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The protein–protein interaction assay is a key technology in various fields, being applicable
in drug screening as well as in diagnosis and inspection, wherein the stability of assays is
important. In a previous study, we developed a unique protein–protein interaction assay
“FlimPIA” based on the functional complementation of mutant firefly luciferases (Fluc). The
catalytic step of Fluc was divided into two half steps: D-luciferin was adenylated in the first
step, while adenylated luciferin was oxidized in the second step. We constructed two
mutants of Fluc from Photinus pyralis (Ppy); one mutant named Donor is defective in the
second half reaction, while the other mutant named Acceptor exhibited low activity in the
first half reaction. To date, Ppy has been used in the system; however, its thermostability is
low. In this study, to improve the stability of the system, we applied Fluc from
thermostabilized Luciola lateralis to FlimPIA. We screened suitable mutants as probes
for FlimPIA and obtained Acceptor and Donor candidates. We detected the interaction of
FKBP12-FRBwith FlimPIA using these candidates. Furthermore, after the incubation of the
probes at 37°C for 1 h, the luminescence signal of the new systemwas 2.4-fold higher than
that of the previous system, showing significant improvement in the stability of the assay.

Keywords: protein-protein interaction (PPI), firefly luciferase (Fluc), bioluminescence, adenylation, oxidative
reaction, thermostability, assay stability

1 INTRODUCTION

The protein–protein interaction (PPI) assay is a key technology, not only in basic biology but also for
practical purposes in drug screening (Gul and Hadian, 2014; Xu et al., 2016; Ashkenazi et al., 2017),
diagnosis (Yuan et al., 2017; Atan et al., 2018), and food inspection (Rasooly, 2001; Katam et al.,
2016). We previously developed a PPI assay based on the two divided catalytic reactions of firefly
luciferase (Fluc); the first catalytic half-reaction involves the adenylation of D-luciferin (LH2), which
produces the reaction intermediate, luciferyl adenylate (LH2-AMP), while the second half-reaction
involves the oxidation of LH2-AMP, which produces oxyluciferin (OxL). Subsequently, the excited
OxL emits light (Figure 1A) (Branchini et al., 2011; Sundlov et al., 2012). Two Fluc mutants named
Donor and Acceptor were made of Fluc from Photinus pyralis (Ppy). The Donor maintains the
activity in the first half-reaction but is defective in the second half-reaction, while the Acceptor has a
low activity in the first half-reaction but mostly retains the activity in the second-half reaction.
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Therefore, the Donor can produce the reaction intermediate,
LH2-AMP, while producing almost no OxL. However, the
Acceptor cannot produce LH2-AMP but can retain the
catalytic activity for the oxidation of the intermediate. When
the Donor and Acceptor are each fused to an interacting protein,
the interaction of the proteins induces the approximation of the
two mutant enzymes. Based on this principle, previously, we
succeeded to detect 1) the interaction between FK506-binding
protein 12 (FKBP12) and FKBP-rapamycin-associated protein
(FRB), which interact depending on an immunosuppressant

rapamycin, and 2) that between p53 and its inhibitor Mdm2,
which controls apoptosis, senescence, DNA repair and cell
growth. Each PPI results in a higher rate of LH2-AMP
catalysis into OxL by the Acceptor, leading to the higher light
emission (Figure 1B). This PPI assay was named Firefly
luminescent intermediate Protein-protein Interaction Assay or
FlimPIA (Ohmuro-Matsuyama et al., 2013b; Ohmuro-
Matsuyama et al., 2014; Kurihara et al., 2016; Ohmuro-
Matsuyama and Ueda, 2016, 2017; Ohmuro-Matsuyama et al.,
2018a; Ohmuro-Matsuyama et al., 2018b).

FlimPIA has several advantages. The signal/background ratio
and sensitivity are higher, and the detectable size of the
interacting protein is larger than that of fluorescent protein-
based Förster/fluorescence resonance energy transfer assay and
Fluc-based protein-fragment complementation assay.
Furthermore, the thermostability of the probe is 4-fold higher
than that of Fluc PCA probes because of the unstable split forms
of PCA probes and the structural integrity of FlimPIA probes
employing the full-length Fluc (Ohmuro-Matsuyama et al.,
2013a).

