRNA treatment for 48 h. The cells were then processed and 

analyzed as described in (a). (c) Constitutively active Brk inhibits EGFR-Cbl association 

and EGFR ubiquitination. SUM102 cells were transiently transfected with wild-type Brk, 

constitutively active mutant Brk-Y447F, kinase-dead mutant Brk-K219M, or neo control 

vector for 24 h. EGFR immunoprecipitates (I.P. α EGFR) or whole cell lysates were 

subjected to Western blotting with the indicated antibodies.
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Figure 3. 
Brk binds to EGFR in both an EGFR kinase-dependent and a Brk kinase-dependent manner 

and competes with Cbl for binding to EGFR Y1045. (a) Brk binds to EGFR in an EGFR 

kinase-dependent manner. SUM102 cells were transiently transfected with wild-type Brk for 

24 h and then exposed to 0.5 μM gefitinib or not for 16 h prior to 10 nM EGF in 0.5% FBS 

medium for 5 min as indicated. Brk immunoprecipitates (I.P. α Brk), EGFR 

immunoprecipitates (I.P. α EGFR), or whole cell lysates were subjected to Western blotting 

with the indicated antibodies. IgG H.C. = IgG heavy chain. (b) Brk binds to EGFR in a Brk 

kinase-dependent manner. CHO cells were transiently transfected with a control vector, 

cotransfected with wild-type EGFR and wild-type Brk, or cotransfected with wild-type 

EGFR and Brk-K219M for 24 h. The cells were then exposed to 10 nM EGF in 0.5% FBS 

medium for 5 min as indicated. Brk (I.P. α Brk) and EGFR immunoprecipitates (I.P. α 

EGFR) and whole cell lysates were subjected to Western blotting with the indicated 

antibodies. (c) Brk binds to EGFR and is activated by EGFR in an EGFR Y1045 

phosphorylation-dependent manner. CHO cells were transiently cotransfected with wild-

type Brk construct and one of neo vector, wild-type EGFR, or EGFR-Y1045F for 24 h. The 

cells were then exposed to 10 nM EGF in 0.5% FBS medium for 5 min as indicated. Brk 

(I.P. α Brk) and EGFR immunoprecipitates (I.P. α EGFR) and whole cell lysates were 

subjected to Western blotting with the indicated antibodies. (d) Brk competes with Cbl for 

binding to EGFR Y1045. CHO cells were transiently transfected with stepwise increasing 

DNA concentrations of Brk constructs for 24 h. The cells were stimulated with 10 nM EGF 

for 5 min. EGFR immunoprecipitates (I.P. α EGFR) and whole cell lysates were subjected 

to Western blotting with the indicated antibodies.
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Figure 4. 
Brk phosphorylates EGFR Y845 independently of the activities of the Src or HER families. 

(a) Brk-Y447F increases EGFR phosphorylation in an EGFR kinase-dependent manner but 

can increase EGFR Y845 phosphorylation independently of EGFR kinase activity. CHO 

cells were transiently cotransfected for 24 h with a construct containing neo control vector, 

wild-type EGFR (EGFR-wt), kinase-dead EGFR (EGFR-K721A), or EGFR-K721/Y845F 

double-mutant and a construct containing neo control vector, constitutively actively Brk 

(Brk-Y447F), or kinase-dead Brk (Brk-K219M) as indicated. Whole cell lysates were 

analyzed by Western blotting with the indicated antibodies. EGFR-Yp = total 

phosphorylated EGFR. Exp. = exposure time. (b and c) Brk-Y447F increases EGFR Y845 

phosphorylation independently of Src or HER kinase activity. In (b), CHO cells were 

subjected to Src siRNA or control siRNA treatment for 48 h. The cells were then 

cotransfected for 24 h with EGFR-K721A and either Brk-Y447F or Brk-K219M. CHO cells 

transfected with a control vector or EGFR-wt were used as controls. In (c), CHO cells were 

cotransfected for 24 h with EGFR-K721A and control vector, Brk-Y447F, or Brk-K219M. 

