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Abstract

System level understanding of the cell requires detailed description of the cell state, which is often characterized by the
expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is
usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can
report changes in the cell state without introducing any label, as a non-invasive method with single cell capability.
Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines
from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before
and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle
changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman
spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states
during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in
mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically
fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in
combination with PCA, can be used to establish cells’ fingerprints, which can be useful for distinguishing and identifying
different cellular states.
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Introduction

Systems biology is a field of science to understand the biological

system’s network structure and dynamics rather than just

characterizing the function of isolated parts [1]. Advances in

computational power and algorithms have pushed systems biology

into a new era, enabling to simulate a life of a small organism in

silico [2]. Stem cell self renewal and differentiation are attractive

targets for systems biology owing to their importance in the life

sciences. Systems-level understanding of complex biological

system, such as the gene regulatory networks of ESCs, requires

comprehensive knowledge of the components and their interac-

tions within a single ESC. However, advances in measurement

technology have not yet realized the acquisition of such

comprehensive data at the single cell level. As it stands, current

systems biology approaches for ESCs thus deals with a limited

number of transcription factor networks including the core

pluripotency factors [3,4], restricting the understanding of the

complicated transcriptional network of ESC.

Another approach to understand self renewal and differentia-

tion of ESC is to grasp the changes in the complicated network as

whole and visualizing the state transitions on a cell-state landscape.

This idea was first introduced by Waddington, where the

differentiation potential was drawn as an epigenetic landscape

[5], in which the differentiation process is represented as cells

rolling down the potential. This type of approach does not

necessarily require comprehensive analysis, but often needs

quantitative estimations. For example, the cell state can be often

estimated by the morphology of the cell, which is also the case in

ESC where undifferentiated ESCs form highly packed colonies.

Thus, as far as the indices reflect the internal state of the cell, it can

be used to describe the state transition of the cell, and accumulated

paths of state transition observed in single cell will draw the cell-

state landscape.

To this end, we focus on Raman scattering microscopy to

obtain information of the cell state at the single cell level. The

Raman scattering phenomenon arises from molecular vibrations,

providing information on chemical species, composition, and the

amount of constituent molecules. Thus, Raman scattering imaging

can simultaneously detect the location and amount of multiple

compounds such as proteins, lipids, DNA, and RNA [6]. Recent

advances in Raman scattering microscopy have pushed its

applicability to the investigation of biological phenomena in

medical and clinical assays for which non-invasive methods are

required [7,8]. Since the amount and distribution of the

intracellular compounds are related to the cell state, Raman

microscopy has been used to describe cell states transitions such as

apoptosis, differentiation, and cell division, possibly without
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harming the cells [9,10,11]. Furthermore, Raman spectroscopy

was used to monitor cell state changes after drug exposure [12],

during cell cycle [13], and cell differentiation during embryo

development [14], showing the capability of Raman spectroscopy

in cell state monitoring.

In this study, to understand the cell state transition during the

differentiation, we performed Raman spectral imaging of mouse

ESCs during differentiation, and compared the results with those

from terminally differentiated cell-lines including fibroblasts,

epithelial cells, and hepatocytes. In addition, cells with differen-

tiation capability, such as bone marrow mesenchymal stem cells

(MSCs), adipocytes, and neuroblasts, were analyzed which showed

significant changes in the Raman spectra during the differentiation

process. By carefully analyzing the Raman spectra of the cellular

nucleus, we were able to illustrate the differentiation pathway of

the ESCs. In this study, we did not concentrate on deducing the

molecular species from Raman spectra but we rather tried to

interpret the spectral shapes in a morphological way. Here we

propose Raman spectrum morphology, a method for visually

understanding the cell state without recurring to labeling

strategies, and demonstrate the discrimination of the cell state

transition on the landscape by Raman spectra.

Materials and Methods

Cell culture
Mouse ESCs (E14Tg2a) were purchased from the Riken Cell

Bank (Ibaraki, Japan) and maintained on feeder-free gelatin-

coated plates in Leukemia Inhibitory Factor (LIF)-supplemented

medium: Dulbecco’s modified Eagle’s medium-High Glucose

(DMEM-HG; Invitrogen, Carlsbad, CA) was supplemented with

10% Fetal Bovine Serum (FBS) (Invitrogen), antibiotics (100 U/

mL penicillin, 0.1 mg/mL streptomycin) (Invitrogen), 16 Gluta-

MAX-1 (Invitrogen), 1% 2-mercaptoethanol (Bio-Rad), 16
nonessential amino acids (NEAA) (Invitrogen), and 1 mM sodium