However, the thermostability of FlimPIA remains insufficient
owing to the low stability of Ppy. Although Fluc is applied to a
hygiene monitoring system (Corbitt et al., 2000; Bakke and
Suzuki, 2018), incubation of the enzyme for 1 h at 37°C
resulted in an 83% decrease in signal intensity. To overcome
this problem, many researchers have attempted to enhance the
stability of Fluc (White et al., 1996; Koksharov and Ugarova,
2011a; Koksharov and Ugarova, 2011b; Rasouli et al., 2011;
Lohrasbi-Nejad et al., 2016; Solgi et al., 2016; Branchini and
Southworth, 2017; Jazayeri et al., 2017; Rahban et al., 2017; Pozzo
et al., 2018; Branchini et al., 2019). In this study, we applied
Luciola lateralis (Heike-botaru) Fluc (LlL) with mutations for
thermostability and organic solvent tolerance (Kodama and
Nasu, 2011) to FlimPIA for improving the stability at
physiological reaction condition. LlL was obtained by random
mutagenesis and screening of a high activity mutant L344A,
encoding two mutations V287A and V392I.

2 MATERIALS AND METHODS

2.1 Materials
Firefly luciferin (LH2) was obtained from Biosynth AG (Staad,
Switzerland). Rapamycin was purchased from LKT Laboratories
(St. Paul, MN, United States), and 3-(N-morpholino)
propanesulfonic acid (MOPS) was purchased from Dojindo
(Kumamoto, Japan). Oligonucleotides were synthesized by
Eurofins (Tokyo, Japan). A QuikChange Site-Directed
Mutagenesis Kit was obtained from Agilent (Santa Clara, CA,
United States). An In-Fusion HD Cloning Kit was purchased
from Takara-Bio (Shiga, Japan). Restriction enzymes and E. coli
SHuffle T7 express lysY were obtained fromNew England Biolabs
(Ipswich, MA, United States). E. coli JM109 competent cells were
from SciTrove (Tokyo, Japan). Overnight Express Autoinduction
System and BugBuster Master Mix were obtained from MERCK
(Kenilworth, NJ, United States). Other reagents of the highest
grade available were purchased from Kanto Chemicals (Tokyo,

FIGURE 1 |Working principle of FlimPIA (A)Chemical reaction catalyzed
by Fluc. Each of the two half-reactions is catalyzed by the different
conformation. Ppy enzyme at the adenylation conformation (pdb 4G36) is
shown in yellow, while that for the oxidative light-emitting reactions (pdb
4G37) is shown in blue. Magenta: the mutated residues in the Donor; green:
those in the Acceptor; cyan: sites mutated for improved stability in LlL (in
parentheses); purple; substrate analogue DLSA. The residue numbers are
shown as those in Ppy throughout. (B) The scheme of FlimPIA in this paper.
When the Donor is far from the Acceptor, LH2-AMP produced by the Donor
does not reach the Acceptor. When the PPI between FKBP and FRB is
induced by rapamycin, the Donor and Acceptor are in close proximity and the
Acceptor catalyzes LH2-AMP produced by the Donor more efficiently.
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Japan), Fujifilm-Wako Pure Chemical Industries (Osaka, Japan),
or Nacalai-Tesque (Kyoto, Japan), unless otherwise indicated.

2.2 Construction of Plasmids and Their
Libraries
The primers used in this study are listed in Supplementary Table
S1. To yield pET26-LlL (H245D), QuikChange Site-Directed
Mutagenesis Kit was used according to the manufacturer’s
protocol using pET26-LlL (Kodama and Nasu, 2011) as a
template and the primer set of LlLH245S_BspHI+ and
LlLH245D_BspHI+-r. To yield pET26-LlL(K443A), the same
procedure was used with the primers of LlLK443A_AseI+ and
LlLK443A_AseI+-r. To yield pET-LlL (K529A; the lysine was at
529 in Ppy and 530 in LlL), the primers of LlLK530A_MfeI+ and
LlLK530A_MfiI+-r were used, whereas primers of LlL
K530Q_AgeI+ and LlLK530Q_AgeI+-r were used to yield
pET26-LlL(K529Q).

