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Abstract: Inflammation is a biological response of the immune system to harmful stimuli. Importantly,
inflammation is also a hallmark of several human diseases such as cancer or diabetes. Novel drugs to
treat this response are constantly researched, but the formulation is usually forgotten. Cyclodextrins
(CDs) are a well-known excipient for complexing and drug delivery. Anti-inflammatory drugs and
bioactive compounds with similar activities have been favored from these CD processes. CDs also
illustrate anti-inflammatory activity per se. This review tried to describe the capacities of CDs in this
field, and is divided into two parts: Firstly, a short description of the inflammation disease (causes,
symptoms, treatment) is explained; secondly, the effects of different CDs alone or forming inclusion
complexes with drugs or bioactive compounds are discussed.

Keywords: cyclodextrins; inflammation; drug; review; bioactivity

1. Introduction

Inflammation is a biological process of the immune system in response to harmful
stimuli, such as pathogens, damaged cells, or toxic compounds. Inflammation is a hall-
mark of many diseases including cancer and auto-immune diseases such as psoriasis and
rheumatoid arthritis [1]. Immune cells, blood vessels and different immune-mediators
are timely orchestrated with the ultimate goal of restore homeostasis by eliminating the
initial cause of the damage, achieve resolution, and promote regeneration [2]. Genetic
and environmental factors can easily disrupt such precise process interfering with the
resolution of inflammation and uncontrolled acute inflammatory response gives place to
chronic inflammation, which contributes to a variety of chronic inflammatory conditions [3].
The field has vastly focused on pharmacological ways, not only drugs but also bioactive
compounds, to help control and resolve inflammatory responses in multiple scenarios.
However, some of them could present low stability or bioavailability needing a formulation
improvement. An increase in the drug quantity is sometimes a good solution, but it can
cause an increase in adverse side effects. For that reason, the desired solution starts with
the increase of stability or bioavailability of the molecule changing the formulation, by for
example using cyclodextrins (CDs) [4].

CDs are well-known members of the science community for their uses to solubilize
poor-soluble drugs [4–6]. Chemically, CDs are truncated cone-shaped oligosaccharides
made up of α-(1,4) linked glucose units, obtained by the degradation of starch by the
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enzyme cyclodextrin glucosyltransferase. The most common CDs are the natural α, β and
γ-CD, which contain six, seven and eight glucose units, respectively. The CD ring is a
conical cylinder of an amphiphilic nature, with a hydrophilic outer layer (formed by the
hydroxyl groups) and a lipophilic cavity [7,8]. When poorly-soluble drugs are complexed
with CD, it is created the so-called “inclusion complex” [9–11]. To improve the properties
of CD monomers, different chemically obtained derivates (e.g., Hydroxylpropyl-β-CD or
Methyl-β-CD among others) and polymers have been shown to possess better capacities,
such as complexation efficiency or release than natural CDs [12–14]. The administration of
the drug as complex could increase the efficacy and capacities of the formulation, being
an interesting point to improve current treatments. The present review aims to provide a
general overview of the use of CDs and their derivatives in the control of inflammation
and related processes.

2. Inflammation
2.1. Basic Principles

The inflammatory response is developed upon activation of Toll-like receptors (TLRs)
and other Pattern Recognition Receptors (PRRs) [15–19]. When an insult is detected, ep-
ithelial cells and tissue-resident macrophages initiate the inflammatory response. The
production of diverse proinflammatory chemokines and cytokines, like TNF-α, IL1B and
CXCL8, induce the migration of neutrophils and monocytes, which will differentiate into
macrophages, to the inflammation site [17,20]. The release of these mediators and others
such as leukotriene B4 (LTB4) and histamine regulate the series of cascade events involved
in the inflammatory response including vasodilatation, increased blood vessels permeabil-
ity, increased expression of endothelial adhesion molecules, swelling and recruitment of
immune cells [19,21–23]. Inflammation can be classified into acute and chronic phases,
based on the severity and duration of the inflammatory response.

