Vol. 26 ISMB 2010, pages i350-i357
doi:10.10983/bioinformatics/btq216

Next-generation VariationHunter: combinatorial algorithms for

transposon insertion discovery

Fereydoun Hormozdiari', Iman Hajirasouliha’, Phuong Dao’, Faraz Hach',
Deniz Yorukoglu®, Can Alkan®3, Evan E. Eichler>3* and S. Cenk Sahinalp™*

1School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, 2Department of Genome Sciences,
University of Washington and 2Howard Hughes Medical Institute, Seattle, WA, USA

ABSTRACT

Recent years have witnessed an increase in research activity for the
detection of structural variants (SVs) and their association to human
disease. The advent of next-generation sequencing technologies
make it possible to extend the scope of structural variation studies
to a point previously unimaginable as exemplified by the 1000
Genomes Project. Although various computational methods have
been described for the detection of SVs, no such algorithm is yet fully
capable of discovering transposon insertions, a very important class
of SVs to the study of human evolution and disease. In this article, we
provide a complete and novel formulation to discover both loci and
classes of transposons inserted into genomes sequenced with high-
throughput sequencing technologies. In addition, we also present
‘conflict resolution’ improvements to our earlier combinatorial SV
detection algorithm (VariationHunter) by taking the diploid nature
of the human genome into consideration. We test our algorithms
with simulated data from the Venter genome (HuRef) and are able
to discover >85% of transposon insertion events with precision of
>90%. We also demonstrate that our conflict resolution algorithm
(denoted as VariationHunter-CR) outperforms current state of the
art (such as original VariationHunter, BreakDancer and MoDIL)
algorithms when tested on the genome of the Yoruba African
individual (NA18507).

Availability: The implementation of algorithm is available at
http://compbio.cs.sfu.ca/strvar.htm.

Contact: eee@gs.washington.edu; cenk@cs.sfu.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Human genetic variation can be defined in various size
ranges. The smallest type of variation, termed single nucleotide
polymorphisms (SNPs), are those at the single base pair level. The
International HapMap Project genotyped 270 human individuals
for 3.1 million SNPs, and recently the 1000 Genomes Project
(http://www.1000genomes.org) was initiated to characterize human
genetic variation with lower minor allele frequency by sequencing
more than 1000 human genomes. More recently, it was shown that
structural variation events significantly contribute to human genome
diversity (Feuk er al., 2006; Kidd et al., 2008; Korbel et al., 2007,
Tuzun et al., 2005). Many structural variants (SVs) are associated
with genetic diseases such as psoriasis (Hollox ef al., 2008) and
Crohn’s disease (McCarroll et al., 2008), prompting an increased
interest in structural variation studies (Bashir et al., 2008; Chen

*To whom correspondence should be addressed.

et al., 2009; Hormozdiari et al., 2009; Korbel et al., 2007; 2009; Lee
et al., 2008; Lee et al., 2009; Sindi et al., 2009; Tuzun et al., 2005).
Recently, it was shown that the SV reconstruction is harder than
de novo assembly of small genomes and introduced an extensive
framework for optimal genome re-sequencing (Du et al., 2009).
Recently, we developed a set of combinatorial algorithms to detect
structural variation using high-throughput sequencing data with
improved sensitivity through interrogating the repeat and duplication
rich segments of the human genome. In Hormozdiari et al. (2009),
the maximum parsimony structural variation (MPSV) discovery
problem was introduced. This MPSV problem asks to compute
unique mapping for each discordant paired-end read in the reference
genome such that total number of implied (SVs) is minimized. We
also previously presented a computational analysis of read depth
to characterize segmental duplications and predict absolute copy
number and content of duplicated genes (Alkan et al., 2009). See
the review from Medvedev et al. (2009) for the details and strengths
of different structural variation discovery methods.

One type of structural variation excluded from this analysis is
the mobile element transposition. Mobile elements, or transposons,
are repetitive elements in the genome that occupy ~44% of the
human genome, including Alu, L1 and SVA elements (Mills et al.,
2007). Most of the transposons are fixed in the human lineage;
however, around 0.05% of the transposons are still active, and
the copy number and loci of these active transposons vary in the
genomes of different individuals. Many studies have demonstrated
that the mobile elements contribute to genome evolution and
human genetic diversity. An interesting case was shown by Bekpen
et al. (2009): insertions of an Alu element were posited to cause
pseudogenization of the IRGM gene at the split of New World
and Old World monkey lineages 35—40 million years ago (mya)
by disrupting the open reading frame (ORF). A second transposon
integration (ERV9) restored the ORF ~24 mya in the common
ancestor of apes and humans, demonstrating the first report on
a ‘resurrected’ gene. The human /RGM gene plays an important
role in the immune system (Bekpen ez al., 2009) and is associated
with Crohn’s disease (McCarroll er al., 2008). Mobile element
transpositions are associated with the expansion of interspersed
segmental duplications (Bailey ef al., 2003) and can promote both
the creation of segmental duplication in human genomes (Xing ez al.,
2009) and the alteration of gene transcription by gene trapping and
exonization.

Another aspect that most structural variation algorithms ignore is
the diploid nature of the human genome [including VariationHunter,
BreakDancer (Chen et al., 2009) and GASV (Sindi et al.,
2009)]. Each chromosome has exactly two copies; therefore, all
loci in the genome (w.l.o.g., except segmental duplications) are

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://compbio.cs.sfu.ca/strvar.htm
http://www.1000genomes.org
http://creativecommons.org/licenses/

Next-generation VariationHunter

represented twice. This means that there cannot be more than
two SVs including the ‘normal’ variant signature observed by
‘concordant’ paired-end mapping (Tuzun et al., 2005) at the same
locus. However, due to the mapping artifacts in the repetitive
segments of the human genome, most algorithms might call multi-
allelic SVs within overlapping intervals. In fact, the limitation of
two variants per locus information can be used both to reduce
false discovery rates and also genotype SVs (homozygous versus
hemizygous).