pyruvate (Sigma-Aldrich, St. Louis, MO). EPH4 were cultured in

50% DMEM-HG and 50% Ham’s F-12 mixture (Wako, Osaka,

Japan) supplemented with 1% L-Glutamine (Sigma-Aldrich), 10%

FBS (Invitrogen) and antibiotics. Hepa1-6 cells were cultured in

DMEM-HG supplemented with 10% Fetal Calf Serum (FCS) and

antibiotics. Neuro2a cells were cultured in DMEM-HG supple-

mented with 10% FBS, 1% NEAA, and antibiotics. For the

induction of differentiation, the medium was replaced with

DMEM-HG supplemented with 2% FBS, 1% NEAA, and

antibiotics, and the cells were cultured for 3 days. 3T3L1 cells

were cultured in DMEM-HG supplemented with 10% calf serum

(Sigma-Aldrich) and antibiotics. For the induction of differentia-

tion, cells were cultured until confluence. Then, the medium was

replaced with DMEM-HG supplemented with 10% FBS, 500 mM

isobutylmethylxanthine, 25 mM dexamethasone, 4 mg/mL insulin

and antibiotics and cultured for 4 days. Cells were further cultured

in DMEM-HG supplemented with 10% FBS, 4 mg/mL insulin

and antibiotics for 2 days for maturation.

Microscopy
For Raman imaging, cells were plated on silica coverslip (SPI

supplies, West Chester, PA) coated with either 100 mg/ml E-

cadherin (ESC) or 0.1% gelatin (other cells) and cultured for 3

days. For Neuro2a cells, the differentiation was induced directly on

the silica coverslip, while 3T3L1 cells were re-plated on the silica

coverslip after the differentiation. Just before the observation, the

medium was replaced with Tyrode’s solution. All data were

recorded with a home-built slit-scanning Raman microscope at

532 nm excitation wavelength [11]. A NIKON CFI Plan Apo IR

606water immersion lens with 1.27 numerical aperture (NA) was

used as the objective lens. Perfect Focus System remained active

during all measurements. The images were scanned over a 40 mm

range and divided into 120 lines. The exposure time of each line

was 5 s, and the laser intensity was 2.4 mW/mm2.

Data analysis
PCA was employed for spectral characterization. PCA reduces

the dimensionality of a set of spectral data, which corresponds to

the wavenumber division of the spectral data, into a few

uncorrelated variables called principal components (PCs). During

the pre-treatment step, the measured Raman spectra (xi) are first

processed as described below and decomposed into linearly

uncorrelated loading vectors of the principal components (pk) as

follows,

xi~
XL

k~1

tikPkzei

where tik and ei are the scores of the k-th principal component for

the i-th sample and the residual component attributed to noise,

and L is the number of effective principal components. The

loading vectors make an orthonormal coordinate system with a

dimension much smaller than the original spectral data. For the

extraction of the scores and the loading vectors, we adopted the

non-linear iterative partial least squares (NIPALS) algorithm [15].

As a pre-treatment for PCA, we standardized the original

spectral data by subtracting the mean value from each spectrum

and dividing by its standard deviation [15]. The pre-processed

spectral data substituted the original data in the above equation.

The standardization process is effective at eliminating both the

additive and multiplicative differences of the spectral baseline

caused by slight discrepancies in the experimental conditions.

Results

Raman spectra of established cell-lines
Although many types of cells have been analyzed by Raman

spectroscopy, it is still uncertain whether cell state can be

distinguished by difference in Raman spectra. To clarify whether

cell state can be distinguished by Raman spectra, we performed

Raman spectral imaging against three cell-lines established from

mouse. A home-built Raman microscope [6,11] was used to

observe the cells, and Raman spectra were recorded at all pixel

positions (See Methods for details). Our Raman microscopy

employs a line confocal scanning method, not point scanning,

because of the shorter image acquisition time, which contributes to

the improvement of the cell viability after the observation. We

used NIH3T3, EPH4 and Hepa1–6 cells as models for fibroblast,

epithelial and hepatocyte cells, respectively [16,17]. Figure 1A, 1B

and 1C is an Red/Green/Blue (RGB) reconstruction of the

Raman spectral image, where different RGB colors are assigned to

the peaks intensities at 753 cm21 (pyrrole ring breathing mode in

cytochrome C; blue), 1660 cm21 (amide I vibration mode mainly

in peptide bonds; green), and 2852 cm21 (CH2 stretching mode

mainly in lipids; red). As opposed to NIH3T3 and EPH4 cells, the

Raman images of Hepa1-6 cells showed well-developed mito-

chondria and an accumulation of lipid droplets (Fig. 1C).