In the local acute inflammation, vascular changes and the infiltration of immune
cells, mainly neutrophils and macrophages, into the tissues could cause swelling, pain,
fever and erythema [24]. When the damage has been cleared, the acute inflammatory
process is resolved through the release of pro-resolution and anti-inflammatory molecules,
such as protectins, maresins, resolvins and lipoxins [18,25–27]. In the case that resolution
is not achieved and acute inflammatory response is sustained, a chronic inflammatory
response is established and could last several months to years. When inflammation becomes
chronic, most characteristics of acute inflammation, such as immune cell accumulation
and increased vascularity, continue. However, among the infiltrated cells, in chronic
inflammation, there are also lymphocytes [24]. At this stage, neutrophil degranulation
promotes lymphocyte activation, which triggers the release of mediators that attract more
immune cells to the inflamed tissue. Chronic inflammation could occur when the response
is not able to clear a pathogen, in hyper-sensitivity diseases, like autoimmune or allergic
diseases, and during long-time exposure to a toxic agent exogenous or endogenous, such
as silica or cholesterol, respectively [27].

2.2. Inflammatory Diseases

There is a rising incidence in modern societies of cases of systemic chronic inflamma-
tion and chronic inflammatory diseases, which are becoming one of the major causes of
morbidity and mortality in developed countries [28–30]. Systemic chronic inflammation in-
creased the risk of suffering different diseases, like some types of cancer [31], non-alcoholic
fatty liver disease [32], metabolic syndrome [33] and type-2 diabetes [34]. C-reactive protein
(CRP) is the main chronic inflammation biomarker, it has been associated with an increase
in risk for coronary heart disease and cardiovascular disease mortality [35,36]. There is a
large range of chronic inflammatory disease, rheumatoid arthritis, diabetes, inflammatory
bowel disease, atherosclerosis, Crohn’s disease, allergies, asthma or psoriasis are some
examples among them. Due to this situation, in recent years, several studies using different
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animal models and clinical trials have been focused on finding new molecular targets and
compounds to treat these chronic conditions [37–40].

2.3. Anti-Inflammatory Drugs

Corticosteroids are one of the most effective therapy to treat chronic inflammatory
diseases. They suppress the multiple inflammatory genes by reversing histone acetylation
through binding to glucocorticoid receptors [41]. They are commonly used to treat autoim-
mune diseases, asthma, psoriasis and rheumatic arthritis. Long-term use of corticosteroids
could lead to developing adverse effects, like hypertension, metabolic issues and peptic
ulcer [42].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used by the population;
they inhibit cyclooxygenase (COX) enzyme activity [43–45]. These enzymes are responsible
for the productions of different inflammatory mediators as prostaglandins, thromboxanes
and prostacyclines [46]. The NSAIDs are highly effective during acute inflammation to
reduce the symptoms but they are not curative, and their chronic use could be harmful [47].

Usually, chronic inflammation disease treatments are limited, and their efficacy di-
minishes along the application time. One of the most powerful is the biologic therapy,
which consists of the use of antibodies (suffix -mab) or fusion proteins (suffix -cept) that
target specifically the main pro-inflammatory cytokines like TNF-α and IL1-β and block
them [48,49]. This approximation usually is used when other treatments are not effective,
due to possible side effects [50].

3. Cyclodextrins as Agents for Treatment

In this section, the effect of CDs alone and complexed with drugs and bioactive
compounds against inflammation is discussed (Figure 1).

3.1. Drugs

Among the significant number of CD-based formulations that have reached the mar-
ket [51], the CD-anti-inflammatory drug complexes [52] seem to hold a prominent position.

As far as NSAIDs are concerned, CDs overcame the formulation issues caused by
their poor water solubility [53]. The great achievements reached triggered intense research
over the years [54,55]. A recent systematic review [55] collects the studies conducted in
this last decade (2010-2020) and shows how cyclodextrins have had a huge impact on the
formulation of NSAIDs with over 600 articles found in the literature, with 24 different
NSAIDs investigated and 60 formulations obtained through combinations of CDs and
NSAIDs. It emerges that meloxicam, followed by diclofenac, flurbiprofen, ibuprofen,
piroxicam, aceclofenac and oxaprozin is the most studied anti-inflammatory drugs and
some of the most recent studies are listed in Table 1 as examples. Among CD types, β-CD
and HPβ-CD are frequently used, often combined with meloxicam, piroxicam, ibuprofen
and piroxicam, flurbiprofen, respectively.