The cells were then treated with 10 μM dasatinib or lapatinib or vehicle control (DMSO) as 

indicated for overnight. Whole cell lysates were analyzed by Western blotting with the 

indicated antibodies. (d) Brk directly phosphorylates Y845 of EGFR in vitro. GST-fusion 

proteins containing the kinase domain of EGFR-K721A or EGFR-K721A/Y845F were 

incubated with recombinant Brk in the presence of ATP for 30 min at 30°C. The products of 

this in vitro kinase reaction were analyzed by Western blotting with the indicated antibodies.
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Figure 5. 
Brk promotes EGFR-Brk interaction through phosphorylating EGFR Y845. (a) Mutation of 

EGFR Y845 reduces EGF-induced EGFR-Brk association. CHO cells were transiently 

cotransfected with Brk and wild-type EGFR or EGFR-Y845F for 24 h and then treated with 

10 nM EGF for 5 min or not. CHO cells transfected with control vector were used as 

controls. Brk and EGFR immunoprecipitates and whole cell lysates were subjected to 

Western blotting with the indicated antibodies. (b) Brk-Y447F induces EGFR Y1045 

phosphorylation and promotes EGFR-Brk association through phosphorylating EGFR Y845. 

CHO cells were transiently cotransfected for 24 h with a construct containing neo vector, 

wild-type EGFR (EGFR-wt), EGFR-Y1045F, or EGFR-Y845F and a construct containing 

neo vector, Brk-Y447F, or Brk-K219M as indicated. Brk and EGFR immunoprecipitates 

and whole cell lysates were subjected to Western blotting with the indicated antibodies. (c) 

EGFR kinase activity is required for Brk-Y447F-induced EGFR Y1045 phosphorylation. 

CHO cells were cotransfected with wild-type Brk and control vector, Brk-Y447F, or Brk-

K219M for 24 h. The cells were then treated with 0.5 μM gefitinib or vehicle control 

(DMSO) for 16 h. Whole cell lysates were subjected to Western blotting with the indicated 

antibodies.
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Figure 6. 
Brk confers resistance of breast cancer cells to EGFR inhibition. (a) Knockdown of Brk 

reduces breast cancer cell response to EGF stimulation. SUM102 cells were subjected to 

treatment with Brk-specific siRNA or control siRNA for 48 h prior to serum starvation for 

overnight. The next day, the cells were treated with 10 nM EGF or not for 30 min and 

harvested for Western blotting with the indicated antibodies. (b) Knockdown of Brk 

sensitizes breast cancer cells to cetuximab. SUM102 cells were subjected to Brk knockdown 

as in (a) and then treated with 20 nM cetuximab or not for 24 h. Cell lysates were prepared 

for apoptosis enzyme-linked immunosorbent assay and Western blotting with the indicated 

antibodies. O.D., optical density. (c) Overexpression of Brk confers resistance to cetuximab-

induced inhibition of cell signaling. SUM102 cells selected for overexpression of wild-type 

Brk and corresponding control cells were treated with the indicated concentrations of 

cetuximab in 0.5% FBS culture medium for 16 h. Whole cell lysates were subjected to 

Western blotting with the indicated antibodies. (d) Overexpression of Brk confers resistance 

to cetuximab-induced growth inhibition. SUM102 cells selected for overexpression of wild-

type Brk or Brk-Y447F and corresponding control cells were treated with the indicated 

concentrations of cetuximab for 5 days. Cell survival and proliferation after cetuximab 

treatment were measured with an MTT assay and plotted as a percentage of the optical 

density at 570 nm of the untreated cells. ■ = Control vector-transfected cells; ● = wild-

type-Brk-transfected cells; ▲ = Brk-Y447F-transfected cells.

Li et al. Page 21

Oncogene. Author manuscript; available in PMC 2013 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Proposed model of novel roles of Brk in augmenting EGFR signaling. Upon EGF 

stimulation, several sites on EGFR, including Y1045, are phosphorylated (step 1). In cells 

with no or a low level of Brk expression (left panel), Cbl binds to phosphorylated Y1045 on 

EGFR (step 2), leading to EGFR ubiquitination and subsequent degradation. In cells with a 

high level of Brk expression (right panel), Brk competes with Cbl for binding to 

phosphorylated Y1045, preventing Cbl-mediated EGFR ubiquitination and degradation (step 

2, see Figures 2 and 3). The association between EGFR and Brk leads to activation of Brk 

(step 3, see Figure 3), and the activated Brk can phosphorylate EGFR Y845 (step 4, see 

Figure 4), which increases EGFR Y1045 phosphorylation in an EGFR kinase-dependent 

manner and further potentiates the association between EGFR and Brk and activation of new 

Brk molecules (step 5, see Figure 5). Therefore, Brk inhibits EGFR-Cbl association and 

promotes EGFR-Brk association through this positive feedback loop between EGFR and 

Brk. P = phosphorylation; Ub = ubiquitination.
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