Figure 1D and 1E show the representative Raman spectra at the

nucleus (Fig. 1D) and the cytosol (Fig. 1E) from NIH3T3 (blue),

EPH4 (purple) and Hepa1-6 (orange) cells, according to regions

marked by black circles in Fig. 1A–C. It is clear that the spectral

features of these cell-lines are very different at both the nucleus

ES Differentiation Visualized by Raman Microscopy
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and the cytosol. Although the differences in the spectra between

the cell-lines are larger in the cytosol than in the nucleus, the

presence of lipid droplets and the large autofluorescence are

expected to hinder detailed analysis. Thus, we focused our efforts

on the nucleus. Figure 2A shows averaged Raman spectra of the

fingerprint region (700–1800 cm-1) of the nucleus, where spectra

from 23 (3T3), 34 (EPH4) and 10 (Hepa),cells were averaged. In

order to visually recognize the spectral changes, the spectra were

processed by subtracting the lower envelope and by normalizing

with respect to the value of 1005 cm21 (aromatic amino acid) so

that the spectral change can be visually recognized. It is important

to note that some peaks originate from silica substrate (Fig. S1) and

not from cells. The major differences between the three cell-lines

were mainly observed in the peaks at 1583 cm21 (cytochrome C)

and 1660 cm21 (amide-I), with the latter being the most

emphasized and thus a potential marker for distinguishing the

cell type. To obtain more significant information from the

collected data, we performed PCA, focusing on the fingerprint

region of the Raman spectra. PCA is a multivariate analysis

methods widely used for spectral analysis of multiple components

samples. PCA decomposes the spectra into a linear combination of

loading vectors after extracting the number of independent

components. The loading vectors make an orthonormal coordi-

nate system with the deduced dimension, and the scores represent

the weight coefficients for the loading vectors [18]. Raw spectra

was used for PCA and prior to the PCA, all the spectra in the

dataset were preprocessed through the standardization manner,

which is mean value subtraction followed by division by standard

deviation. Three cell-lines appeared in the different regions on the

score plot on the PC1-PC2 plane (Fig. 2B), demonstrating that

Raman spectra are significantly different between cell-lines.

Because all three cell-lines are derived from mouse, different

cell-lines can be considered as cells in different states. Thus, this

result show that Raman spectra from cell nucleus can be used to

identify differences in cell states.

Observation of differentiation in cell-lines
Although it was shown that Raman spectra from the nucleus

can be used to recognize the cell types, it is still uncertain whether

small cell state changes such as cell differentiation can be

distinguished by Raman microscopy. To investigate whether the

Raman imaging can be used to distinguish the differentiation

status of the cells, we have performed Raman imaging on cell-lines

that are capable of induced differentiation. Neuro2a (N2a) is a

mouse neuroblastoma cell-line that is extensively used to study

neuronal differentiation [19], while 3T3L1 is a cell-line sub-cloned

from NIH3T3 cells that is capable of differentiating into

adipocyte-like cells [20]. These cells exhibited characteristic

phenotype upon the induction of differentiation, with N2a

showing a rapid outgrowth of neurites and 3T3L1 accumulating

lipid droplets (Fig. S2). The differentiation status of the cell is often

predicted by its morphology, however, changes are small in some

cases and is not quantitative. Raman images after differentiation

revealed the presence of large lipid droplets and an increased

Figure 1. Raman images of three cell-lines. RGB reconstituted Raman images of NIH3T3 (A), EPH4 (B) and Hepa1–6 (C) cells. Raman peaks at
753 cm21 (cytochrome C), 1686 cm21 (proteins), and 2852 cm21 (lipids) are mapped in blue, green, and red, respectively. Scale bar, 10 mm. (D)
Raman spectra of the nuclei of NIH3T3 (blue), EPH4 (purple) and Hepa1-6 (orange) cells. (E) Raman spectra of the cytosol of NIH3T3 (blue), EPH4
(purple) and Hepa1-6 (orange). The representative Raman spectra shown are the average of spectra at 49 pixel positions in the black circled region in
A–C. Peak assignments are, RP; rebose-phosphate, BK; backbone OPO of nucleic acid, str; stretching, def; deformation [31]. Peaks characteristic to
cytochrome C are indicated with asterisks.
doi:10.1371/journal.pone.0084478.g001
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amount of cytochrome C in the cytosol in both cell-lines (Fig. 3A

and 3D).