Successful NSAID-CD complexes have also been patented [63] and commercialized [5].
The first one was introduced in Europe in the 1980s with Brexin, a formulation made up of
piroxicam and β-CD [52]. Others are Mobitil (meloxicam/β-CD) produced in Egypt and
Flogene (piroxicam/β-CD) in Brazil [5].

Alongside solid dosage forms (suppositories and tablets), there are also liquid CD-
based formulations. Indocid Eye drop solution is an HPβ-CD-indomethacin combination
and Voltaren Ophtha Eye Drops, an HPγ-CD-diclofenac combination for treating eye
inflammation, in which the cyclodextrin is not only a drug solubility enhancer but also a
penetration promoter without being harmful to the cornea.

CDs were successful also in the delivery of another class of drugs used for the treat-
ment of inflammation, that is, glucocorticoids [64]. Glucocorticoids are used to restrain
inflammation, allergy and immune response and make organ transplants possible [64].
Natural and synthetic steroids are currently used, and dexamethasone is an example
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of synthetic steroid, which is often used but has low solubility in water. Indeed, the
hydrophobicity of glucocorticoids has made their formulation challenging.
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At the moment, transdermal is the most common route of administration with
glucocorticoid-based formulations in the form of hydrogels. Unfortunately, they can
be harmful after continuous exposure to organic co-solvents (e.g., ethanol or DMSO) used
for the solubilization of glucocorticoids. CDs have therefore been investigated as a possible
alternative to prevent the use of co-solvents.

The attempts made in the delivery of steroids in vitro, preclinical, and clinical studies
are collected in the systematic review conducted by Santos et al. [54], which shows the
effectiveness of CDs in the delivery of steroids when compared with the free drug in terms
of inhibition of inflammatory mediators and edema reduction. For example, a hydrocorti-
sone acetate-βCD complex was studied in vitro and good results were achieved as far as
solubility, stability and drug release are concerned [65]. Dexamethasone combined with
HPβ-CD was tested in vivo on rabbits affected by uveitis and improved the inflammation
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condition [66]. Alpha-methyl prednisolone complexed with a CD polymer drastically
reduced the arthritis scores and paw edema compared with pure drug [67].

Table 1. Examples of recent studies conducted on CD-NSAID complexes.

Type of CD NSAID Objective of the study Reference

β-CD Meloxicam In vitro evaluation for periodontitis treatment [56]

HP-β-CD Diclofenac

Clinical evaluation of the pharmacokinetics of
diclofenac in

patients with mild or
moderate renal insufficiency
or mild hepatic impairment

[57]

HP-β-CD Flurbiprofen
In vitro drug

release, mucoadhesion, and
irritation potential study for ocular delivery

[58]

β-CD Ibuprofen In vitro evaluation of
ibuprofen properties in metal organic frameworks [59]

β-CD Piroxicam In vivo evaluation of the analgesic activity and
anti-ulcerogenic potential of piroxicam in rats [60]

β-CD Aceclofenac

Ex vivo evaluation of
stability and transdermal

delivery to the inflammatory
sites in osteoarthritis

[61]

β-CD Oxaprozin In vivo evaluation of the anti-inflammatory activity on
adjuvant-induced arthritis in rats [62]

Prednisolone 21-hemisuccinate in α-CD was tested on rats with inflammatory bowel
disease and colon damage score and myeloperoxidase activity were reduced [68,69]. Dex-
amethasone has been investigated in clinical studies for the treatment of diabetic macular
edema and cataract with successful results. The CDs selected were γ-CD and HPβ-CD,
administered topically (ophthalmic route) [70,71].

The aforementioned studies are grouped in the following Table 2.

Table 2. Studies conducted on CD-steroid complexes.

