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ABSTRACT

RNA pseudoknots are functional structure elements
with key roles in viral and cellular processes.
Prediction of a pseudoknotted minimum free
energy structure is an NP-complete problem.
Practical algorithms for RNA structure prediction
including restricted classes of pseudoknots suffer
from high runtime and poor accuracy for longer
sequences. A heuristic approach is to search for
promising pseudoknot candidates in a sequence
and verify those. Afterwards, the detected
pseudoknots can be further analysed using
bioinformatics or laboratory techniques. We
present a novel pseudoknot detection method
called DotKnot that extracts stem regions from the
secondary structure probability dot plot and assem-
bles pseudoknot candidates in a constructive
fashion. We evaluate pseudoknot free energies
using novel parameters, which have recently
become available. We show that the conventional
probability dot plot makes a wide class of
pseudoknots including those with bulged stems
manageable in an explicit fashion. The energy
parameters now become the limiting factor in
pseudoknot prediction. DotKnot is an efficient
method for long sequences, which finds
pseudoknots with higher accuracy compared to
other known prediction algorithms. DotKnot is
accessible as a web server at http://dotknot.csse
.uwa.edu.au.

INTRODUCTION

RNA is a versatile nucleic acid, which is no longer seen as
the passive intermediate between DNA and proteins.
Numerous functional RNAs with an astonishing variety
have been uncovered in the past decade. For example,
non-coding RNAs participate in a wide range of cellular

processes, are able to regulate gene expression and can act
as catalyst (1,2). Macromolecule function is closely con-
nected to its 3D folding and structure prediction from the
base sequence is thus of great importance. RNA structure
formation is understood to be hierarchical and, therefore,
secondary structure prediction is the foundation for
determining the tertiary folding (3,4).

There are two streams in computational RNA sec-
ondary structure prediction: comparative approaches
and single sequence methods. In general, comparative
approaches give accurate results for a set of well-
conserved sequences (5). However, comparative methods
rely on the quality of multiple alignments and are not
always feasible for RNA structure prediction, due to a
lack of reliable data sets (6).

When only a single sequence is given, the most popular
approach for RNA structure prediction is free energy min-
imization. In the minimum free energy (MFE) model, con-
tinuous base pairs contribute enthalpic terms and loop
regions are purely entropic. RNA comprises various sec-
ondary structure elements, i.e. stems, hairpin loops, bulge
loops, internal loops and multiloops. Much experimental
work has been done to determine their free energy param-
eters (7,8). The key concept that allows for dynamic pro-
gramming is that all of these motifs are non-crossing and
self-contained in terms of their free energy. The MFE sec-
ondary structure based on the additive free energy model
can be predicted in O(n?) time and O(n?) space using
dynamic programming (9,10). MFE prediction has been
extended in several ways (11). Suboptimal structures with
free energy close to the MFE can be calculated (12,13).
Using the dynamic programming principle, the full equi-
librium partition function for RNA secondary structure is
computed in O®#’) time and O(n*) space (14). From
the partition function, probabilities for base pairs and
structure elements are derived. The main advantage
of the MFE algorithm is its guarantee to find an
optimal structure with regards to the underlying
energy model. However, the inability to predict crossing
structure elements, so-called pseudoknots, is a major
drawback.
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Figure 1. A simple H-type pseudoknot. (a) Unpaired bases within a
hairpin loop bond with unpaired bases in a single-stranded region
outside the loop. (b) The resulting pseudoknot has two stems S
and S, and three loops L;, L, and Lj;. (¢) A pseudoknot has at
least two crossing stems, which can be displayed as intervals on the
line.

Pseudoknots are functional structure elements, which
have been reported in most classes of RNA (15). A
pseudoknot forms when unpaired bases in a loop pair
with complementary bases in a single-stranded region
outside the loop (Figure 1). Pseudoknots play key roles
in viral genome replication and regulation of protein syn-
thesis (16). Pseudoknots are also found in the cell where
they participate in processes such as splicing, ribosomal
frameshifting, telomerase activity and ribosome function
(17-19). In many cases, they assist in the overall 3D
folding (20,21) and should not be excluded from
computational structure prediction.

RNA secondary structure prediction with arbitrary
pseudoknots under a basic energy model is NP-complete
(22,23). Restricted classes of pseudoknots can be included
in the dynamic programming algorithm for prediction of
the MFE structure, resulting in high computational com-
plexity. In dynamic programming, there is always a
trade-off between the generality of pseudoknots, which
can be predicted, and runtime. Rivas and Eddy (24)
cover a broad class of pseudoknots including kissing
hairpins in their algorithm, which requires O(n°) time
and O(n*) space. More restricted pseudoknots are
included in other dynamic programming algorithms,
which have runtime of O(rn’) using O(n*) or O(n?) space
(22,23,25). All of these algorithms are only feasible for
short RNA sequences. The most practical method is
pknotsRG, which computes the MFE structure with
canonical simple recursive pseudoknots in O(n*) time
and O(n?) space (26). Dynamic programming does guar-
antee to find a structure with minimum free energy with
respect to the underlying energy model. However, the
energy model for pseudoknots used in dynamic program-
ming is only a simple parameterization adopted from the
affine multiloop energy model (24-26). It was first
introduced by Rivas and Eddy (24) because of the lack
of experimentally measured parameters for pseudoknot
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energies. Predictive accuracy of MFE folding is always
limited by the underlying energy model, and hence
pseudoknot prediction results are poor for longer
sequences.