In this article, we present two extensions/improvements to
the combinatorial formulation of our original VariationHunter
algorithm (Hormozdiari et al., 2009) to detect structural
variation using high-throughput sequencing technology. The main
contributions of this article are (i) the first mathematically
complete formulation and algorithm to identify transposition events
(especially mobile element transpositions) and (ii) to remove
ambiguity in variation discovery through ‘conflict resolution’
(enforcing at most two variants per locus).

We first show that our method for discovery of mobile element
transpositions has high accuracy and precision. In a full-scale
simulation, we produce short reads from the genome of J. Craig
Venter (very similar to what an Illumina platform would produce).
Our method is able to find ~ 85% of the known transposon insertions
with a precision of >90%. We also demonstrate that our new
algorithm (denoted as VariationHunter-CR) has a higher accuracy
in comparison with VariationHunter (Hormozdiari et al., 2009),
BreakDancer (Chen et al., 2009) and MoDIL (Lee et al., 2009) when
tested on a whole-genome shotgun sequence dataset generated from
the genome of the Yoruba African individual (NA18507) using the
[lumina platform.

2 DEFINITIONS AND THE FORMULATION OF
TRANSPOSITION EVENTS

In Tuzun et al. (2005) and Volik et al. (2003), a general framework for
detecting structural variation using long paired-end reads was introduced.
This framework is based on aligning the paired-end reads to the reference
genome and observing the end-reads' with discordant mapping. The paired-
end reads with discordant mapping suggest either deletion insertion or
inversion events. For example, an inversion event can be deduced when one
of the two end reads of a paired-end read has a different mapping orientation
than expected. In the standard library construction of the Illumina platform,
in the case of no inversions or duplications, the read that maps to the proximal
location is expected to be in the + strand, where its mate should be mapped to
a distal location in the — strand. However, if the read pair spans an inversion
breakpoint, the mapping orientations of the reads will be observed as either
++ or —— [See the Supplementary Material in Hormozdiari et al. (2009)
for a full case study].

As per Hormozdiari et al. (2009), we denote a read pair as pe; and the
distance between the end coordinate of the proximal read and the start
coordinate of the distal read as the GapSize (i.e. the insert-size minus the total
length of the reads). An alignment of a read pair to the reference genome
is denoted as concordant (Tuzun et al., 2005) if the distance between the
aligned end reads is in the range [Amin, Amax] and the alignment orientation
is +—. The range [Amin, Amax] is empirically calculated by analyzing the
mapping span size distribution of the read pairs.

The set of discordant paired-end reads is represented as R=
{pe1,pea,...,pe,}. Each discordant paired-end read pe; may be mapped to

—(1 [=x]— Donor

Reference

ape

(b)

Donor

V Reference

ape

Fig. 1. Transposon insertion causing a false negative deletion prediction. A
discordant paired-end read alignment due to a copy event shows identical
pattern with a discordant paired-end read alignment supporting a deletion
event. (a) The presence of a copy event in the donor genome and the
supporting discordant paired-end mapping (b) The same discordant mapping
as above, however, suggests a large deletion if the annotated repeat element
is not considered.

multiple locations in the reference genome. The set of all alignments of pe;
is then defined as Align (pe;) ={aipe;,azpe;,...,ajpe;}.

Note that each alignment of pe; to the reference genome (ajpe;) is a
5-tuple that represents the map locations of the end reads and their alignment
orientation. More formally,

ajpe;=((Le(pe;), Ly (pei)), (Re(pei), Ry (pei)), or(pe;)) (1)

where the pair (L¢(pe;),L,(pe;)) represents the map location (i.e. both start
and end loci) of the left end read of pe;, (R¢(pe;), Rr(pe;)) is the mapping
location of the right end read of pe;, and or(pe;) represents the map
orientation of both ends. Note that or(pe;) € {(+—,++,——, —+}.

In Hormozdiari et al. (2009), a SV event is defined as SV
SV(t,Posy, Posg, Ranmin, Ranmax). SV represents a of SV type te
{Ins,Del,Inv}2 located between Pos; and Posg in the reference genome,
and with size estimated between Rangi, and Ranmy,x.

Another important type of structural variation is the transposition event
where a segment of the genome (formally, a transposon) is copied to another
location with a small divergence. In the remainder of this article we call
such types of SVs as copy events. Examples of common copy events include
transpositions of Alu, SVA and L1 elements.

Unfortunately, none of the available methods designed to detect structural
variation events (e.g. Bashir et al., 2008; Chen et al., 2009; Hormozdiari
et al., 2009; Kidd et al., 2008; Korbel et al., 2007; Lee et al., 2008, 2009;
Sindi et al., 2009; Tuzun et al., 2005) considered these copy events, and their
focus was mainly on the discovery of deletions, insertions and inversions.
A more recent algorithm, HYDRA, includes simple heuristics to detect
transposon insertions (Quinlan ez al., 2010). Interestingly, even if the goal of a
method is to identify only insertions, deletions and inversions in a sequenced
genome, the presence of the common copy events will cause many false
negative deletion and inversion predictions. Figure 1 clearly demonstrates
a common scenario where a copy event is mistakenly identified as a large
deletion.

In what follows, we study two classes of copy events and present the
set of conditions based on the map locations and orientations of the paired-
end alignments that imply a copy event within each of these classes. First,
we consider those copy events in which the transposed segment is in direct
orientation, and present the set of conditions for all of the four different cases
of this class (denoted as Class I). Next, we study the cases for Class II, where
the transposon is copied in inverted orientation.