Type of CD Steroid Objective of the Study Reference

β-CD Hydrocortisone acetate Determination of the anti-inflammatory effect on
LPS-stimulated RAW267 [65]

HPβ-CD Dexamethasone Determination of the anti-inflammatory effect on
rabbits affected by uveitis [66]

γ-CD Dexamethasone Clinical assessment of the anti-inflammatory effect
on diabetic macular edema and cataract [70,71]

HPβ-CD Dexamethasone Clinical assessment of the anti-inflammatory effect
on diabetic macular edema and cataract [70,71]

α-CD Prednisolone
21-hemisuccinate

Determination of the anti-inflammatory effect on
rats with inflammatory bowel disease [68,69]

In-depth knowledge of CDs, as well as the efforts for the optimization of CD for-
mulations, has led to the development of supramolecular structures (e.g., self-assembled
systems, cross-linked polymers, drug-conjugates), which improved the limits of single CDs
and transformed them into advanced drug delivery systems [51,72].

Indeed, the use of CDs is limited as guest molecules need to interact and fit inside the
CD cavity, as a consequence hydrophilic or high molecular weight drugs are not suitable
for complexation with CDs. One of the strategies proposed is reacting native cyclodextrins
with a cross-linking agent to form insoluble polymers, called nanosponges (NSs) [13]. They
have a peculiar cage-like structure formed by cyclodextrins connected by nanochannels,
which can be modulated and consequently affect the inclusion capacity. There is a broad



Biomolecules 2021, 11, 1384 6 of 15

number of molecules that can be incorporated inside NSs as there are many interaction sites
available for the formation of inclusion and non-inclusion complexes [73]. In particular,
the hydrophobic CD cavities with hydrophilic nanochannels of the polymeric network
around them permit interaction with drugs having different degrees of lipophilicity and
structures [74], including NSAIDs and steroids.

Cavalli et al. tested the capacity of cyclodextrin based nanosponges (CD-NSs) to load
lipophilic drugs, i.e., dexamethasone and flurbiprofen. The NS not only loaded the drugs
but also released them in a sustained manner [75]. Shende et al. [53] compared CD with
CD-NSs for the delivery of meloxicam to understand the improvements that a NS could
provide. The low aqueous solubility of meloxicam was enhanced when encapsulated inside
NSs and improved compared to CDs. Additionally, the zeta potential was highly negative
in the NS formulation, thus suggesting that it was stable. It was then tested in vitro and
in vivo and an improvement in rat paw edemas was achieved. The authors thus concluded
that NS could be promising drug delivery systems in which the release of meloxicam is
controlled to obtain the maximum anti-inflammatory effect.

In another study, β-cyclodextrin nanosponges were used to deliver naproxen. Not
only the NS was able to carry the drug but also to prolong and modulate its release being
pH-sensitive [76]. Additionally, ibuprofen has been the focus of a few studies [77,78], in
which the objective was to understand the diffusion properties of the drug across the NS
matrix to optimize polymer synthesis, thus opening the way to the design of drug delivery
systems with the desired drug release properties.

3.2. Anti-Inflammatory Bioactive Compounds

Bioactive compounds from natural sources could be an appealing alternative to syn-
thetic drugs when designing a CD-formulation with anti-inflammatory activity (Table 3).
Some example of these compounds can include stilbenes (resveratrol), flavanones (hes-
peridin and alpinetin), flavanolols (ampelopsin and dihydromyricetin), flavones (baicalein,
apigenin, chrysin, luteolinnaringenin and naringin), flavonols (galangin), flavonoid glyco-
sides (diosmin and rutin) and terpenes (betulin and zerumbone) [79].