To yield FK506-binding protein 12 (FKBP12)-fused
LlL(K443A), LlL(K443A) was amplified by polymerase chain
reaction (PCR) using pET26-LlL(K443A) as a template and
the primers LlLNotG4S-for and LlLXho-rev. The amplified
fragment was digested with NotI and XhoI and inserted
between the NotI and XhoI sites of pET32-FKBP-Donor,
which was constructed previously (Ohmuro-Matsuyama et al.,
2013b). To yield FKBP12-rapamycin complex-associated protein
(FRB)-fused LlL (K529Q), LlL (K529Q) was amplified by PCR
using pET26-LlL(K529Q) as a template and the primers
LlLNotG4S-for and LlLXho-rev. The amplified fragment was
digested with NotI and XhoI and inserted between the same
sites of pET32-FRB-Donor.

To acquire the FRB-LlL(S440X/K529Q) library, QuikChange
site-directed mutagenesis was performed using pET32-FRB-
LlL(K529Q) as a template and LlL447_KpnI and LlLS440X-
KpnI-r as primers. Because bulky amino acids such as leucine
and phenylalanine at the position of 440 were suitable as the Ppy
Acceptor, the primer LlLS440X-KpnI-r was designed to
selectively encode these residues at this position. To yield the
FRB-LlL(S440M/K529X) library, the full-length pET32-FRB-LlL
(S440M/K529Q) was amplified and site-directly mutated via PCR
using the primer set of LlL530X-for and LlLS530X-rev. As the
primers encoded 15 nt each of homologous sequences at the ends,
both ends of the amplified fragment were recombined by In-
Fusion cloning. To yield the FKBP-LlL(H245X/K443A) library,
the full-length pET32-FKBP-LlL(K443A) was amplified and site-
directly mutated via PCR with the primer set of LlLH245X-for
and LlLH245X-rev. Both ends of the amplified fragment were
recombined using In-Fusion cloning. To obtain the FKBP-
LlLH245E/K443A library, pET32-FKBP-LlL(H245E/K443A)
was amplified and site-directly mutated via PCR using the
primer set of LlLK443X-for and LlLK443X-rev. Both ends of
the amplified fragment were recombined using In-Fusion
cloning, according to the manufacturer’s protocol. To confirm
that each resultant library contained sufficient variation of the
mutants, the DNA sequences of several clones were analyzed.

To obtain FRB-LlL(S440F/K529Q) and FRB-LlL(S440W/
K529Q), pET32-FRB-LlL (S440M/K529M) was amplified and

site-directly mutated by PCR using the primers LlLS440FW-KpnI
and LlL447-KpnI-r, and both ends of the amplified fragment were
fused by In-Fusion cloning. pET32-FKBP-LlL(H245E/K443A/
I530R) and pET32-FKBP-LlL(H245E/K443A/I530K) were
obtained similarly using pET32-FKBP-LlL(H245E/K443A) as a
template and LlLI530X-for and LlLI530X-rev as primers.

2.3 Expression and Characterization of the
Probe Proteins
The probes for FlimPIA were expressed in E. coli SHuffle T7
Express lysY and purified using the TALON metal affinity resin,
as described previously (Ohmuro-Matsuyama et al., 2013b). The
purification profile of each protein was confirmed by SDS-PAGE
(Supplementary Figure S1). The kinetic constants Km and Vmax

for LH2-AMP were determined using chemically synthesized
LH2-AMP, as described previously (Kurihara et al., 2016). To
estimate the adenylation activity, the amount of enzymatically
formed LH2-AMP was measured using the N-domain of Ppy
Fluc, as described previously (Ayabe et al., 2005).

2.4 Detection of PPI by FlimPIA
An equimolar mixture of the Donor and Acceptor candidates
with or without rapamycin in the reaction buffer (50 µl of
100 mM MOPS and 10 mM MgSO4; pH 7.3), wherein the
concentration of MgSO4 and pH were previously optimized
for FlimPIA (Ohmuro-Matsuyama et al., 2013b), was added to
a well of a 96-well half-area white plate (3693, Corning, Tokyo,
Japan). The measurement was performed using a microplate-
based luminometer AB2350 at 0.1-s intervals (ATTO, Tokyo,
Japan) immediately after injecting 50 µl of the reaction buffer
containing the substrates (LH2 and ATP). Rapamycin was
dissolved in dimethyl sulfoxide (DMSO), and the same
amount of DMSO (0.1%) was added as a vehicle to the
negative sample. In the optimized buffer conditions, 1 mM of
coenzyme A was added to reduce the amount of spontaneously
produced dehydroluciferyl-AMP (L-AMP), which acts as a
competitor of LH2-AMP and inhibits light emission. The
addition of coenzyme A results in the conversion of L-AMP to
dehydroluciferyl-coenzyme A, which does not act as a competitor
(Fontes et al., 1997; Fraga et al., 2005; Kurihara et al., 2016).