Due to the computational complexity of dynamic
programming for pseudoknot prediction, heuristic
approaches were developed as an alternative. Heuristic
methods do not necessarily return the MFE structure;
however, they can include a wide class of pseudoknots
and more advanced energy models in reasonable
runtime. RNA secondary structure prediction including
pseudoknots has been approached using genetic
algorithms (27,28), stochastic context-free grammars
(29,30), kinetic folding simulations (31,32) and
maximum weighted matching in a folding graph (33).
Iterative stem adding procedures have also been
developed (34-36). In several heuristic algorithms, the
underlying energy model for secondary structures is
simple base pair maximization, neglecting loop
entropies (33,34). This may lead to unreliable results, espe-
cially for longer sequences. Another drawback is that most
heuristic methods reported in the literature employ the
same affine pseudoknot energy model as dynamic
programming.

A different algorithmic framework is used in heuristic
pseudoknot detection programs (37-40). Here, one
attempts to find promising pseudoknot candidates in a
sequence as a first step. These potential pseudoknots are
subsequently analysed and verified. After pseudoknot
detection, the remaining sequence can be folded using
free energy minimization in O(n*) time and O(n?) space.
Pseudoknot detection has two main advantages over
dynamic programming. First, it is computationally much
more efficient and, therefore, practical for scanning long
RNA sequences for pseudoknots. Second, the underlying
framework is less restrictive and allows for easy incorpo-
ration of sophisticated energy rules for pseudoknots or
even comparative information. Pseudoknot detection
delivers accurate pseudoknot prediction results for
longer sequences in many cases (37,39).

Pscudoknot energy models have been studied in more
detail in the past years and reliable energy parameters are
in high demand. It is widely accepted that pseudoknot
energy cannot be estimated with an additive model as
used in MFE folding. There is strong interference
between opposite loops and stems (L; and S,, L3 and
S1), which come in close contact in the 3D fold. In a
simple hairpin type (H-type) pseudoknot, loops L; and
L; span across the deep narrow (major) groove and the
shallow wide (minor) groove, respectively. The corre-
sponding loop entropies are, therefore, not equivalent
and depend on the structure and length of the opposite
stem (41,42).

The lack of loop entropy parameters is a critical issue
in pseudoknot prediction (43). For H-type pseudoknots
with interhelix loop size <1nt, loop entropy values were
derived using several fitted parameters (41). Gaussian
chain approximation based on polymer physics for
pseudoknot loop entropies was also proposed (44).
Lattice-based models were developed to take into
account volume exclusion effects (45-47). The most
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successful models are based on the atomic coordinates of
the RNA backbone. Using polymer statistical mechanics,
Cao and Chen (42) calculated loop entropy parameters
for pseudoknots with interhelix loop size <Int.
Recently, their so-called virtual bond model has been
extended to pseudoknots with interhelix loop size
< 6nt (48). Inclusion of such a pseudoknot energy
model is not straightforward in dynamic programming
in reasonable runtime due to dependencies between
opposite loops and stems. Calculation of the full partition
function under the virtual bond model takes O(n°®) time
and O(n?) space, making the approach only feasible for
sequences shorter than say 150nt (42). However,
pseudoknot energy parameters derived from the virtual
bond model are readily available in tabular form for
many stem and loop length combinations (42,48). It is
straightforward to incorporate such energy parameters
in a pseudoknot detection approach, making prediction
using much improved energy models feasible for long
sequences.

We present DotKnot, a pseudoknot prediction method
that incorporates stem—loop correlated pseudoknot energy
parameters from the virtual bond model (42,48). The
workflow is similar to the detection approach used in
KnotSeeker (39), with two main improvements. First, a
secondary structure partition function calculation in
O(n®) time and O(n?) space is the basis for finding a set
of promising structure elements with high confidence (14).
This set includes heuristically derived bulge loops, internal
loops and multiloops with low free energy. Second,
pseudoknot candidates are assembled using the set of
promising structure elements and, therefore, loop
entropy parameters can readily be used for pseudoknot
energy evaluations (42,48). There is no dynamic program-
ming kernel for verification of pseudoknot candidates.
This is a major step towards successful pseudoknot pre-
diction as the vast majority of methods in the literature
use simple approximations of pseudoknot energies.
However, improving the folding model behind the
algorithmic framework is clearly the key to accurate pre-
diction (43).