Resveratrol is the most-studied stilbene found in wine and grapes and possesses a
limited solubility in water. Lin et al. (2020) [80] have successfully integrated it in HPβ-
CD/PVP electrospun nanofibers to overcome that problem and tested them in HaCAT
keratinocytes. Treated cells suppressed Particle Matter (PM)-induced expression of in-
flammatory proteins, COX-2 and matrix metalloproteinase-9 (MMP-9) at a dose of 20 µM,
indicating that nanofibers retained the anti-inflammatory activity of the compound. Lim
et al. 2020 [81] evaluated the anti-inflammatory effect of pterostilbene, an analogue of
resveratrol, complexed with HPβ-CD in RAW 264.7 macrophage cells treated with Fu-
sobacterium nucleatum. The results showed that the inclusion complexes inhibit NF-κB
activity and decrease the expression of TNF-α, IL-1β and IL-6, while cytokine IL-10 was
not affected.

The isoflavone genistein was encapsulated in HPβ-CD in order to improve its solu-
bility and bioavailability for atopic dermatitis applications. These complexes were found
to down-regulate mRNA expression of anti-inflammatory cytokines (IL-1α, IL-1β, IL-6
and TNF-α) below the concentration that caused cytotoxicity (10 µg/mL) [82]. Another
flavonoid, baicalein, enhanced its solubility and stability after encapsulation in HPβ-CD,
and the inclusion complexes were used to design a thermosensitive hydrogel formulation
that alleviated inflammation in animals with cervicitis [83].
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Table 3. Summary of the most relevant bioactive compounds and their effects.

Type of CD Bioactive Compound Natural Source Effect Reference

HPβ-CD/PVP Resveratrol Wine, grapes and
blackberries

Induced expression of
inflammatory proteins,

COX-2 and MMP-9
[80]

HPβ-CD Genistein Soybeans
Down-regulate mRNA

expression of
anti-inflammatory cytokines

[82]

HPβ-, Mβ- and
HPγ-CD Curcumin Tumeric Treating inflammatory

disorders [84,85]

HPβ- and β-CD Citral Lemons and oranges
Reduced total leukocyte

migration into the pleural
cavity and TNF-α levels

[86]

HPβ-CD Naringenin Grapefruits and
oranges Reduced TNF- α levels [87]

β-CD Carvacrol Oregano essential oil
Decrease level of IL-1β, IL-6,
MIP-2 and TNF-α and higher

of IL-10
[88]

α-CD Moringin Moringa
Down-regulated

pro-inflammatory cytokines
TNF-α and IL-1β

[89]

Curcumin, a natural coloring from turmeric, decreased the extent and severity of the
injury of the large intestine in synthetic dextran sulfate solution (DSS)-induced experi-
mental colitis model in Sprague Dawley rats when complexed with HPβ-CD and Mβ-CD
at 1:1 and 1:2 stoichiometries [84]. Additionally, the use of water-soluble curcumin with
HPβ-CD or HPγ-CD to manufacture a medicament for treating inflammatory disorders
such as rheumatoid arthritis, psoriasis, ulcerative colitis and Crohn’s disease, has been
patented [85]. Along with cyclodextrins, Sawant et al. (2014) developed PEG-coated zinc
ferrite nanoparticles with curcumin/β-CD complexes that protect erythrocyte membrane
against lysis induced hypotonic solution. As human red blood cells membranes are sim-
ilar to lysosomal membranes, they considered the prevention of hypotonicity-induced
erythrocyte membrane lysis as a measure of anti-inflammatory activity.

Ellagic acid complexed with β-CD was also able to protect erythrocyte membrane
from lysis induced by heat and hypotonicity, as well as protect albumin from denaturation,
demonstrating that the encapsulation improves the anti-inflammatory effects of the bioac-
tive compound [90]. Although the authors prepared 1:2 complexes with CDs, it has been
described that ellagic acid can form 1:1 complexes with CDs in the presence of borax [91].

The inhibition of COX or LOX by different betalains, a family of bioactive compounds
with interesting bioactivities was recently published [92]. The problems of stability of these
compounds can be solved with CDs when the inclusion complex is formed [93].