2.5 Screening
E. coli SHuffle T7 Express lys Y was transformed with the mutant
plasmids and cultured on LBA agar plates (10 g/L tryptone, 5 g/L
yeast extract, 5 g/L sodium chloride, 100 μg/ml ampicillin, and
15 g/L agar). The colonies were selected and cultured using the
Overnight Express Autoinduction System in a 96-well culture
plate at 30°C overnight. The pellet of each clone was lysed in 50 µl
of BugBuster Master Mix, according to the manufacturer’s
protocol. The lysates were centrifuged, and the supernatants
were collected. To estimate the adenylation activity, each
supernatant (10 µl) was added to 90 μl of reaction buffer
containing 150 µM of LH2 and 2 mM ATP. To estimate the
oxidative luminescent activity, 90 µl of the reaction buffer
containing 200 nM LH2-AMP was added to each
supernatant (10 µl).
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3 RESULTS AND DISCUSSION

3.1 Testing Ppy Mutations in LlL-Based
FlimPIA
Previously, two mutant Ppy enzymes were used to perform
FlimPIA. Fluc consists of N- and C-terminal domains, and the
C-terminal domain rotates ∼140° according to the reaction
proceeds from the first to the second half-reaction (Branchini
et al., 2011; Sundlov et al., 2012). Based on this knowledge, the
H245D/K443A/I530R mutant of Ppy has been used as the Donor
that produces luciferyl adenylate (Ohmuro-Matsuyama et al.,
2013b). Among the three mutations, two mutations, H245D near
the active site (Ayabe et al., 2005) and K443A in the C-terminal
domain (Branchini et al., 2005), suppress the oxidative reaction
steps, thereby playing a central role as the Donor. In contrast,
being K529 as an essential residue for the adenylation reaction
(Branchini et al., 2000), Ppy enzymes with the mutations K529A,
K529Q, K529Q/S440F, or K529Q/S440W were used as the
Acceptors. While the mutations at K529 are most important
for the Acceptor that suppress the adenylation reaction, those for
S440 located in the hinge region between the N- and C-terminal
domains augment the steric hindrance to suppress the
adenylation conformation (Ohmuro-Matsuyama et al., 2018b)
(Figure 1). Based on these previous observations, we first
obtained the LlL mutants of H245D, K443A, K529A, and
K529Q and then analyzed their kinetic constants for LH2-
AMP (Supplementary Table S2). As a result, suppression of
the oxidative reaction steps by H245D and K443A mutations was
observed. In contrast, the reaction rate was relatively maintained
by the K529A and K529Q mutant LlLs. Next, the relative
amounts of LH2-AMP produced by the same mutant LlLs
were compared to analyze the adenylation activity. The
amount of adenylate produced by K443A was higher than that
produced by H245D, K529A, and K529Q (Supplementary
Figure S2). These results indicate that K443A might act as a
Donor because of its high adenylation activity and low oxidative
activity, suggesting the importance of K443 in the oxidative steps
in LlL. However, the adenylation activity of H245Dwas too low to
act as a Donor. Next, FlimPIA using heterogeneous pairs of LlL-
based and Ppy-based mutants was performed using 1) the pair of
FKBP-fused LlL (K443A) as a Donor and FRB-fused Ppy
Acceptor and 2) the pair of FKBP-fused Ppy Donor and FRB-
fused LlL(K529Q) as a possible Acceptor (Supplementary Figure
S3). Since the interaction between FKBP and FRB is rapamycin
(Rap) dependent (Brown et al., 1994; Chiu et al., 1994; Chen et al.,
1995), the luminescence intensity was expected to increase with
the addition of Rap. As a result, when rapamycin was added to the
first pair of LlL(K443A) and Ppy Acceptor, a higher luminescent
intensity was observed in the presence of Rap. However, the
second pair of LlL K529Q and Ppy Donor did not show a Rap-
dependent signal.