"The two ends of a read pair is referred as end reads.

2Referring to an insertion, deletion and inversion event, respectively.

i351

F.Hormozdiari et al.

o F—— F—— Donor
Pos Br
t — —
Pos | Pos R

(@) Case 1:Posp,. < Posy, andor(ape) = +—

— e | { F—— Donor
1 [—=}— =R
POSBr ‘
Pos | Pos
(b) Case2:Posp, < Posy, andor(ape) = —+
— f—— v Donor
. — ' Ref
POSBr
Pos| Pos

(C) Case3:Posp, > Pospandor(ape) = +—

— } { > F—— Donor
w_/A«_|7 Reference
POSBr
Pos | PosR
(d) Case4:Posp,. > Posp andor(ape) = —+

Fig. 2. The set of conditions for each case that suggests a copy event in which
the transposed segment is copied in direct orientation (Class I). (a) Case 1:
Posp, < Posy, and or(ape)=+—, (b) Case 2: Posp, < Posy, and or(ape) =—+,
(¢) Case 3: Posp, > Posg and or(ape)=+— and (d) Case 4: Posp, > Posg and
or(ape)=—+.

A copy SV of Class I is defined as SVcopy(Posy, Posg, Posp,), where the
genomic segment from positions Posy, to Posg is copied into location Posg;.
Similarly, a copy event S Ve denotes a copy event in inverted orientation.

One of the following four cases should hold for a paired-end read
alignment ape that supports a copy event SVc,py (Class I):

Case 1 (Posp, < Posy, and or(ape)=+-—) :
Amin < Pospy —Ly(ape)+Re(ape) — Posp, < Amax
(Fig. 2a)

Case 2 (Posp, < Posy, and or(ape)=—+) :
Amin < L¢(ape) — Posgr — Ry (ape)+ Posg < Amax
(Fig. 2b)

Case 3 (Posp, > Posg and or(ape)=—+—) :
Anmin <R¢(ape)— Posp,~+Posg — L, (ape) < Amax
(Fig. 2¢)

Case 4 (Pospy > Posg and or(ape)=—+) :
Amin < Pospr —R,(ape)+Ly(ape) — Posp, < Amax
(Fig. 2d)

Similarly, one of the following cases should hold for a copy event of
Class II:

Case 1 (Posp, < Posg and or(ape)=-++) :
Amin < Pospr —Ly(ape)+ Posg — Ry(ape) < Amax
(Fig. 3a)

Z\@Q}' 3 ¥ A Donor

Reference

L Pos g

< Pospandor{ape) = ++

A —— Donor

T Reference
Pos Pos
L R

(b) Casc2Posp,. < Posgandor(ape) = ——

(SRS Zﬁ% Douor

Posy Posp

(€) Case:Posg, > Pospandor(ape) = ++

M Donor

Pos g,
)

Posy Fos R

g

(d) Case4: Posp,. > Posgandor{ape) =

Fig. 3. The set of conditions for each case that suggests a copy event in which
the transposed segment is copied in inverted orientation (Class II). (a) Case 1:
Posp, < Posg and or(ape) =++, (b) Case 2: Posp, < Posg and or(ape) = ——,
(¢) Case 3: Posp, > Posg and or(ape)=++, (d) Case 4: Posp, > Posg and
or(ape)=——,

Case 2 (Posp, < Posg and or(ape)=——) :
Anmin < L¢(ape) — Posp,+R¢(ape) — Posp, < Amax
(Fig. 3b)

Case 3 (Posp, > Posg and or(ape)=++) :
Amin < Posgr —Ry(ape)+Posg — Ly (ape) < Amax

(Fig. 3¢)

Case 4 (Posp, > Posg and or(ape)=——) :

Amin <R¢(ape)— Posp,+L¢(ape) — Posp, < Amax
(Fig. 3d)

3 MAXIMAL VALID CLUSTERS AND COPY EVENT
DETECTION

A set of discordant paired-end read alignments that support the same
potential SV event is called a ‘valid cluster’ and denoted by VClu;=
lag peiy, ay peiy, ..., a; pei }.

As per Hormozdiari et al. (2009), a ‘maximal valid cluster’ is defined as
a valid cluster where no additional paired-end read alignments can be added
such that the cluster remains valid. Note that all paired-end read alignments
in maximal valid clusters suggest the same potential structural variation. It
was shown that it is sufficient to calculate all maximal valid clusters to solve
the MPSV problem. This can be done in polynomial time (with respect to
the number of paired-end alignments), where the computation of all valid
clusters is unnecessary, and exponential in run time. In Hormozdiari et al.

i352

Next-generation VariationHunter

(2009) and Sindi et al. (2009), efficient algorithms to find the maximal valid
clusters are presented to predict insertion, deletion and inversion events.

To find all maximal valid clusters for copy events, a naive method would
investigate all O(n?) possibilities of potential copy events, for each of the
locations Posg,, Pos; and Posg between 1 and n, where n is the genome
length. This can be done by first creating a cluster for each possible values
of Posp,,Pos;, and Posg, and then adding those paired-end reads that satisfy
the conditions given in Section 2 to the appropriate cluster. Finally, a set of
maximal clusters would be selected. The above method guarantees to find all
the maximal valid clusters but it would be time consuming in practice. In what
follows, we will present a more efficient method to find all the maximal valid
clusters provided that the potential positions of copied segments or copied
sequences are known.

We define ®={(¢1,,91,),($2,,92,),....(¢,.$:,)} as the set of (non-
overlapping) segments that can be copied to other locations (& can represent
the annotated transposons in the reference genome assembly). Note that V
i<t, ¢;, is the start location of the i-th segment and ¢;, is the end location.
The coordinates for the intervals are referred to as ‘end-points’ in the rest of
the article for simplicity.