Figure 3B and 3E show averaged Raman spectra from the

nucleus before and after the differentiation of N2a (Fig. 3B) and

3T3-L1 (Fig. 3E). Averaged Raman spectra from the nucleus of

NIH3T3 cells shown in Fig. 2A is also included in Fig. 3E (black

line) for comparison. Large differences can be seen in the Raman

spectra following differentiation, especially at 1583 cm21 in both

cell-lines. To investigate whether Raman spectra had changed by

differentiation, PCA was performed on the two cell-lines

separately, with each dataset containing 8–26 nuclei. The score

plot on the PC1-PC2 plane shows small but clear differences

between the Raman spectra of the differentiated and undifferen-

tiated cells for both N2a and 3T3L1 (Fig. 3C and 3F). This result

demonstrates that Raman spectroscopy coupled to PCA can

distinguish the differentiation state of the cells.

Raman spectra of ESCs before and after spontaneous
differentiation

Although cell-lines are an excellent model for studying the cell

state change during differentiation, they are an experimental

model and therefore may not reflect the natural cells. Thus, we

next tested whether cell state change during differentiation can be

detected by Raman imaging in ESCs, which can be considered as

a more natural state of the cell. To culture mouse ESCs, silica

coverslips were coated with E-cadherin, which enabled the

formation of single and/or double layered colonies (Fig. 4A, left

panel). Figure 4A (right panel) shows an RGB reconstruction of the

Raman spectral image of ESCs before induction of differentiation.

Seven days after the removal of the LIF, whose absence is known

to induce mouse ESCs differentiation [21], cells became flatter and

spread over the substrate. At the same time, their Raman image

showed the presence of lipid droplets, which are absent in

undifferentiated cells (Fig. 4B).

Figure 4C shows averaged Raman spectra of the fingerprint

region of the nucleus. The averaged Raman spectrum of the

nucleus of MSCs was used as a model for the intermediate

differentiation state in terms of differentiation capability. The

Raman spectra of the MSCs are quite similar to those of the ESCs.

PCA was performed against Raman spectra of ESCs before and

after the induction of differentiation together with the cell-lines.

Figure 5A represents the calculated loading vectors for the first five

principal components (PC1–PC5). While PC3 and PC4 seemed

predominated by the spectral features of silica (Fig. S1), PC1, PC2,

and PC5 were mainly representative of the Raman spectra of the

cells (Fig. 5A). Fig. 5B shows the score plot of PC1 and PC2 for

ESCs, MSCs, EPH4 and Hepa1-6, with each dot corresponding to

one nucleus and error bars representing the standard deviation

(SD) of the score values of the nuclei. It is evident that the

undifferentiated ESCs are widely distributed while the differenti-

ated ESCs are localized in a different region of the PC1-PC2

plane, although there is some overlap. Moreover, MSCs lie

between differentiated and undifferentiated ESCs, while EPH4

and Hepa1-6 cells are confined to a different region and slightly

overlap with the differentiated ESCs.

Fluctuation analysis of ESC differentiation by using PCA
To gain detailed information on the process of spontaneous

ESC differentiation, we carried out a series of experiments that

lasted 2 weeks (Fig. 6) and performed PCA for a dataset containing

all the spectral data from Days 0, 3, 7, 10, and 14, with the data

used from Day 0 and Day 7 being the same as those in Fig. 5. The

calculated loading vectors were very similar to those used in Fig. 5,

especially regarding PC1, PC2, and PC3 (Fig. S3). The results

clearly illustrate a gradual transition of the cell population to the

‘differentiated’ region on the PC1-PC2 plane, with the distribution

becoming narrower upon differentiation progression. Further-

more, the SD of the weights of PC1 and PC2 relative to the same

nuclei, which represent the diversity among the nuclei, became

smaller as differentiation progressed (see error bars in Fig. 6A–E).

To quantify this observation, we built histograms describing the

population distribution of the SD of PC1 and PC2 (Fig. 6F). The

histograms relative to Day 0, 7, and 14 were normalized against

the total number of observations. Fig. 6F shows that there are two

distinct peaks only in the earlier stages (Day 0 and 7), and thus the

larger SD population can be assigned to the undifferentiated cells.