DotKnot predicts the class of recursive H-type
pseudoknots where one of the pseudoknot stems can be
interrupted by bulge or internal loops. All of the
three pseudoknot loops are allowed to form internal
secondary structures. Using the set of structural
elements derived from the probability dot plot as a con-
struction kit, we could predict a broad class of
pseudoknots, including kissing hairpins, in an efficient
manner. However, our knowledge about energy param-
eters and folding mechanisms become the limiting fac-
tor for a pseudoknot search tool such as DotKnot.
Given an RNA sequence, DotKnot returns only the
(possibly empty) set of detected pseudoknots. These
detected pseudoknots can subsequently be verified using
laboratory techniques or comparative information. The
remaining non-crossing sequence can then be folded in
O(n*) time and O(n?) space using state-of-the-art RNA
secondary structure prediction algorithms to obtain a
global folding.
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Figure 2. Workflow used by DotKnot for detecting pseudoknots in a
sequence using the probability dot plot. MWIS stands for maximum
weight independent set calculation (56).

MATERIALS AND METHODS

The detailed workflow for DotKnot is shown in Figure 2.
Given an RNA sequence, DotKnot finds sequence frag-
ments with pseudoknot folding potential. These candi-
dates are analysed in terms of their free energy values
and credibility in the folded sequence. The output is a
(possibly empty) set of detected pseudoknots, which can
then be examined closely.

Stems in the probability dot plot

RNA structure forms through complementary base
pairing, resulting in stabilizing stems and destabilizing
loop regions. The basic building blocks for a pseudoknot
are two crossing stems. We use the probability dot plot
derived from the partition function as a guide for finding
such building blocks. Given an RNA sequence, the parti-
tion function Q is defined as the weighted sum over the
set of all possible secondary structures S, i.e.
O(T) =Y e 20/RT where R is the universal gas
constant and 7 the temperature. Once the partition
function is known, probabilities for base pairs and struc-
ture elements can be calculated. The software RNAfold
returns the probability dot plot representing both base
pair probabilities and stack probabilities (11). The stack
probability P; for a base pair (i, ) is defined as the prob-
ability that pair (7,j) and the subsequent pair (i + 1,/ — 1)
are formed simultaneously (49).

It has been shown that choosing base pairs with high
probability can improve secondary structure prediction
(50). There are also several approaches that discuss the
exclusion of base pairs with low probability for improving
runtime. Here, the common technique is to use a cut-off
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value for base pair probabilities in order to determine only
significant base pairs (51). However, for pseudoknot stems
we cannot simply dismiss base pairs with low probability.
The partition function calculation is based on the
ensemble of secondary structure elements, which are
non-crossing interactions. In general, the pseudoknot
stems are visible in the probability dot plot as they are
members of the folding space. One can expect that at
least one of the pseudoknot stems will have low base
pair and stack probabilities. By default, RNAfold only
displays probabilities larger than 1 x E~>. For pseudoknot
detection in the dot plot, we use a cutoff probability of
1 x E™'"" to make sure that all pseudoknot stems can be
found for long sequences.

Given the probability dot plot, stems are assembled
according to certain criteria. First, a stem must have
at least three base pairs. Second, one can expect that
the stack probabilities in a stable stem do not rise or
drop sharply (49). Helix eclongation is an energeti-
cally favourable process; however, wobble base pairs
can be destabilizing (8,52,53). Furthermore, there
may be other stable secondary structure elements
competing for base pairs. Therefore, we demand that
the absolute percentage increase or decrease of
stack probabilities for subsequent base pairs (i, ),
(i+1,j—1) in a stem has to be smaller than a certain
threshold §.

One has to keep in mind that base pair probabilities are
not independent. Therefore, stem probabilities can never
be calculated by simply multiplying the base pair
probabilities. However, the average probability of
participating base pairs in a stem can be used as a confi-
dence indicator (54). In our approach, we calculate the
confidence ¢ for a stem as the average stack probabilities.
For each stem, an absolute weight is introduced in
addition. The confidence ¢ is based on the energy
model for secondary structures, excluding pseudoknots.
Therefore, pseudoknot stems tend to have low average
probabilities especially for longer sequences, which does
not necessarily correspond to their dominance in native
RNA structures. We assign two additional weights for a
stem based on a local energy evaluation. The simple
stacking model employs the favourable base pair
stacking parameters in a stem; however, it excludes the
destabilizing energy contributed by the hairpin loop. The
more sophisticated free energy model includes all entropy
and enthalpy parameters derived by the Turner group (8).
The tool RNAeval is used to evaluate the local free
energies of the stem candidates according to the two
energy models introduced above, taking into account
dangling ends on both sides (11). DotKnot stores two
stem weights wy,x(s;) (simple stacking model) and w(s;)
(free energy model) for a stem s;. Only stems s; satisfying
the following conditions are kept: wy,ex(s;) <0.0 kcal/mol
and w(s;) <4.0 kcal/mol. The resulting stems are stored in
a stem dictionary D = {s1,52,...,5,}. Each stem s; has a
unique key (a;,b;), where a; is the start position and b; the
end position of the stem in sequence S. For each stem s,
we store its length and the following values in the stem
dictionary: ¢(s;),Wswer(s;) and w(s;).
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Figure 3. (a) Example for a stem s interrupted by a bulge loop and an
internal loop. (b) The corresponding secondary structure is shown.

