11777 measured reflections

 $R_{\rm int} = 0.052$

3274 independent reflections

2177 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3-oxo-2-[(4-sulfamovlphenyl)hydrazono]butyrate

K. K. Upadhyay,^a* Priyanka Rai,^b Shalini Upadhyay^a and M. Nethaji^c

^aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005. India. ^bDepartment of Chemistry, Udai Pratap College (Autonomuos). Varanasi 221 002, India, and ^cDepartment of Inorganic and Physical Chemistry, Indian Institute of Sciences, Bangalore 560 012, India Correspondence e-mail: drkaushalbhu@yahoo.co.in

Received 10 August 2009; accepted 12 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.222; data-to-parameter ratio = 16.4.

In the title compound, $C_{12}H_{15}N_3O_5S$, an intramolecular N- $H \cdots O$ hydrogen bond between the hydrazine unit and one of the carbonyl groups may influence the molecular conformation. In the crystal structure, intermolecular $N-H \cdots O$ hydrogen bonds, including one which is bifurcated, link the molecules into a two-dimensional network.

Related literature

For background to sulfa drugs and their derivatives, see: Abbate et al. (2004); Badr (2008); Hanafy et al. (2007); Novinson et al. (1976); Supuran et al. (2003); Upadhyay et al. (2009); Zhong et al. (2007). For the synthesis of the title compound, see: Prakash & Gambhir (1964).

Experimental

Crystal data C12H15N3O5S $M_r = 313.33$ Monoclinic, $P2_1/n$ a = 7.490 (6) Å b = 14.819 (12) Å c = 12.689 (10) Å $\beta = 95.219 \ (14)^{\circ}$

$V = 1402.6 (19) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.26 \text{ mm}^{-1}$
T = 293 K
0.24 \times 0.22 \times 0.20 mm

Data	colle	ction

Bruker SMART APEX diffractometer Absorption correction: multi-scan

```
(SADABS; Bruker, 2005)
T_{\min} = 0.940, \ T_{\max} = 0.951
```

Refinement

ŀ v

$R[F^2 > 2\sigma(F^2)] = 0.070$	H atoms treated by a mixture of
$wR(F^2) = 0.222$	independent and constrained
S = 0.87	refinement
3274 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ N1-H1O4 0.86 1.95 2.597 (5) 131 N3-H3BO5 ⁱ 0.77 (5) 2.33 (4) 2.941 (6) 137 (4) N3-H3BO5 ⁱ 0.77 (5) 2.52 (5) 3.208 (6) 149 (5) N2 N2.21 (5) 2.21 (5) 2.003 (6) 149 (5)					
N1-H1O4 0.86 1.95 2.597 (5) 131 N3-H3 B O6 ⁱ 0.77 (5) 2.33 (4) 2.941 (6) 137 (4) N3-H3 B O5 ⁱ 0.77 (5) 2.52 (5) 3.208 (6) 149 (5) N2 H24 O4 ⁱⁱ 0.85 (6) 2.51 (6) 2.093 (6) 149 (5)	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N_3 - H_3 A \cdots O 4$ 0.85 (5) 2.21 (5) 5.005 (6) 154 (4)	$N1-H1\cdots O4$ $N3-H3B\cdots O6^{i}$ $N3-H3B\cdots O5^{i}$ $N3-H3A\cdots O4^{ii}$	0.86 0.77 (5) 0.77 (5) 0.85 (5)	1.95 2.33 (4) 2.52 (5) 2.21 (5)	2.597 (5) 2.941 (6) 3.208 (6) 3.003 (6)	131 137 (4) 149 (5) 154 (4)

Symmetry codes: (i) -x, -y, -z + 2; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

KKU and SU are grateful to the CSIR, New Delhi, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2879).