For each paired-end read mapping ape with exactly one end-read mapped
to a transposon e.g. ¢;=(¢;,,¢;,), there exists a range of locations, or
‘breakpoint intervals’ Brzl;pe =|[Brr,Brg], where ape supports a copy of
subsequence ¢; =(¢;,,¢;,) to any location within Bré . in the reference
genome. Note that for a given ape and a segment ¢;=(¢;,,¢;,), the
breakpoint interval Br";p(, can easily be computed using the set of conditions
given in Section 2.

Now we present an efficient algorithm? to find the maximal valid clusters
supporting copy of segment ¢; =(¢;,,¢;.) to any location in genome (the
algorithm can trivially be extended for other segments in ®).

Without loss of generality, we assume that there are total of m; discordant
mappings with exactly one end mapped to ¢; (Please note that m= Zf‘:l m;,
where total number of segments is ¢). We denote the set of such discordant
paired-end read mappings as ape’ = {ape’i,apeé,...,apefn[}. In addition the
set of breakpoint intervals for the paired-end read alignments in set ape’ is
denoted as Br' ={(Br{, ,Bri,),(Brh, ,Br5),(Br}, ,Bri,)}.

It is trivial to see that finding maximal valid clusters for all copies of
segment ¢; =(¢;,,$;,) into any position in the genome is equivalent to
finding all maximal intersecting breakpoint intervals for all paired-end read
mappings ape’. Thus, we are interested in finding all maximal intersections
of the breakpoint intervals Br'.

In what follows, we present an O(m;logm;+s;) algorithm that outputs
all the maximal intersecting intervals (of Br'), where s; is the size of the
output. This algorithm is the optimal solution to the problem. Please note
that an algorithm that finds maximal valid clusters supporting copy of a given
segment ¢; with running time of O(m;logm; +s;) will yield an O(mlogm+S)
algorithm for finding maximal valid clusters for all the segments in ® when
S=Y"1_,si (since m=Y"I_,m;).

3.1 Algorithm for finding all maximal intersecting
intervals

Given a set of intervals (with cardinality of m;), we want to find all the
maximal intersecting intervals. We first sort all end points of m; intervals
(2m; coordinates) in ascending order based on their values. We call this
sorted list of intervals L where each interval appears twice in the list L. We
then scan the sorted list from left to right:

« If we observe a point that is at the left end-point of an interval, we
insert the interval to a minimum heap data structure, denoted as heap.
The priority value of the heap is the right end point of the inserted
interval. After each insertion of a new interval to heap, we set a flag
newlns =true.

3In fact the algorithm is optimal with respect to the running time.

* If we observe a point that is at the right end point of an interval,
we first check the flag newlns. If it is set to true, we output all the
elements in the heap as one maximal cluster and set newlns=false.
‘We then remove the interval from heap since it is guaranteed that the
value of the right end point of the interval removed from the heap is
the same as the right end point of the interval reached in scanned list
L. We continue removing intervals from heap until the priority value
of the head element of the heap remains unchanged.

The above algorithm outputs all maximal intersecting intervals that are
equivalent to the maximal valid clusters.

3.1.1 Complexity It can be shown that the running time of the above
algorithm is O(m;logm;+s), where s is the size of the output. The sorting
procedure in the first step of the algorithm takes O(m;logm;). In the worst
case, since each removal/insertion operation in the heap takes O(logm,;) time,
the total run time for the second step is also O(m;logm;). It takes O(s) time
to write the output. In addition, it was previously proven that finding the
maximum clique in an interval graph has a lower bound of Q(m;logm;)
(Gupta et al., 1982). Thus, our algorithm gives the optimal solution for
finding all maximal clusters.

3.2 Detection of transposon insertion events from
maximal valid clusters

Each maximal valid cluster for different SV types (i.e. insertion, inversion,
deletion or copy) only suggests a potential structural variation. The fact that
each paired-end read can be mapped to multiple locations that are included in
multiple maximal valid clusters proves that some of these implied potential
variants are incorrect. We previously presented a combinatorial method
to select the minimum number of these clusters (equivalent to selecting
minimum number of SVs), such that each paired-end read has a map location
in at most one selected valid cluster (Hormozdiari et al., 2009). This problem
was called MPSV, and an approximation algorithm was given. The same
algorithm presented can be used to find transposon insertion events from
the maximal valid clusters using the algorithms presented in the previous
section.

In the next section, we introduce an extension to MPSV problem and
provide an efficient method to solve it. We show that our new method
outperforms our previous algorithm in Hormozdiari et al. (2009).

4 MPSV WITH CONFLICT RESOLUTION

As mentioned before, the possibility of multiple map locations for each
paired-end read raises the question of resolving which SVs implied by the
maximal valid clusters are correct.

The MPSV problem (Hormozdiari et al., 2009) aims to compute a unique
mapping for each discordant paired-end read in the reference genome such
that the total number of implied SV is minimized (in this section we consider
all classes of SV). In Hormozdiari et al. (2009), MPSV was modeled as
a combinatorial optimization problem and shown to be NP-complete. An
approximation algorithm (denoted as VariationHunter) based on the set-
cover problem with O(logn) approximation factor was given. However,
the modeling of the MPSV problem imposed no limits on the number of
‘overlapping’ SV predictions. A considerable amount of the predicated calls
overlap with each other and a post-processing heuristic to filter some of those
overlapping predicted SVs was given [see the Results section of Hormozdiari
et al. (2009)]. In this section, we mathematically formulate these ‘conflicts’
and model the structural variation discovery problem as a novel combinatorial
optimization problem.

4.1 Conflicting SV clusters in haploid and diploid
genome sequences

We motivate the ‘conflict resolution’ for structural variation using
a simple example. Given paired-end reads from a haploid genome,

i353

F.Hormozdiari et al.