After ESC differentiation, the peak with the larger SD decreased

while that with the smaller SD increased, suggesting that the

Figure 2. Difference in Raman spectra between cell-lines. (A)
Averaged Raman spectra of NIH3T3 (blue), EPH4 (purple) and Hepa1-6
(orange) cells in the fingerprint region (700–1800 cm21). Raman spectra
are average of 10–34 cells for each cell-line. The lower envelope, which
was estimated by a 4th-order polynomial fitting, was subtracted from all
spectra in order to make the spectral differences clearer for comparison
[32]. (B) Score plots calculated by PCA for three cell-lines. For PCA
analysis, raw spectra without averaging was used. Each symbol
represents a single cell. NIH3T3 (blue), EPH4 (purple) and Hepa1-6
(orange).
doi:10.1371/journal.pone.0084478.g002
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smaller SD population should correspond to the differentiated

cells. The larger SD population seen in the undifferentiated ESCs

is localized in the low-PC1/high-PC2 region on the PC1-PC2

plane, indicating that the cells distributed in this region are ‘real’

undifferentiated cells. Interestingly, after the distribution of the

low-PC1/high-PC2 population diminished at Day 3, another

population of cells with a large distribution emerged in a site

different from the initial population. Thus, it seems likely that

Raman imaging can identify undifferentiated ESCs in heteroge-

neous cultures such as those arising from the current cell culture

protocol. Moreover, we believe that the data shown in Fig. 6 reveal

the appearance of a potential attractor at the initial stage of ESC

differentiation.

Discussion

In this study, we have succeeded in visualizing the cell-state

transition during differentiation both in cell-lines and in ESCs.

Based on these results, we suggest that there are substantial

differences in the Raman spectra of the nuclei of differentiated and

undifferentiated cells. Since it is well established that large changes

in the epigenetic states occur during cell differentiation [22],

changes in the Raman spectra of the nuclei may reflect these

epigenetic changes. Although the origin of the difference in the

Raman spectra of differentiated and undifferentiated cells is

unclear, it is obvious that the differentiation state can be

monitored using this technique. As previously stated, the

undifferentiated and differentiated ESCs are located in different

regions of the score plot (Fig. 5B) with some overlap. Since the

established cell-lines are localized in the region delimited by the

red rectangle in Fig. 5B, we can assume that undifferentiated ESCs

positioned in this region are actually differentiated ESCs. Since

MSCs are confined in the region between undifferentiated (blue

rectangle in Fig. 5B) and differentiated ESCs, where a small

population of differentiated ESCs is also positioned, we conclude

that the time period of seven days after the removal of LIF was not

long enough to induce the differentiation of all the ESCs, leaving

them in an intermediate state between the undifferentiated and

differentiated states.

Raman spectral difference between undifferentiated and differ-

entiated cells were smaller in cell-lines with differentiation

capability (N2a and 3T3L1) compared with ESCs. Judging from

the differentiation capability, it can be expected that cell state

differences are smaller in cell-lines with limited differentiation

capability compared with pluripotent ESCs, which may reflect the

small separation seen in the PCA analysis (Fig. 3C and 3F). In both

cell-lines with differentiation capability, there were some overlaps

between undifferentiated and differentiated cells, indicating that

some cells remain in the undifferentiated state or vice versa. This

speculation originates from the observation that some of the

undifferentiated N2a cells extend neurites, and some of the

differentiated 3T3L1 cells fail to accumulate lipid droplets. It is

interesting to note that, even though 3T3L1 cells are sub-clones of

NIH3T3 cells, the latter were located in an area of the PC1-PC2

plane different from 3T3L1. In particular, NIH3T3 cells widely

spread in the PC1-PC2 plane with some overlap with undiffer-

entiated and differentiated 3T3L1 cells. It is likely that NIH3T3

cells have a heterogeneous population, with some cells still

Figure 3. Raman images of cell-lines with differentiation capability. Raman images of Neuro2a (A) and 3T3L1 (D) cells before (left panel) and
after (right panel) the induction of differentiation (inset; bright-field image). (B, E) Averaged Raman spectra of N2a (B) and 3T3L1 (E) cells before (blue)
and after (red) induction of differentiation. Spectra are average of 15–27 cells. Spectra from the fibroblast cell-line NIH3T3 are also plotted (black).
Peaks characteristic to cytochrome C are indicated with asterisks. (C, F) Score plots of Neuro2a (C) and 3T3L1 (F) cells before (blue) and after (red) the
induction of differentiation calculated by PCA. For PCA analysis, raw spectra without averaging was used. Data from the fibroblast cell-line NIH3T3 are
also plotted (black). Each marker shows averaged score values of the spectra obtained from single nuclei. Error bar shows SD of the score values from
the same nuclei.
doi:10.1371/journal.pone.0084478.g003

ES Differentiation Visualized by Raman Microscopy
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possessing characteristics that are close to 3T3L1 cells. In

conclusion, we demonstrated that the combination of Raman

imaging and PCA is able to distinguish the cell state changes

during differentiation.