References

- Abbate, F., Casini, A., Owa, T., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 217-223.
- Badr, E. E. (2008). J. Disper. Sci. Technol. 29,1143-1149.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47-50.
- Novinson, T., Okabe, T., Robins, R. K. & Matthews, T. R. (1976). J. Med. Chem. 19, 517-520.
- Prakash, A. & Gambhir, I. R. (1964). J. Indian Chem. Soc. 41, 133-136.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558. Upadhyay, K. K., Upadhyay, S., Kumar, K. & Prasad, R. (2009). J. Mol. Struct. 927. 60-68.
- Zhong, Z., Chen, R., Xing, R., Chen, X., Liu, S., Guo, Z., Ji, X., Wang, L. & Li, P. (2007). Carbohydr. Res. 342, 2390-2395.

supplementary materials

Acta Cryst. (2009). E65, o2499 [doi:10.1107/S1600536809036927]

Ethyl 3-oxo-2-[(4-sulfamoylphenyl)hydrazono]butyrate

K. K. Upadhyay, P. Rai, S. Upadhyay and M. Nethaji

Comment

Sulfadrugs and their derivatives have attracted much attention due to their wide spectrum of pharamaceutical (Abbate *et al.*, 2004; Badr, 2008; Supuran *et al.*, 2003) and biological applications (Hanafy *et al.*, 2007, Zhong *et al.*, 2007). Recently we reported details of a diazo derivative of sulfathiazole (Upadhyay *et al.*, 2009) as a naked eye sensor for Hg(II) in DMSO. Although the title compound (I) has been reported in the literature (Prakash & Gambhir, 1964) its crystal structure determination has not been undertaken until now.

The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H…O hydrogen bond between the hydrazine unit and one carbonyl groups may influence the molecular conformation. In the crystal structure, intermolecular N—H…O hydrogen bonds, including one which which is bifurcated, link molecules in a two-dimensional network (see Fig. 2).

Experimental

Compound (I) was synthesized using the literature procedure (Novinson *et al.*, 1976) as follows. Sulphanilamide (2 mmol, 344 mg) and sodium nitrite (~4 mmol, 300 mg) were dissolved separately in conc. HCl (2 ml) and distilled water (10 ml), respectively, followed by cooling on crushed ice. The cooled sodium nitrite solution was added to the sulphanilamide solution with constant stirring while maintaining the temperature. The resulting yellow solution was added to a mixture of ethyl aceto acetate (2 mmol, 0.25 ml) and sodium acetate (~37 mmol, 3 g) in distilled water (15 ml) with continuous stirring. The stirring was continued further for 2 h maintaining the temperature of the reaction vessel between 293–298 K. The resulting solids were filtered, washed with water, ethanol and finally, by diethyl ether. The crude product was recrystallized from a water–ethanol mixture (50% v/v) and dried *in vacuo*. Crystals were grown by layering a supersaturated solution of (I) in ethanol with diethylether and leaving for a few days.

Yield 76%. Spectroscopic anaylysis: ¹HNMR (DMSO-d₆, TMS, δp.p.m.) 11.60 (1*H*, -HN—N=C<), 7.85–7.54 (m, 4H, Ar—H), 7.34 (s, 2H, NH₂), 4.35–4.26 (2*H*, CH₂), 2.50–2.42(3*H*, CH₃ of C₂H₅), 1.33–1.26 (3*H*, CH₃). ¹³C NMR (DMSO-d₆, TMS, δ p.p.m.) 193.90 (>C=O),162.33 [C(OEt)=O], 145.16,138.31(C=C), 133.35, 127.36, 115.89, 114.76 (Ar—C), 61.37 (-CH₂), 25.28,13.83 (-CH₃).

Refinement

H atoms were placed in calculated positions with C-H = 0.93 - 0.97Å and N-H = 0.86Å. They were included in the refinement in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C)$ for methyl H atoms. The H atoms of the -NH₂ group were refined independently with isotropic displacement parameters.

Figures

Fig. 1. The molecular structure of compound (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Part of the crystal structure of (I) showing intramolecular and intermolecular hydrogen bonds as hashed lines.