Finding bulges, internal loops and multiloops

In RNA structures, stems are often interrupted by bulge
loops or internal loops. In the following, a stem inter-
rupted by bulge loops or internal loops is denoted as s*
(Figure 3). Naive construction of interrupted stems s*
from the stem dictionary Dy would be inefficient due to
a large number of possible stem combinations. Therefore,
we employ a heuristic strategy for finding interrupted
stems with low free energy.

Given the stem dictionary Dy, interrupted stems are
constructed using maximum weight independent set
(MWIS) calculations with the confidence indicators as
stem weights (Supplementary Algorithm 1). Using confi-
dence ¢ instead of local free energy gives better results in
the MWIS calculation. First, it implicitly penalizes the
formation of long bulge or internal loops. Second, the
confidence is a relative measurement based on the whole
folding ensemble. Only stems s; with confidence
c(sj) =1 x E™® are considered as base pairs below this
threshold are unlikely to participate in non-crossing sec-
ondary structure formation (55). This cutoff step also
significantly reduces runtime for longer sequences. Each
stem s; € Dy has two (left and right) endpoints @; and b;
and is represented as an interval on the line. First, the
sorted endpoints list for all stems is constructed and
scanned from left to right. If a right endpoint is dis-
covered, a candidate list of stems nested in the interval
s; = [a; : b;] is returned for the corresponding stem s;.
A MWIS calculation on the candidate list returns the set
of internal stems with maximum weight in linear time (56).
The outer stem s; can, therefore, become an interrupted
stem s* with bulges and internal loops or the exterior stem
of a multiloop. The sum of confidences serves as the
updated weight for outer stem s;. After the whole
endpoints list has been scanned, stems interrupted by
bulge loops or internal loops are stored in a new dictio-
nary DL, Multiloops are stored in a separate dictionary
DM, As a last step, the free energies of the interrupted
stems and multiloops are evaluated with the tool
RNAeval (11). Only structure elements with negative
free energy are stored.

So far, DotKnot derived a set of regular stems, inter-
rupted stems and multiloops in a heuristic fashion from
the probability dot plot (Figure 2). There is no guarantee
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Figure 4. Construction of a recursive H-type pseudoknot. On the first level, two stems form a core H-type pseudoknot. On the second level,
recursive secondary structure elements may form in each of the three loops. On the third level, the recursive H-type pseudoknot is assembled.

to find the structure element with local minimum free
energy for a given sequence stretch. However, dictionaries
DE and DM will contain structures with free energy value
close or equal to the local minimum free energy. These
elements will be of great benefit for the elimination of
false positive pseudoknots.

Construction of candidate pseudoknots

One major advantage of the detection approach is that the
pseudoknot prediction target class is predefined and trans-
parent. In contrast, dynamic programming algorithms
construct pseudoknots through their recursion scheme,
which in some cases leads to unspecific pseudoknot
target classes (24,57). In this work, recursive H-type
pseudoknots will be considered similar to the class of
pseudoknots predicted by pknotsRG (26). A recursive
H-type pseudoknot has two crossing stems S; and S»,
resulting in three loops L;, L, and L3. All of the three
loops are allowed to form internal secondary structures;
however, loop—loop interactions are not allowed. In this
work, we also include pseudoknots where one of the stems
S1 or S is interrupted by bulges or internal loops. This
leads to a more comprehensive prediction class as in
pknotsRG, where only bulges of size 1 nt are considered
(26). In general, the three dictionaries D;, DX and DM
allow for the construction of complicated pseudoknot
folds. For example, it is straightforward to construct
kissing hairpins from the stem dictionary. The pseudoknot
energy parameters become the bottleneck in this
approach, not necessarily the complexity of pseudoknots.

The three main steps for constructing recursive H-type
pseudoknots are shown in Figure 4. First, so-called core
H-type pseudoknots form through simple combination of
two crossing stems. They become recursive H-type
pseudoknots when additional secondary structure
elements fold in each of the three loops. Note that
recursive pseudoknots are not allowed in the loops as
this may lead to sterically infeasible configurations. The
overall recursive H-type candidate pseudoknot is
assembled in a third step.

First level: assembling core H-type pseudoknots

On the first level, two crossing stems are combined to form
a core H-type pseudoknot (Figure 4). Core H-type
pseudoknots are the building blocks for more complex
pseudoknots. The pseudoknot stems can either be

regular stems taken from the dictionary D; or interrupted
stems from the dictionary DL (Figure 5). Here, we only
allow pseudoknots with at most one interrupted stem
because for more complex and less rigid pseudoknots we
would have to employ a highly assumptive energy model.
Certain loop length restrictions are applied because more
meaningful results can be expected from prediction of
shorter and well-studied pseudoknots. Loop L; and L;
are both required to have at least 1 and 2 nt, respectively.
Interhelix loop L, can have a size of Ont. All three loops
are restricted to a maximum length, as there are no reliable
energy parameters for very long pseudoknots. Loops L
and L; can have a length of up to 100nt, whereas
interhelix loop L, is restricted to a maximum length of
50 nt. During construction of the pseudoknot candidates,
we discovered that crossing stems may compete for a base
pair. This leads to an overlap at loop L,. In such a case,
one of the stems is truncated according to certain
rules (Supplementary Figure S2 and Supplementary
Algorithm 2).