Potential Deletion 1) \ '\
Potential Deletion 2

XX
VClu,

Fig. 4. Two valid clusters Vclu; and Vcluy are shown to be in conflict in a
haploid genome.

a structural variation detection algorithm (such as VariationHunter, MoDIL
or BreakDancer) might construct two or more sets of valid clusters that imply
multiple conflicting deletion calls (Fig. 4). Assuming the genome is haploid,
it is not possible that both valid clusters in Figure 4 can be ‘correct’.

We first formalize the MPSV with Conflict Resolution (MPSV-CR) for
both haploid and diploid genomes, and then we analyze the complexity
of the MPSV-CR problem. Finally, we provide a heuristic solution for
MPSV-CR. We call this solution as VariationHunter with Conflict Resolution
(VariationHunter-CR).

Assuming a haploid genome, two valid clusters Vclu; and Vclu, of paired-
end reads are conflicting if and only if there exists a potential scenario of
SVs implied by the two valid clusters, such that the existence of one of the
events makes the other valid cluster incoherent (Fig. 4). In the Supplementary
Material, we present the set of rules to determine whether two valid clusters
are in conflict in a haploid genome.

Through the conflict rules we can model the conflict representation of all
clusters using a graph denoted as conflict graph. Each cluster is represented
a node, and there exists an edge between two nodes if and only if the two
corresponding clusters are in conflict with each other. It is not difficult to see
that a valid set of SVs is a set of nodes/clusters in which no two nodes within
the subset are connected. In another words, the valid solution (without any
conflicts) is an independent set of the conflict graph.

One can easily generalize the definition of conflicting clusters to diploid
genome sequences. Let Vclu; and Velup be two conflicting clusters in a
haploid genome. However, provided that the genome is diploid, both Vclu,
and Veclup might imply a correct SV in different haplotypes. Now consider
a third SV cluster, Vclus that is in conflict with both Veluy and Velup. Tt is
trivial that, based on the pigeon hole principle, Vcluy, Vcluy and Velus cannot
simultaneously occur in a diploid genome. In other words, the presence of
three different SV clusters that are conflicting pairwise in a haploid genome*
will be a conflict in a diploid genome. The concept of the conflict graphs
for haploid genomes can be replaced with conflict hypergraphs for diploid
genomes. In the conflict hypergraph each hyperedge connects three nodes,
if these three nodes are in conflict with each other.

Now, we define the MPSV-CR problem that does not only aim to minimize
the total number of implied SVs, but also guarantees that no pairwise
conflicting triplet of the implied SVs exists.

Note that this new version of the MPSV problem does not select any
conflicting SVs and thus may not always be able to assign every paired-end
read to a particular SV. Thus, the optimization function for MPSV-CR not
only tries to minimize the number of SVs predicted, but also maximizes the
number of paired-ends that can be assigned to a location in genome.

In what follows, we present the concept of conflicting SV clusters in more
detail and give a formal definition of the MPSV-CR problem.

4According to our definition of conflicts in a haploid genomes.

4.2 Formal definition of the MPSV-CR problem

In this section, we formally define the MPSV-CR problem. Let
MC={VClu;,VClu,,...,VClu,} be the set of SV clusters and R=
{pei1.peas,...,pen} be the collection of discordant paired-end reads. These
discordant read pairs can be mapped to multiple locations in the genome,
represented by Align(pe;) ={aipe;,azpe;,...,ajpe;}.

In order to formulate the constraints, we define the conflict hypergraph CG
as a hypergraph with vertex set V(CG)=MC and a hyperedge set E(CG) as
follows. Between every three distinct SV clusters that are pairwise in conflict,
there exists a hyperedge in E(CG):

E(CG) = {(VClu;,VClu;,VCluy) | VClu;, VClu;,
VCluy, are pairwise in conflict}

Note that for the case when we only deal with a haploid genome (rather
than a diploid genome), the hypergraph is nothing else than a simple graph
(denoted by G) where each e€ E(G) represents a pair of conflicting SV
cluster.

A subset SCCMC is satisfiable under the constraint hypergraph CG,
if ﬂe:(VClup, VClugy, VClu,) e E(CG):e CSC [in the case of a haploid
genome a subset SC CMC satisfiable under the constraint graph G, if
fe=(VClu,,VCluy) € E(G):e € SC].

For each satisfiable subset SC and each paired-end read pe;, we define the
indicator variable §(SC, pe;) as follows:

if 3SC; € SC \3j:ajpe; € SCx

0
S(chl’ei)_{ 1 otherwise

Intuitively, 8(SC,pe;) is the penalty for not assigning the pair-end read
pe; to a cluster in the satisfiable subset SC. The MPSV-CR problem aims
to find the satisfiable set SC’ such that f(SC")= |SC’|+ZP€€R8(SC’,pe) is
minimized (i.e. to find a trade-off between the number of SV clusters in a
satisfiable set and the number of paired-end reads that are not assigned to
any SV clusters.).

4.2.1 Computational complexity of MPSV-CR Here we prove that MPS V-
CR is NP hard, independent from the weights on the cardinality of SC’
and the penalty for unmapped reads [i.e. minimizing the function g(SC’)=
k-ISC'|+1-3,,cg3(SC’, pe) for any k>0 and />0 is NP hard]. The NP
hardness proof follows a reduction from the minimum set cover problem
(See the Supplementary Materials for the detailed proof). In addition, we
show an inapproximability result for MPSV-CR problem even when the
genome is assumed to be haploid.

THEOREM 4.1. There is no constant € >0 for which MPSV-CR on haploid
genome can be approximated within a factor of n'=¢ in polynomial time,
unless P=NP.

Proof of Theorem 4.1 given in the Supplementary Material.