The biological meaning of the Raman spectrum diversity within

a nucleus is still unclear. It is well established that chromosomes

are arranged in tightly packed heterochromatin-rich and loosely

packed euchromatin-rich regions, which rearrange during differ-

entiation [23,24]. In addition, other particles such as Cajal bodies,

nuclear speckles, nucleolus, and PML bodies are also present in

the nucleus, with each occupying different regions [25,26,27].

These distinct nuclear sub-compartments consist of unique sets of

resident proteins and specific functions. Many lines of evidence

suggest that these nuclear domains undergo reorganization during

cell differentiation [28,29]. Since the nuclear sub-compartments in

undifferentiated cells are poorly defined [30], it seems reasonable

that the diversity of the Raman spectra of the nuclei may reflect

the presence of these sub-compartments. The present study

strongly suggests that Raman spectra enable the description of

the cell state transition and the appearance of an attractor in the

differentiation potential landscape even without comprehensive

analysis.

In this study, we were able to distinguish the extent of

differentiation of ESCs with the aid of Raman scattering

microscopy combined with PCA, which we believe will be an

advantageous tool to perform quality control on stem cells. Raman

scattering carries information on all the constituents of a cell such

as nucleic acids, proteins, and lipids, and the corresponding

spectra are subject to changes in the concentration of those

constituents. We think that morphology-based analysis of Raman

spectra, rather than chemical or biological investigations, is

sufficient to distinguish the cell status for medical and clinical

applications. In this sense, Raman spectra can be used as a cellular

fingerprint. In this context, PCA plays a role in pattern recognition

rather than spectral analysis. By recording the spectra of known

cell states, we aim to build a database of Raman spectra that can

be compared with the spectra of unknown states of other cells.

This concept is essentially analogous to the common practice in

cell biology of recognizing and predicting the state of a cell by its

morphological shape. Because Raman spectra contain a huge

Figure 4. Raman images of ESCs before and after induction of
differentiation. Bright-field (left panel) and Raman images (right
panel) of undifferentiated (A) and differentiated (B) ESCs. (C) Averaged
Raman spectra of undifferentiated ESCs (blue), differentiated ESCs (red),
and MSCs (green) in the fingerprint region (700–1800 cm21). For PCA
analysis, raw spectra without averaging was used. Spectra shown are
average of 18–44 cells.
doi:10.1371/journal.pone.0084478.g004

Figure 5. PCA analysis of Raman spectra obtained from ESCs.
(A) Calculated loading vectors of PC1–PC5 of the Raman spectra of the
nuclei in the fingerprint region. For PCA analysis, raw spectra without
averaging was used. (B) Plot of PC1 and PC2 scores. Each marker shows
the average value of the PC1 and PC2 scores of the Raman spectra
obtained from single nuclei. Error bars show SD of the score values from
the same nuclei.
doi:10.1371/journal.pone.0084478.g005

ES Differentiation Visualized by Raman Microscopy
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amount of information arising from the molecules inside the cell,

Raman spectral morphology will potentially become an indicator

for determining the state of the cells.

The present method, which treats Raman spectrum as a

fingerprint of the cell, obtains only one phenotype of the cells.

More comprehensive analysis, such as DNA microarray, enables

to directly show the gene regulatory network, even though is not

applicable for single cell analysis. Thus, in future work we aim to

use our method to study the dynamics of attractors on not PC axes

but in real axes, i.e., Oct4, Sox2 and Nanog in the stem cell state

at a single cell level.

Supporting Information

Figure S1 Averaged Raman spectra of the area without cells.

100 points from 25 individual experiments were averaged.

(TIF)

Figure S2 Phase contrast images of (A, B) Neuro2a and (C, D)

3T3L1 cells before (A, C) and after (B, D) induction of

differentiation. Scale bar, 50 mm.

(TIF)

Figure S3 Calculated loading vectors of PC1,PC5 used for

PCA analysis in Fig. 6.

(TIF)
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