There is little knowledge about the 3D folding of
complex pseudoknots with interrupted stems, which may
lead to bending or distortions of the RNA A-helix. Loops
Ly and L3 need to cross the major and minor groove of
stems S, and S), respectively. To disallow sterically
infeasible configurations for long interrupted stems, we
make the following assumptions (41). For interrupted
stems with more than 10bp (including bulges and
internal loops), the loops bridging the stems must have a
minimum length: loop L; must be >2nt and loop L3 must
be >6 nt.

After the first level of pseudoknot construction, free
energy values are evaluated for each core H-type
pseudoknot, which allows to filter unlikely pseudoknots.
Only pseudoknots with low free energy (and therefore
likely to form) will remain for the next step, which
involves recursive secondary structure formation in the
three pseudoknot loops. For all core H-type pseudoknots
D1, --->Pu, free energy AG is calculated as

AG(pi) = Wslack(Sl) + Wstack(SZ) - TASLI,LZ,L_;

where TASy, 1,1, is the purely entropic free energy for
loops L;, L, and L;. Three different pseudoknot energy
models are employed for the loop entropy calculation,
each of that comprise pseudoknots with certain character-
istics. The length of loop L, determines which energy
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Figure 5. On the first level of pseudoknot construction two stems form a crossing structure. (a) Two regular stems s; and s; are crossing. (b) Stem s*

and stem s; are crossing. (¢) Stem s; and stem s/.L are crossing.

model is used for the respective pseudoknot candidate
(Table 1). For details on pseudoknot loop entropy
calculation using the virtual bond models CC06 and
CCO09 see (42) and (48), respectively. For pseudoknots
with long interhelix loop L,, there is no physical loop
entropy model available and we have to employ heuristics
(24-26). This heuristic energy model (LongPK) is also
used for pseudoknots with one interrupted stem regardless
of the length of loop L,. Stems interrupted by long bulge
or internal loops are likely to result in bending rather than
rigid formations (48). Therefore, the loop entropy calcu-
lation becomes intricate. We calculate the loop entropy as
TASL 1,0, =a+ B x L, where L is the number of
unpaired nucleotides in the three pseudoknot loops with
o = 7.0 kcal/mol and g = 0.1 kcal/mol.

For pseudoknots with regular stems and loop length L,
of 0 or Int, one can generally assume that the two
pseudoknot stems are coaxially stacked. This leads to a
stabilizing effect for the two base pairs at the interhelix
junction. Here, coaxial stacking is calculated using the
Turner energy model, multiplied by an estimated
weighting parameter ¢ < 1 and added to the free energy
of a pseudoknot (7,8,24). For pseudoknots with inter-
rupted stems and absent loop L,, we also add the appro-
priate coaxial stacking energy multiplied by an estimated
weighting parameter g < 1. After energy evaluation, only
pseudoknots with negative free energy are stored in the
pseudoknot dictionary D,. Additionally, we demand that
the free energy of a core H-type pseudoknot needs to be
lower than the free energies w(S;) and w(S;) of the
pseudoknot stems S; and S>.

Second level: recursive structure formation

Secondary structure elements often form in pseudoknot
loops, resulting in a recursive pseudoknot. After finding
stable core H-type pseudoknots, the three loops L, L,

Table 1. Three different energy models used for pseudoknot energy
evaluation

ID Loop L, Stems Sy, S> Entropy TAS
CC06 Ont <|L,| <1nt regular Virtual bond model
CC09 2nt <|Ly| <6nt regular Virtual bond model
LongPK 7nt <|Ly] <50nt regular Heuristic model
0Ont <|Ly] <50nt interrupted Heuristic model

and L; are examined for likely secondary structure
elements. It is a valid assumption that the three loops
form recursive elements independently and can be
treated separately (Figure 4). From an algorithmic point
of view, it is efficient to find recursive structure elements
using a MWIS calculation (Supplementary Algorithm 3).
Given a core H-type pseudoknot, three candidate lists
hold all possible secondary structure elements from
dictionaries Dy, DX and DY contained in each of the
loops Ly, L, and L;. A standard MWIS calculation with
free energy weights for each of the three lists returns the
set of secondary structure elements with best local free
energy for each loop. The results are combined to form
a recursive H-type pseudoknot.