4.3 An efficient solution to the MPSV-CR problem

In this section, we present a heuristic solution for a special case of
the MPSV-CR problem where both k and [/ (the coefficients in the
optimization function g) are set as k=1,/=1. This heuristic, named as
Max_Assigned_Reads, consists of two phases.

In the first phase, we form a maximal satisfiable set of SV clusters (denoted
by MS) in a greedy fashion. Note that a satisfiable set of SV clusters, SC (as
noted in the previous section), is called maximal if no other SV cluster VClu
can be added to SC such that VClu together with two existing SV clusters in
SC form a hyperedge in the conflict hypergraph CG. We start with MS =0
and then iteratively add the SV cluster that covers the most number of paired-
end reads® to MS until MS becomes a maximal satisfiable set. Note that we

SWe count the paired-end reads that were not previously covered by any SVs
in MS.

i354

Next-generation VariationHunter

add an SV cluster SV, to MS in an iteration even if SV, does not cover
any new discordant paired-end read (provided that MS remains satisfiable).
We denote MR as the set of all paired-end reads covered by the SV clusters
in MS.

In the second phase of Max_Assigned_Reads, the aim is to select the
minimum number of SV clusters from MS that cover all paired-end reads
in MR. For this phase, we use a set cover approach similar to Hormozdiari
et al. (2009).

In what follows, we give a lower bound on the cardinality of MR.
The analysis of the second phase of Max_Assigned_Reads is similar to
Hormozdiari et al. (2009). Let m be the total number of discordant paired-
end reads, and let neighbors(VClu)={VClu'|3e € E(CG), VClu,VCli' € e},
deg(VClu) = |neighbors(VClu)| and A =max{deg(VCIu)|VClue MC}, i.e.
the maximum degree of a vertex in the conflict graph CG.

THEOREM 4.2. |[MR|>m/(A+1).

PROOF. Let k be number of iterations of Max_Assigned_Reads. For each
i (1 <i<k), wedenote VClu; as the cluster that is selected at the i-th iteration.
We also denote MR; as the set of paired-end reads that are covered by VClu;
for the first time. Furthermore, we define UR; as the set of paired-end reads
that are not covered by any of the SV clusters VClu; through VClu; and
also is not able to be covered later (as the result of selecting VCly;) in the
remaining k —i iterations.

At the i-th iteration, the maximum number of reads that could be covered
for all neighbors of VClu; is at most A|MR;|, thus |UR;| < A|MR;|. Moreover,
we have Z{-‘:l(URi-i-MRi):m and |MR|:Z§‘:1MR,-. Hence m/(A+1)<
|MR)|.

5 EXPERIMENTAL RESULTS

5.1 Implementation

It is established that there are a large number of mobile elements in
the human genome (Mills et al., 2007). For example, the reference
human genome assembly annotation includes 1 million copies of
the Alu element. Considering all known mobile elements (segments
in genome) as potential transposon sequences for our algorithm
would be very time consuming, and in fact, unnecessary. The
consensus sequences for all mobile elements are well studied,
and available at the RepBase database (Jurka er al., 2005). We
used the consensus sequences of these mobile element families as
representative sequences to facilitate faster experimentation. To this
end, we create a new sequence, denoted as chrN: we first append a
poly-N sequence to each consensus sequence, and then concatenated
them, generating chrN. In this article, we considered only Alu and
SVA elements in our experiments.

For read mapping, we use mrsFAST (F.Hach et al., unpublished
data), a cache-oblivious short read mapper recently developed as
an extension of mrFAST (Alkan et al., 2009). mrsFAST maps the
paired-end reads to all locations with Hamming distance less than a
user-defined threshold w. In this experiment we set w =2.

Given paired-end whole-genome shotgun sequence library R=
{pe1,pea,...pen}, we follow the following steps to obtain the reads
(and mapping information) for transposon discovery:

* We first map all paired-end reads to chrN using mrsFAST and
discard such paired-end reads that cannot be mapped to chrN.
We keep the read pairs where one end read is mapped to chrN.

* Next, we map the reads we determine in the previous step to
the reference genome, and discard all paired end reads with
at least one concordant mapping.

#Alu's

150 B 4 Falss negatives
8 & True posiives

50
n-.--—--l

100-12% 125130 190-175 173-200 200-225 225230 230279 273300 300-32F VI3
Range

Fig. 5. The length distribution of true positive and false negative mobile
element insertion predictions for Alu elements. Note that all of the Alu
consensus sequences used in creating chrN are longer than 250 bp.

* Finally we remap the reads from Step 2 to both chrN and the
reference genome. As a post-processing step, we select the
paired-end alignments where one end is mapped to chrN and
the other end is mapped to the reference genome.

5.2 Mobile element insertion discovery in the Venter
genome

A list of mobile element insertions in the Venter genome assembly
(HuRef) (Levy et al., 2007) in comparison to reference human
genome assembly (NCBI build 36) genome was recently published
(Xing et al., 2009). We used the available HuRef genome to
produce short paired-end reads, similar to reads generated by the
Illumina technology (simulating an Illumina sequencing of the
Venter genome) to benchmark the sensitivity and specificity of
our algorithms. To our knowledge, this is the only dataset for
mobile element insertion annotations from the genome of a single
individual. We created paired-end reads from the HuRef genome
with a read length of 36 bp, and obtained 10-fold sequence coverage.
The fragment insert sizes for paired-end reads were chosen randomly
that follows a normal distribution very similar to the fragment size
distribution in the NA18507 shotgun sequence library generated
using the Illumina platform (Bentley et al., 2008).