Some natural compounds from citric fruits have also been encapsulated in cyclodex-
trins and their anti-inflammatory activity evaluated in animal models. This is the case
of citral/β-CD and citral/HPβ-CD complexes which reduced total leukocyte migra-
tion into the pleural cavity and TNF-α levels in Swiss mice fed with 100 mg/kg [86];
naringenin/HPβ-CD complexes which also decreased TNF-α levels and showed similar
activity to that achieved with naringenin as supplied but administering only one-fifth of its
dose [87]; and limonin/β-CD and limonin/γ-CD complexes which reduced the volume
of paw edema in Wistar rats fed with 0.12 mg/kg, as well as, improved articular func-
tion by the decrease in the degree of bone resorption, soft tissue swelling and osteophyte
formation [94].

Neochlorogenic acid, a phenolic compound, has been demonstrated to inhibit mi-
croglia activation and pro-inflammatory responses in the brain (inhibition of TNF-α and
IL-1β and block of phosphorylated NFκB p65 and p38) [95] and recently, its complexation
in natural and modified cyclodextrins have been evaluated at different pH [96].
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Terpenoids complexes like carvacrol with β-CD have been tested in animal models
for anti-inflammatory effects revealing a reduction in hyperalgesia and in spontaneous
and palpation-induced nociception in mice with a tumor on the hind paw [97], and a
decrease in muscle tissue myeloperoxidase activity (MPO) and edema after carrageenan
treatment in rats [88]. In the last study, the authors also observed a lower level of IL-1β,
IL-6, MIP-2 and TNF-α and higher of IL-10 as compared to the vehicle group. A greater
reduction of paw edema formation induced by carrageenan was observed in mice treated
with the monoterpene p-cymene complexed with β-CD in comparison with p-cymene
alone [98]. Furthermore, pedunculoside was embedded into a β-CD polymer with the
cross-linking agent epichlorohydrin. The resulting complex exhibited low toxicity and
acted more effectively on mice ear edema than the free triterpene, possibly because the
improvement of aqueous solubility after encapsulation contributes to the absorption [99].
Moreover, complexation with β-CD improved the solubility and stability of linalool, leading
to an enhancement in its antinociceptive and analgesic effects by the reduction of total
leukocyte migration and TNF-α levels in peritoneal fluid [100], and a significant reduction
of hyperalgesia on chronic non-inflammatory muscle pain model [101].

Moringin, the main isothiocyanate from Moringa oleifera seeds, was complexed in
α-CD to increase solubility and stability. The complexes down-regulated pro-inflammatory
cytokines TNF-α and IL-1β in LPS activated macrophages cells by preventing IκB-α phos-
phorylation, suppression of Akt and p38 phosphorylation and translocation of NF-κB [89].
Additionally, modulation of oxidative stress was observed.

The alkaloid berberine was also described to have an anti-inflammatory effect and its
complexation in natural β-CD and α-CD was achieved, revealing that the latter provided
a better yield [102]. Coumestrol, a plant estrogen, was found to induce cell proliferation
and migration in the inflicted wound in Wistar rats after being supplied in HPβ-CD
complexes [103].

Centella asiatica extract is rich in asiaticoside, a bioactive compound that is described
to promote the synthesis of collagen and acidic mycopolysaccharides and inhibit the
inflammatory phase in wound healing that causes hypertrophic scars and keloids. Srichana
et al. (2016) [104] developed a topical spray formulation with this extract and HPβ-CD that
was non-irritating in the rat model and was able to completely heal an excision wound after
14 days, faster than the control. Moreover, Terminalia sericea extract with 86 % of sericoside
was encapsulated in γ-CD, HPγ-CD, HPβ-CD and Mβ-CD to improve its solubility, and the
oil/water formulation containing the complexes results in a 2.6-fold higher percutaneous
penetration of sericoside in excised pig skin compared with pure extract [105].

Brazilian green propolis extract rich in artepillin C and also p-coumaric acid, baccha-
rin, drupanin and cinnamic acid, was complexed with γ-CD and orally administered to
mice [106]. A down-regulation of mRNA levels of TNF-α, decrease in gene expression of
serum amyloid P and induction of hepatic ferritin gene expression were observed, while
endogenous antioxidant activity was not affected.