For each recursive H-type pseudoknot, we need to
evaluate the free energy with respect to the recursive struc-
ture elements. As described in Table 1, the set of
pseudoknots is divided into the three different classes
according to the length of loop L,. To account for
recursive structure elements, the loop entropies need to
be recalculated. Following the notation in Cao and
Chen (48), we first calculate the effective loop lengths.
The effective loop length £ for a pseudoknot loop L,
(i =1, 2,3) with internal structure elements is the number
of unpaired nucleotides outside those internal structure
elements plus the number of internal structure elements.
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For all pseudoknots with recursive structure elements, the
loop entropy is recalculated using the effective loop
lengths. Internal secondary structure elements add free
energy values as given by the Turner energy model (8).
We keep only pseudoknots p; in the pseudoknot dictio-
nary D,, which satisfy the following two conditions. First,
a recursive H-type pseudoknot must have free energy
AG(p;)) < —5.25 kcal/mol. Second, the normalized
pseudoknot free energy must fulfill AG(p;)/l; < e where
[; denotes the length of pseudoknot p;. Setting the thresh-
old to e = —0.25 is not too restrictive; however, it helps us
to eliminate pseudoknots with high free energy (58). For
example, for the 3-UTR TMV sequence with length
214nt, we have 445 candidate stems in dictionary Dy
and 2026 pseudoknot candidates before filtering. After
the length-normalized filtering step, only 274 pseudoknot
candidates remain.

Verification of pseudoknot candidates in the sequence

The set of recursive H-type pseudoknots stored in dictio-
nary D, will certainly contain false positive pseudoknots.
Therefore, a MWIS calculation with local free energy
weights is employed using the structure elements from
all four dictionaries: Dy, DX, DM and D,. Stems s; € D;
need to have confidence c(s;) > 1 x E~ to participate (55).
Furthermore, stems are allowed to contain nested struc-
ture elements, including pseudoknots. The MWIS proce-
dure with nesting is described in detail in KnotSeeker (39).
Note that we do not include the free energy gain of —1.5
kcal/mol for the outer loop as in KnotSecker, because
favourable nested structures are already included
through dictionaries DX and DY,

RESULTS

We evaluated our algorithm on a set of pseudoknotted
and pseudoknot-free sequences of different RNA types
(Table 2). Given a sequence, DotKnot is a method that
predicts only pseudoknots. Therefore, predictive accuracy
is measured for base pairs belonging to a pseudoknot.
Two measurements are used for comparison of DotKnot
and other selected algorithms from the literature. For each
published pseudoknot in a sequence we report sensitivity

Table 2. RNA types and sequences used for pseudoknot prediction

Type of RNA Sequence ID Reference
5S rRNA 5SColi, 5SDmobilis (59)
tRNA DA0260, DC0010, DY4441 (60)
miRNA Dros-mel, ath-MIR156a, Human-mi (61)
Ribozymes HDV, HDVanti (62,63)
IRES CrPV (64)
3-UTR BCV, MHV, NeRNV, TMV (65-67)
tmRNA EColi-tmRNA, LP-tmRNA (68)
Aptamer HIVI-1.3a (69)
Viral tRNA-like LRSVbeta, TYMV (70,71)
Frameshifting BWYV, JEV, MEV, VMV, SARS-CoV (72-75)
Telomerase Human-telo, Tetra-telo (76)
5-UTR HPeV1 (77)
mRNA T2, T4 (78)

Note that 5S rRNA, tRNA and miRNA are pseudoknot-free.
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S =100 x (TP/TP + FN) and the positive predictive
value PPV =100 x (TP/TP + FP). True positive (TP)
corresponds to the number of correctly predicted base
pairs in the predicted pseudoknot, False negative (FIN)
to the number of base pairs in the published pseudoknot
that were not predicted and False positive (FP) to the
number of incorrectly predicted base pairs in the predicted
pseudoknot. A pseudoknot is said to be predicted by
an algorithm if it is a crossing structure element and
at least one of the two pseudoknot stems is partially
predicted. Furthermore, the ratio r= (number of
correctly predicted pseudoknots)/(number of predicted
pseudoknots) is reported. We compare DotKnot to two
dynamic programming methods, namely pknots (24)
and pknotsRG (26), the pseudoknot detection tool
KnotSeeker (39) and the heuristic approach HotKnots
(35). HotKnots returns a number of sub-optimal sce-
narios; however, we only evaluate predictive accuracy
for the best solution.

5S rRNA, tRNA and miRNA are pseudoknot-free
types of RNA. For the 5S rRNA and miRNA sequences
chosen in our test set, DotKnot does not introduce any
spurious pseudoknots. For two of the tRNA sequences,
DotKnot predicts false positive psecudoknots. KnotSeeker,
pknotsRG and HotKnots also predict false positive
pseudoknots for some of the tRNA sequences.
Minimum free energy prediction is known to have low
accuracy for tRNAs. This is due to modified bases as
well as coaxially stacked helices, which determine the
characteristic 3D cloverleaf fold of tRNAs (24,206).
Coaxial energies are implemented by pknots, which
might explain why it does not predict false positive
pseudoknots for the tested tRNA sequences.