We used our mobile element insertion discovery algorithm to
discover transposons in the autosomes of HuRef (from chrl to
chr22). In our experiments, we focused on Alu, NCAI (Non-classical
Alu Insertion)® and SVA insertions. The results of our experiment
are summarized in Table 1. The validated set of mobile element
insertions in the HuRef assembly is a union of the published
transposon insertions in Xing et al. (2009) and our new transposon
predictions not listed in Xing et al. (2009) but are included in HuRef.

As shown in Table 1, our method was able to find most of the
known/validated mobile element insertions (recall rate is >85%),
while the number of invalidated predictions is very low (precision
rate ~90%).

Interestingly, most of the Alu insertions missed by our algorithm
were truncated insertions (significantly smaller than the consensus
sequences). Figure 5 summarizes the true positive/false negative
results with respect to the length of Alu insertion.

Alu insertions that only contain the internal fragment of Alu are called
non-classical Alu insertions (NCAI; Xing et al., 2009).

i355

F.Hormozdiari et al.

Table 1. Summary of mobile element insertion prediction results in the
Venter genome

Chromosome Validated Predicted Found Recall (%) Precision (%)

Chromosome 1 41 Alu 42 Alu 40 88 95
4 NCAI

Chromosome 2 59 Alu 57 Alu 56 91 98
2 NCAI

Chromosome 3 42 Alu 40 Alu 40 90 100
1 NCAI
1 SVA

Chromosome 4 43 Alu 41 Alu 40 87 97
4 NCAI 1NCAI 1

Chromosome 5 39 Alu 44 Alu 35 90 80
1 SVA 1 SVA 1

Chromosome 6 59 Alu 55 Alu 53 88 96
1 NCAI
1 SVA 1 SVA 1

Chromosome 7 24 Alu 22 Alu 20 83 91

Chromosome 8 34 Alu 33 Alu 33 92 100
2 NCAI

Chromosome 9 23 Alu 23 Alu 21 88 92
1 NCAI 1 NCAI
1 SVA

Chromosome 10 33 Alu 32 Alu 32 94 100
2 NCAI 1NCAI 1

Chromosome 11 35 Alu 32 Alu 32 85 100
3 NCAI 1NCAI 1
2 SVA 1 SVA 1

Chromosome 12 33 Alu 34 Alu 31 84 91
4 NCAI

Chromosome 13 34 Alu 34 Alu 34 90 100
3 NCAI
2 SVA 1 SVA 1

Chromosome 14 19 Alu 20 Alu 19 95 95
1 NCAI
2 SVA 2 SVA 2

Chromosome 15 24 Alu 21 Alu 20 83 95

Chromosome 16 12 Alu 12 Alu 12 80 100
3 NCAI 1NCAI 1

Chromosome 17 9 Alu 9 Alu 9 77 100
2 NCAI
2 SVA 1 SVA 1

Chromosome 18 22 Alu 21 Alu 20 91 95

Chromosome 19 11 Alu 11 Alu 11 80 100
3 NCAI 1NCAI 1
1 SVA

Chromosome 20 11 Alu 13 Alu 9 77 71
2 NCAI 1 NCAI 1

Chromosome 21 7 Alu 7 Alu 7 100 100

Chromosome 22 7 Alu 5 Alu 5 71 100

We show the precision and recall rates of our mobile element (Alu, NCAI and SVA)
insertion discovery. We compare our mobile element insertion predictions with both
(Xing et al., 2009) and the HuRef genome assembly (Levy et al., 2007). The results
demonstrate that our algorithm has a high recall and precision rate.

5.3 Structural Variation Prediction with
VariationHunter-CR
In this section, we show that the call set predicted by

VariationHunter-CR has a lower false positive rate than the original
VariationHunter (Hormozdiari et al., 2009) while retaining the same

70 T T T T — T —
VariationHunter(Hormozdiari et al) —+—
ietal)

BreakDancer (Chen et al) «--x---
VariationHunter-CR

60

55 |

50 -

Number of Validated calls (in Kidd et al.) Found

45 s s s s s s s s
4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Number of calls predicted

Fig. 6. Prediction performance comparisons of VariationHunter (black),
VariationHunter-CR (red) and BreakDancer (blue). We also show the curated
(post-processed) results of VariationHunter in this figure (green). The x-axis
represents the number of deletions predicted by each method, and y-axis is
the number of validated deletions from (Kidd er al., 2008) that overlaps
(>50% reciprocal overlap) with a prediction. It is desirable to obtain a
prediction set that is able to find more validated calls with less number of
total calls. For VariationHunter and VariationHunter-CR, we give the number
of calls and number of validated deletions found for different support levels
(number of paired-end read supporting them); less support level results in
more predicted deletion intervals. This figure shows that VariationHunter-
CR has a better performance than VariationHunter for all support levels, and
VariationHunter-CR outperform the BreakDancer algorithm (Chen et al.,
2009).

true positive rate (Supplementary Material includes simulations
supporting this claim). As an experiment we compare the deletion
predictions using different algorithms including VariationHunter-CR
in the genome of a Yoruba African donor (NA18507) sequenced with
the Illumina Genome Analyzer platform (Bentley et al., 2008). We
include the validated deletions detected in the genome of the same
individual using fosmid clone-end sequencing (Kidd et al., 2008) in
our comparisons.

We downloaded ~3.5 billion end sequences (~1.7 billion
pairs) of length 3641 bp and insert size ~200 bp from the
NCBI Short Read Archive (ftp:/ftp.ncbi.nih.gov/pub/TraceDB/
ShortRead/SRA000271). Similar to the prescreening methodology
used in Hormozdiari et al. (2009), we removed any pairs of reads
from consideration if either (or both) end sequences has average
phred (Ewing and Green, 1998) quality score <20, or if either
(or both) sequences contain more than 2N characters. In total,
~1.3 billion reads were removed from this dataset. We then mapped
all the remaining ~2.2 billion end sequences to the human reference
genome using mrFAST (Alkan et al., 2009). The average insert size
was determined to be 209 bp, where the SD was 13.4 bp.