Ethyl 3-oxo-2-[(4-sulfamoylphenyl)hydrazono]butyrate

Crystal data	
$C_{12}H_{15}N_{3}O_{5}S$	$F_{000} = 656$
$M_r = 313.33$	$D_{\rm x} = 1.484 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 398 K
Hall symbol: -P 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.490 (6) Å	Cell parameters from 598 reflections
<i>b</i> = 14.819 (12) Å	$\theta = 2.5 - 27.5^{\circ}$
c = 12.689 (10) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 95.219 \ (14)^{\circ}$	T = 293 K
$V = 1402.6 (19) \text{ Å}^3$	Rectangular, colourless
Z = 4	$0.24 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	3274 independent reflections
Radiation source: fine-focus sealed tube	2177 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
Detector resolution: 0.3 pixels mm ⁻¹	$\theta_{\text{max}} = 28.2^{\circ}$
T = 293 K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -17 \rightarrow 19$
$T_{\min} = 0.940, \ T_{\max} = 0.951$	$l = -16 \rightarrow 16$
11777 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full with fixed elements per cycle Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.070$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.222$	$w = 1/[\sigma^2(F_0^2) + (0.1321P)^2 + 2.1941P]$ where $P = (F_0^2 + 2F_0^2)/3$
<i>S</i> = 0.87	$(\Delta/\sigma)_{\text{max}} = 0.001$
3274 reflections	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
200 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F 1		1	1	• , •		• 1 /	• • •	1.	1 ,	,	18	Ζ \
Fractional	atomic	coordinates	and	isotropic	or	eauwalent	isofronic	disn	lacement	narameters	IA	-)
1 i actionat	aronne	coordinates	cirici	ison opie		equivalent	isonopie	cusp:	accentent	parameters	(**	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2438 (5)	0.0661 (2)	0.9456 (3)	0.0391 (8)
C2	0.2126 (5)	0.1343 (2)	1.0159 (3)	0.0429 (8)
H2	0.1983	0.1209	1.0862	0.051*
C3	0.2030 (5)	0.2223 (2)	0.9809 (3)	0.0433 (8)
Н3	0.1809	0.2684	1.0278	0.052*
C4	0.2258 (5)	0.2424 (2)	0.8772 (2)	0.0372 (7)
C5	0.2609 (6)	0.1745 (2)	0.8081 (3)	0.0518 (10)
Н5	0.2790	0.1883	0.7384	0.062*
C6	0.2693 (6)	0.0861 (2)	0.8420 (3)	0.0536 (10)
Н6	0.2920	0.0401	0.7951	0.064*
C7	0.2498 (5)	-0.1296 (2)	1.1080 (3)	0.0400 (8)
C8	0.2482 (5)	-0.1381 (2)	1.2239 (3)	0.0451 (9)
C9	0.2452 (7)	-0.0539 (3)	1.2876 (3)	0.0659 (13)
H9A	0.2411	-0.0691	1.3609	0.099*
H9B	0.1412	-0.0190	1.2639	0.099*
Н9С	0.3513	-0.0193	1.2791	0.099*
C10	0.2599 (5)	-0.2072 (2)	1.0344 (3)	0.0466 (9)
C11	0.2122 (7)	-0.3643 (3)	0.9952 (4)	0.0624 (12)
H11A	0.1498	-0.4147	1.0240	0.075*
H11B	0.1458	-0.3458	0.9296	0.075*
C12	0.3910 (8)	-0.3914 (3)	0.9752 (5)	0.0868 (17)
H12A	0.4491	-0.3427	0.9419	0.130*
H12B	0.3847	-0.4431	0.9294	0.130*