Several of the test sequences contain pseudoknots where
one of the core pseudoknot stems is interrupted by bulges
or internal loops: Escherichia coli tmRNA, Legionella
pneumophila  tmRNA, the SARS frameshifting
pseudoknot, human telomerase and Tetrahymena
telomerase. For all of these pseudoknots, DotKnot
delivers the best results in terms of sensitivity and
specificity. For example, the Tetrahymena telomerase
RNA (TER) contains a pseudoknot with a conserved
central GA bulge in one of its stems, which is vital for
telomerase function (76). DotKnot perfectly predicts this
bulged pseudoknot, while all other methods do not predict
a pseudoknot structure. The biological relevance of
pseudoknots with bulged residues should not be
underestimated. Therefore, a prediction algorithm that
can handle pseudoknots with interrupted stems such as
DotKnot is highly desirable.

For complex pseudoknot foldings such as the hepatitis
delta virus (HDV) double pseudoknot configuration,
DotKnot gives the best prediction results out of all
tested algorithms. The CrPV IRES has a long pseudoknot,
which contains another nested pseudoknot. For this
pseudoknot, DotKnot also gives the best prediction in
terms of sensitivity and PPV.

DotKnot has excellent accuracy for simple H-type
pseudoknots as those reported in many viral 3’-UTRs
and frameshifting regions. We found that the energy
models CC06 and CC09 used for predicting such
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Table 3. Summary of pseudoknot detection results on various RNA sequences
Sequence DotKnot KnotSeeker pknotsRG pknots HotKnots
ID nt PK S PPV S PPV  r S PPV  r S PPV  r S PPV  r
5SColi 120 0 - - 0/0 - - 0/0 - - 0/0 - - 0/0 - - 0/0
5SDmobilis 133 0 - - 0/0 - - 0/0 - - 0/0 - - 0/0 - - 0/0
DA0260 75 0 - - 0/1 - - 0/1 - - 0/0 - - 0/0 - - 0/1
DC0010 73 0 - - 0/0 - - 0/1 - - 0/0 - - 0/0 - - 0/0
DY4441 730 - - 0/2 - - 0/0 - - 0/1 - - 0/0 - - 0/0
Dros-mel 81 0 - — 0/0 - - 0/0 - - 0/0 - - 0/0 - - 0/0
ath-MIR156a 123 0 - - 0/0 - - 0/0 - - 0/0 - - 0/0 - - 0/0
Human-mi 110 0 - - 0/0 - - 0/1 - - 0/0 - - 0/1 - - 0/0
HDV 87 1 93.8 100 1/1 90.6 93.6 1/1 90.6 93.6 1/1 81.3 81.3  1/1 0 0 0/0
HDVanti 91 1 100 96.1 1/1 84 75 1/1 0 0 0/0 44 334 1/1 0 0 0/0
CrPV 190 2 52.3 57.5 2/2 20.5 321 22 0 0 0/0 * * * 0 0 0/0
78.6 73.4 78.6 73.4 0 0 * * * 0 0
BCV 345 1 100 81.2 /1 100 920 /1 100 90 1/1 * * * 0 0 0/0
MHV 315 1 100 81.2 /1 100 920 1/2 100 90 1/3 * * * 0 0 0/0
NeRNV 287 5 100 100 4/7 100 88.9 4/4 0 0 12 * * * 0 0 0/0
77.8 100 77.8 87.4 0 0 * * * 0 0
90 100 90 100 0 0 * * * 0 0
0 0 0 0 0 0 * * * 0 0
100 100 100 100 100 100 * * * 0 0
TMV 214 5 100 100 5/5 77.8 87.5 5/5 0 0 0/0 * * * 0 0 0/0
100 100 81.8 90 0 0 * * * 0 0
88.9 100 88.9 100 0 0 * * * 0 0
95.7 86.9 100 95.8 0 0 * * * 0 0
100 100 100 100 0 0 * * * 0 0
EColi-tmRNA 363 4 100 100 3/5 100 100 2/3 0 0 0/0 * * * 0 0 0/0
100 100 0 0 0 0 * * * 0 0
0 0 28.6 40 0 0 * * * 0 0
68.4 81.3 0 0 0 0 * * * 0 0
LP-tmRNA 362 4 920 920 3/8 0 0 0/2 0 0 0/0 * * * 0 0 0/0
0 0 0 0 0 0 * * * 0 0
25 26.7 0 0 0 0 * * * 0 0
70.6 100 0 0 0 0 * * * 0 0
HIVI-1.3a 37 1 100 100 /1 100 100 /1 100 100 /1 100 100 /1 100 100 1/1
LRSVbeta 221 1 85.3 87.9 1/1 14.7 62.5 1/1 0 0 0/0 * * * 0 0 0/0
TYMV 85 2 0 0 1/2 0 0 1/1 0 0 1/1 0 0 1/1 0 0 0/0
62.5 55.6 100 80 62.5 50 100 88.9 0 0
BWYV 69 1 50 57.1 1/1 37.5 50 /1 0 0 0/1 0 0 0/0 100 88. /1
JEV 138 1 100 78.3 /3 100 920 1/2 0 0 0/0 0 0 0/1 0 0 0/0
MEV 138 1 100 72 1/2 0 0 0/1 0 0 0/1 0 0 0/0 0 0 0/0
VMV 79 1 100 82.3 /1 100 823 1/1 0 0 0/0 100 609 1/1 0 0 0/0
SARS-CoV 244 1 92.3 100 1/2 92.3 923 1/3 38.5 66.7 1/1 * * * 38.5 55. 1/1
Human-telo 210 1 61.3 51.3 1/1 35.5 355 1)2 0 0 0/1 * * * 0 0 0/0
Tetra-telo 159 1 100 100 1/1 0 0 0/0 0 0 0/0 0 0 0/0 0 0 0/0
HPeV1 709 1 54.5 54.5 1/7 100 100 1/8 54.5 545 1/4 * * * 0 0 0/0
T2 946 1 100 100 1/9 100 100 1/5 100 100 1/1 * * * 0 0 0/0
T4 1340 1 100 100 1/10 100 100 1/8 0 0 0/1 * * * 0 0 0/0