Figure 6 shows the comparison of our new VariationHunter-CR
algorithm with the original VariationHunter, the curated (post-
processed to remove conflicting predictions) result published in
Hormozdiari et al. (2009) and BreakDancer (Chen et al., 2009).

6 CONCLUSIONS

Despite recent advances in algorithm design for the detection of
structural variation, due to the difficulty in discovering complex
variants in regions of the genome with high plasticity the existing

i356

ftp://ftp.ncbi.nih.gov/pub/TraceDB/

Next-generation VariationHunter

algorithms are still at their infancy. In this article, we presented the
‘Next-Generation” of our structural variation discovery algorithm
VariationHunter that aims to improve both the sensitivity and
specificity of SV detection. VariationHunter is now capable of
resolving incompatible SV calls through a conflict resolution
mechanism that no longer requires post-processing heuristics.
Furthermore, we described additional algorithms to discover mobile
element insertions that are of known importance to genome
evolution and genomic variation. These enhancements provide a
much needed step toward a highly reliable and comprehensive
structural variation discovery algorithm, which, in turn will enable
genomics researchers to better understand the variations in the
genomes of newly sequenced human individuals, as well as the
genome structures of non-human species.

ACKNOWLEDGMENTS

We would like to thank T. Brown, L. Brunner and H. Yaghoubi for
their help in manuscript preparation. E.E.E. is an investigator of the
Howard Hughes Medical Institute.

Funding: Natural Sciences and Engineering Research Council of
Canada (NSERC); Genome BC grants (to S.C.S); US National
Institutes of Health (grants HG004120 and U0O1HG005209-02 to
E.EE).

Conflict of Interest: EEE is a SAB member of Pacific Biosciences.

REFERENCES

Alkan,C. et al. (2009) Personalized copy number and segmental duplication maps using
next-generation sequencing: Nat. Genet., 41, 1061-1067.

Bailey,J.A. et al. (2003) An Alu transposition model for the origin and expansion of
human segmental duplications. Am. J. Hum. Genet., 73, 823-834.

Bashir,A. et al. (2008) Evaluation of paired-end sequencing strategies for detection of
genome rearrangements in cancer. PLoS Comput. Biol., 4, €e1000051.

Bekpen,C. et al. (2009) Death and resurrection of the human IRGM gene. PLoS Genet.,
5, €1000403.

Bentley,D.R. et al. (2008) Accurate whole human genome sequencing using reversible
terminator chemistry. Nature, 456, 53-59.

Chen,K. et al. (2009) Breakdancer: an algorithm for high-resolution mapping of
genomic structural variation. Nat. Methods, 6, 677-681.

DuJ. et al. (2009) Integrating sequencing technologies in personal genomics:
optimal low cost reconstruction of structural variants. PLoS Comput. Biol., 5,
€1000432.

Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces using phred.
II. error probabilities. Genome Res., 8, 186-94.

Feuk,L. et al. (2006) Structural variation in the human genome. Nat. Rev. Genet., 7,
85-97.

Gupta,U I et al. (1982) Efficient algorithms for interval graphs and circular-arc graphs.
Networks, 12, 459-467.

Hancks,D.C. et al. (2009) Exon-trapping mediated by the human retrotransposon SVA.
Genome Res., 19, 1983-1991.

Hollox,E. et al. (2008) Psoriasis is associated with increased bold beta-defensin genomic
copy number. Nat. Genet., 40, 23-25.

Hormozdiari,F. et al. (2009) Combinatorial algorithms for structural variation detection
in high-throughput sequenced genomes. Genome Res., 19, 1270-1278.

Jurka,J. et al. (2005) Repbase update, a database of eukaryotic repetitive elements.
Cytogenet. Genome Res., 110, 462-467.

Kidd,J.M. et al. (2008) Mapping and sequencing of structural variation from eight
human genomes. Nature, 453, 56-64.

Korbel,J.O. et al. (2009) PEMer: a computational framework with simulation-based
error models for inferring genomic structural variants from massive paired-end
sequencing data. Genome Biol., 10, R23.

Korbel,J.O. et al. (2007) Paired-end mapping reveals extensive structural variation in
the human genome. Science, 318, 420-426.

Lee,S. et al. (2008) A robust framework for detecting structural variations in a genome.
Bioinformatics, 24, i59-i67.

Lee,S. et al. (2009) Modil: detecting small indels from clone-end sequencing with
mixtures of distributions, Nat. Methods, 6, 473-474.

McCarroll,S.A. et al. (2008) Deletion polymorphism upstream of IRGM associated
with altered IRGM expression and Crohn’s disease. Nat. Genet., 40, 1107-1112.

Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol.,
5, e254.

Medvedev,P. et al. (2009) Computational methods for discovering structural variation
with next-generation sequencing. Nat. Methods, 6, 13-20.

Mills,R.E. et al.(2007) Which transposable elements are active in the human genome?
Trends Genet., 23, 183-191.

Quinlan,A.R. et al. (2010) Genome-wide mapping and assembly of structural variant
breakpoints in the mouse genome. Genome Res., in press.

Sindi,S. et al. (2009) A geometric approach for classification and comparison of
structural variants. Bioinformatics, 25, i222-i230.

Tuzun,E. et al. (2005) Fine-scale structural variation of the human genome. Nat. Genet.,
37, 727-732.

Volik,S. et al. (2003) End-sequence profiling: sequence-based analysis of aberrant
genomes. Proc. Natl Acad. Sci. USA, 100, 7696-701.

Xing,J. et al. (2009) Mobile elements create structural variation: analysis of a complete
human genome. Genome Res., 19, 1516-1526.

i357