supplementary materials

H12C	0.4583	-0.4064	1.0409	0.130*
H3A	0.042 (6)	0.330 (3)	0.688 (4)	0.055 (13)*
H3B	-0.064 (6)	0.334 (3)	0.769 (4)	0.049 (14)*
N1	0.2500 (4)	-0.02524 (19)	0.9754 (2)	0.0469 (8)
H1	0.2567	-0.0667	0.9286	0.056*
N2	0.2454 (4)	-0.0464 (2)	1.0745 (2)	0.0417 (7)
N3	0.0211 (6)	0.3532 (2)	0.7471 (3)	0.0481 (8)
O1	0.1619 (4)	0.40903 (16)	0.9163 (2)	0.0565 (8)
O2	0.3416 (4)	0.37652 (19)	0.7692 (2)	0.0581 (8)
O4	0.2924 (5)	-0.19684 (19)	0.9443 (2)	0.0711 (10)
O5	0.2233 (5)	-0.28696 (17)	1.0729 (2)	0.0620 (8)
O6	0.2547 (5)	-0.21135 (18)	1.2667 (2)	0.0703 (9)
S1	0.19753 (14)	0.35341 (5)	0.82925 (7)	0.0425 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.049 (2)	0.0279 (16)	0.0399 (17)	0.0027 (14)	0.0025 (15)	0.0052 (13)
C2	0.062 (2)	0.0381 (18)	0.0278 (15)	0.0020 (16)	0.0020 (15)	0.0040 (13)
C3	0.064 (2)	0.0317 (17)	0.0343 (16)	0.0012 (15)	0.0031 (15)	-0.0030 (13)
C4	0.052 (2)	0.0285 (15)	0.0305 (15)	-0.0009 (14)	0.0022 (14)	0.0018 (12)
C5	0.090 (3)	0.0346 (18)	0.0333 (17)	0.0059 (19)	0.0183 (18)	0.0050 (14)
C6	0.094 (3)	0.0294 (17)	0.0392 (19)	0.0098 (19)	0.0148 (19)	0.0008 (14)
C7	0.050 (2)	0.0328 (17)	0.0372 (17)	-0.0006 (14)	0.0043 (15)	0.0048 (13)
C8	0.055 (2)	0.0417 (19)	0.0383 (18)	-0.0101 (16)	0.0017 (16)	0.0054 (15)
C9	0.107 (4)	0.049 (2)	0.043 (2)	-0.015 (2)	0.010 (2)	-0.0031 (18)
C10	0.064 (2)	0.0351 (18)	0.0416 (19)	0.0099 (16)	0.0103 (17)	0.0076 (15)
C11	0.087 (3)	0.043 (2)	0.059 (3)	-0.006 (2)	0.021 (2)	0.0042 (18)
C12	0.091 (4)	0.053 (3)	0.112 (5)	0.004 (3)	-0.009 (3)	0.000 (3)
N1	0.073 (2)	0.0307 (15)	0.0374 (15)	0.0042 (14)	0.0051 (14)	0.0063 (12)
N2	0.0537 (18)	0.0352 (15)	0.0361 (14)	-0.0017 (13)	0.0032 (12)	0.0083 (12)
N3	0.065 (2)	0.0373 (17)	0.0423 (18)	0.0005 (16)	0.0055 (16)	0.0075 (14)
01	0.088 (2)	0.0294 (12)	0.0521 (15)	-0.0011 (13)	0.0082 (14)	-0.0060 (11)
O2	0.0708 (19)	0.0462 (15)	0.0591 (17)	-0.0080 (13)	0.0152 (14)	0.0121 (13)
O4	0.134 (3)	0.0380 (15)	0.0465 (15)	0.0136 (16)	0.0350 (18)	0.0071 (12)
O5	0.113 (2)	0.0307 (13)	0.0460 (15)	0.0019 (14)	0.0270 (15)	0.0046 (11)
O6	0.129 (3)	0.0427 (16)	0.0384 (14)	-0.0148 (17)	0.0026 (16)	0.0117 (12)
S 1	0.0625 (6)	0.0252 (4)	0.0400 (5)	-0.0026 (4)	0.0053 (4)	0.0042 (3)

Geometric parameters (Å, °)

C1—C6	1.379 (5)	С9—Н9В	0.9600
C1—C2	1.382 (5)	С9—Н9С	0.9600
C1—N1	1.404 (4)	C10—O4	1.200 (4)
C2—C3	1.378 (5)	C10—O5	1.317 (4)
С2—Н2	0.9300	C11—C12	1.443 (7)
C3—C4	1.375 (5)	C11—O5	1.509 (5)
С3—Н3	0.9300	C11—H11A	0.9700
C4—C5	1.376 (5)	C11—H11B	0.9700