For each pseudoknot, the best results in terms of both sensitivity S and positive predictive value PPV are marked in bold. The * symbol indicates
that we were not able to run the algorithm due to the high time and space requirements. PK corresponds to the number of pseudoknots in the
sequence as reported in the literature. We use pknots 1.05 with coaxial energies, pknotsRG 1.3 and HotKnots 1.2 without suboptimal solutions.

pseudoknots give better

results

than the

heuristic

sequences except T2 and T4, which take several minutes.

pseudoknot energy parameters employed by the other
algorithms. For example, the NeRNV and TMV
3-UTRs both have five pseudoknots where four are
simple H-type pseudoknots with interhelix loop <1 nt.
For these pseudoknots, DotKnot gives the most
accurate predictions, which we claim is due to the
improved energy parameters by Cao and Chen (42.,48).
In terms of computational performance, DotKnot is
very efficient due to the sparseness of the probability dot
plot, the resulting low number of pseudoknot candidates
and the implementation using dictionaries in Python.
DotKnot runs in the order of seconds for all of the test

For T4 with 1340nt, we have 6567 candidate stems in
dictionary D, and 7534 pseudoknot candidates before fil-
tering. After the length-normalized filtering step, only 100
pseudoknot candidates remain for verification. Overall, it
takes DotKnot <5min to predict the correct pseudoknot
in this sequence on our reference machine (Intel QC
2.66 GHz, 4GB RAM). This is significantly faster than
HotKnots, which takes 29min, and pknotsRG, which
takes 31 min. KnotSeeker is even faster than DotKnot
and takes <2min for the T4 sequence, because it does
not rely on a partition function calculation. However,
DotKnot is a more powerful prediction algorithm than
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KnotSeeker due to the inclusion of pseudoknots with one
interrupted stem.

CONCLUSION

We presented DotKnot, a program that detects recursive
H-type pseudoknots given an RNA sequence. Pseudoknot
detection is a promising and efficient approach for
determining the folding of an RNA. Using pseudoknot
detection tools such as DotKnot, KnotSeeker or
HPknotter, one can find likely pseudoknots in a
sequence with high accuracy (37,39). The structure of
the detected pseudoknots can subsequently be investigated
using laboratory or bioinformatics techniques. The
remaining non-crossing sequence can be folded using sec-
ondary structure prediction algorithms in O(n*) time and
O(n*) space. DotKnot and other pseudoknot detection
approaches are very time efficient, even allowing
scanning of long regions in viral genomes.

DotKnot assembles pseudoknot candidates from a set
of structural building blocks. This set contains stems,
bulge loops, internal loops and multiloops. In general,
complex pseudoknots can be constructed. However,
there is a trade-off between the generality of predictable
pseudoknots and the biological relevance of the result.
Therefore, we restrict DotKnot to the prediction of
recursive H-type pseudoknots where one of the
pseudoknot stems can contain bulges and internal loops.
For these recursive H-type pseudoknots, we are confident
that the pseudoknot energy parameters used give a good
approximation. For more complex pseudoknot folds such
as those with loop-loop interactions, we would have
to employ a highly assumptive energy model, thus
sacrificing predictive accuracy. In the future, DotKnot
will be extended to the prediction of kissing hairpins and
other biologically relevant classes of pseudoknots.

DotKnot uses stack probabilities from the probability
dot plot as the basis for finding pseudoknot building
blocks. At this stage, only a single sequence is accepted
as an input. It is well-known that functional pseudoknots
are highly conserved in nature, for example in virus
families. The pseudoknot detection framework used in
DotKnot allows for incorporation of comparative infor-
mation using aligned probability dot plots. One can expect
that reliable alignments will greatly improve confidence in
the predicted pseudoknots. Especially for complex
pseudoknot foldings such as those found in bacterial
tmRNA or in the telomerase RNA component, inclusion
of comparative information will be invaluable.
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