Complexes of basil essential oil/β-CD aimed to enhance bioavailability, also inhibit
granuloma formation and leukocyte recruitment to the peritoneal cavity, and prevent paw
edema formation by the decrease in vascular permeability [107]. Pinheiro et al. (2017) [108]
develop β-CD and HPβ-CD complexes with Copaiferamultijuga oleoresin that retained
anti-inflammatory activity measured by carrageenan-induced paw edema test. Moreover,
electrospun nanofibers of HPβ-CD and plai oil from Zingiber cassumunar Roxb. have been
proposed as an alternative topical application due to the anti-inflammatory activity of this
essential oil [109].

3.3. CD as Active Agents in Inflammatory Diseases

The capacity of CDs to complex different agents can be used to manage inflam-
mation directly, as occurs with other diseases such as Niemann Pick or neurological
diseases [110–112]. A case is the atherosclerosis, where the cholesterol accumulation in
veins starts the recruitment of macrophages and the inflammation response [113]. HPβ-CD
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was able to treat atherosclerosis not only by increasing the efflux of cholesterol [114] but
also through macrophage reprogramming [115] by the LXR-mediated signaling pathway;
cholesterol efflux was increased as a result of ABCA1 and ABCG1 upregulation, which was
corroborated in another recent study where this CD reduced the levels of plasma triglyc-
erides and inflammatory cytokines, and also increased the level of plasma HDL-cholesterol.
HPβ-CD demonstrated to interact with cholesterol crystal reducing the IGs deposition and
the activation of complement activation as measured by terminal complement activation
and lowered specific receptor expression on monocytes [116]. Even, the administration
of HPβ-CD reduced the level of pro-inflammatory cytokines (IL-1α, TNF or IL-6 among
others). This effect was tested with another deposition such as monosodium urate crys-
tal without effect, suggesting a specific effect against cholesterol crystals. Pilely et al.,
in 2019 discovered that α-CD inhibits cholesterol crystal-induced complement-mediated
inflammation as HPβ-CD [117].

4. Discussion

In the light of the considerations made above, it is clear that CDs respond to the
need to optimize treatments that already exist, making them more effective, stable and
safe. Encapsulation of CDs has been demonstrated to be efficient in solving these kind of
issues [8,118] while maintaining or even increasing the biological activity of these agents
because they act as multifunctional excipients in that they are solubility enhancers, prevent
drug–drug and drug–additive interactions within a formulation, eliminate unpleasant
smells or tastes and reduce side effects [5,53,119,120]. Even their own activity as active
drugs could promote possible synergetic capacities [116]. In fact, they can be found in
numerous pharmaceutical forms, e.g., tablets, suppositories, droplets and spray.

Last but not least, they can be used to develop advanced drug delivery systems
that go beyond the limits of single cyclodextrins. As a perspective, all these properties
have been found to be ideal for the formulation of anti-inflammatory drugs and bioactive
compounds. In addition, novel CDs are created to improve the possible limitations, being
able to complex not only drugs but also heavier molecules such as proteins. Bearing the
above features in mind and judging by the number of studies conducted, they are certainly
in the limelight, so research on this topic is far from over.

In conclusion, this review emphasizes the role of CDs for inflammation treatment.
They have been used to improve the release and bioavailability of different approved drugs.
Similar studies have been carried out with bioactive compounds where the managing
of inflammation responses such as oxidation and the expression of pro-inflammatory
cytokines were reduced. On the other hand, CDs have demonstrated their own capacities
with cholesterol mediated inflammation processes, managing the complement activation. In
summary, this review indicates a possible combinatorial effect where the drug is complexed
with CDs against inflammation. In simple terms, the application of CD lays the groundwork
for future progress opening up a new realm of other advanced applications expected to
arise soon.
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CD cyclodextrin
HPβ-CD 2-hydroxypropyl β-cyclodextrin
HPγ-CD 2-hydroxypropyl γ-cyclodextrin
Mβ-CD methyl β-cyclodextrin
PVP polyvinylpyrrolidone
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TNF-α tumoral necrosis factor α
IL interleukin
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MIP-2 macrophage inflammatory protein
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LOX Lipoxygenase
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