C4—S1	1.760 (3)	C12—H12A	0.9600
C5—C6	1.379 (5)	C12—H12B	0.9600
С5—Н5	0.9300	C12—H12C	0.9600
С6—Н6	0.9300	N1—N2	1.300 (4)
C7—N2	1.304 (4)	N1—H1	0.8600
С7—С8	1.477 (5)	N3—S1	1.607 (4)
C7—C10	1.488 (5)	N3—H3A	0.85 (5)
C8—O6	1.213 (4)	N3—H3B	0.77 (4)
C8—C9	1.488 (5)	01—81	1.423 (3)
С9—Н9А	0.9600	O2—S1	1.419 (3)
C6—C1—C2	120.3 (3)	O4—C10—O5	122.4 (4)
C6—C1—N1	117.4 (3)	O4—C10—C7	121.7 (3)
C2-C1-N1	122.3 (3)	O5—C10—C7	115.9 (3)
C3—C2—C1	119.5 (3)	C12—C11—O5	109.3 (4)
С3—С2—Н2	120.3	C12—C11—H11A	109.8
C1—C2—H2	120.3	O5—C11—H11A	109.8
C4—C3—C2	120.4 (3)	C12—C11—H11B	109.8
С4—С3—Н3	119.8	O5-C11-H11B	109.8
С2—С3—Н3	119.8	H11A—C11—H11B	108.3
C3—C4—C5	120.0 (3)	C11—C12—H12A	109.5
C_{3} — C_{4} — S_{1}	120.8 (3)	C11—C12—H12B	109.5
C5—C4—S1	119.1 (3)	H12A—C12—H12B	109.5
C4—C5—C6	120.1 (3)	C11—C12—H12C	109.5
С4—С5—Н5	119.9	H12A—C12—H12C	109.5
С6—С5—Н5	119.9	H12B—C12—H12C	109.5
C1—C6—C5	119.7 (3)	N2—N1—C1	119.3 (3)
С1—С6—Н6	120.1	N2—N1—H1	120.3
С5—С6—Н6	120.1	C1—N1—H1	120.3
N2—C7—C8	113.7 (3)	N1—N2—C7	122.7 (3)
N2—C7—C10	121.9 (3)	S1—N3—H3A	111 (3)
C8—C7—C10	124.4 (3)	S1—N3—H3B	115 (3)
O6—C8—C7	121.2 (3)	H3A—N3—H3B	113 (5)
O6—C8—C9	120.6 (3)	C10—O5—C11	116.1 (3)
C7—C8—C9	118 1 (3)	02 - 81 - 01	118 86 (18)
С8—С9—Н9А	109.5	02 - 81 - N3	105.8 (2)
C8—C9—H9B	109.5	01—S1—N3	107.7(2)
H9A—C9—H9B	109.5	O2—S1—C4	109.76 (17)
C8—C9—H9C	109.5	01—S1—C4	107.32 (16)
Н9А—С9—Н9С	109.5	N3—S1—C4	106.76 (17)
H9B—C9—H9C	109.5		
C6-C1-C2-C3	15(6)	N2-C7-C10-O5	-1653(4)
N1 - C1 - C2 - C3	-1781(3)	C_{8} C_{7} C_{10} C_{5}	162(6)
C1 - C2 - C3 - C4	-0.6(6)	C6-C1-N1-N2	172.9 (4)
$C_2 - C_3 - C_4 - C_5$	-0.9(6)	$C_2 - C_1 - N_1 - N_2$	-7.5 (5)
$C_2 - C_3 - C_4 - S_1$	175 3 (3)	C1 - N1 - N2 - C7	179 7 (3)
C_{3} C_{4} C_{5} C_{6}	15(6)	C8 - C7 - N2 - N1	178 4 (3)
81-C4-C5-C6	-174 8 (3)	C10-C7-N2-N1	-0.2 (6)
$C^2 - C^1 - C^6 - C^5$	-1.0 (6)	04-C10-05-C11	-40(6)
	(0)	0. 010 00 011	(0)

supplementary materials

N1—C1—C6—C5	178.7 (4)	C7-C10-O5-C11	173.1 (3)
C4—C5—C6—C1	-0.5 (7)	C12-C11-O5-C10	77.1 (5)
N2—C7—C8—O6	-178.8 (4)	C3—C4—S1—O2	133.9 (3)
C10—C7—C8—O6	-0.3 (6)	C5—C4—S1—O2	-49.9 (4)
N2—C7—C8—C9	-1.0 (5)	C3—C4—S1—O1	3.4 (4)
C10—C7—C8—C9	177.5 (4)	C5—C4—S1—O1	179.6 (3)
N2	11.8 (6)	C3—C4—S1—N3	-111.9 (3)
C8—C7—C10—O4	-166.7 (4)	C5-C4-S1-N3	64.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O4	0.86	1.95	2.597 (5)	131
N3—H3B···O6 ⁱ	0.77 (5)	2.33 (4)	2.941 (6)	137 (4)
N3—H3B···O5 ⁱ	0.77 (5)	2.52 (5)	3.208 (6)	149 (5)
N3—H3A····O4 ⁱⁱ	0.85 (5)	2.21 (5)	3.003 (6)	154 (4)
Symmetry codes: (i) $-x$, $-y$, $-z+2$; (ii) $-x+1/2$, $y+1/2$,	, -z+3/2.			