3.2 Strategy for Screening LlL Mutants
Because the mutations of H245D and K529Q were not functional
for LlL-based FlimPIA, we decided to perform screening for more
suitable mutants by the following procedure. 1) The saturation
mutagenesis libraries, K529X, S440X, H245X, and K443X were

screened. E. coli was transformed using the library, and several
clones were expressed in the cultured E. coli using an
autoinduction system. 2) To analyze the first half reaction,
ATP and LH2 were added to the lysates of E. coli. 3) To assess
the second half reaction, LH2-AMP was added to the lysates. 4)
The ratios of the luminescence intensity of 2) and that of 3) were
calculated. When the ratio was high, the clone was suitable as a
Donor, whereas when the ratio was low, the clone was suitable as
an Acceptor.

3.3 Screening for LlL Acceptor
As the interacting proteins, FKBP and FRB were used, and the
rapamycin dependent interaction was detected (Figure 1B). To
obtain an LlL-based Acceptor, an FRB/S440X/K529Q library was
created, and 96 colonies were selected for screening. Among
them, five clones, namely, FRB/S440N/K529Q (two clones), FRB/
S440K/K529Q (two clones), and FRB/S440M/K529Q, were
selected. The proteins of FRB/S440S/K529Q, FRB/S440N/
K529Q, FRB/S440K/K529Q, and FRB/S440M/K529Q were
expressed in E. coli and purified. Using each protein as the
Acceptor and FKBP/Ppy Donor, FlimPIA was performed
(Figure 2A). The luminescence intensities of all Acceptor
candidates were increased by the addition of Rap. The
maximum signal/background (S/B) ratios were in the order of
S440M>S440K>S440N>S440S.

In our previous study (Ohmuro-Matsuyama and Ueda, 2017),
Ppy (S440F/K529Q) and Ppy (S440W/K529Q) were found to be
suitable as the Acceptors. To validate the results of the screening
in this study, FRB/LlL(S440F/K529Q) and FRB/LlL(S440W/
K529Q) were also prepared and tested. FlimPIA was
performed using each FRB/LlL Acceptor candidate and FKBP/
Ppy Donor. When Rap was added, the maximum S/B ratios of
S440F/K529Q and S440W/K529Q were lower than those of
S440S/K529Q (Supplementary Figure S4). Previously, we
showed that the optimization of ATP concentration was
important for the suppression of the background luminescence
intensity and the enhancement of the S/B ratio. Although
different concentrations of ATP (20, 5, and 1.25 mM) were
examined, the maximum S/B ratios remained low. Therefore,
we concluded that the screening method was suitable for the
selection of mutants for FlimPIA.

To obtain a better mutant Acceptor, the FRB/LlL S440M/
K529X library was constructed. In addition, 6 out of 192 clones
were selected. The truncated Flucs were observed in two clones,
and the remaining clones were FRB/S440M/K529R (two clones),
FRB/S440M/K529M, and FRB/S440M/K529N. FlimPIA was
performed using each FRB/LlL Acceptor candidate and FKBP/
Ppy Donor. As a result, all candidates acted as the Acceptors, and
the maximum S/B ratio of K529M was remarkably higher than
that of the other candidates (Figure 2B).

3.4 Screening for LlL Donor
To obtain an LlL-based Donor, screening was performed using
the FKBP/LlL H245X/K443A library. As a result, 9 out of 288
clones were selected. These included FKBP/H245N/K443A (three
clones), FKBP/H245E/K443A (three clones), FKBP/H245A/
K443A, FKBP/H245S/K443A, and FKBP/H245P/K443A.
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FIGURE 2 | Screening of LlL Acceptors. (A) S440X/K529Q screening. (B) S440M/K529X screening. Error bar: ±1 × SD (n � 3). Ppy Donor (50 nM) and each
candidate of LlL Acceptor (50 nM) were reacted with ATP (10 mM) and LH2 (37.5 μM) with/without rapamycin (Rap) (50 nM).
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FlimPIA was performed using each candidate and FRB/
LlL(S440M/K529M). Among these candidates, only H245E/
K443A showed increased luminescence intensity upon Rap
addition (Supplementary Figure S5). However, the S/B ratio
and luminescence intensity were significantly lower than those
obtained with the FKBP/Ppy Donor and FRB/LlL(S440M/
K529M).

To improve the LlL Donor, another screening was performed
using the FKBP/LlL (H245E/K443X) library. Among 288 clones,
H245E/K443R (three clones), H245E/K443G (two clones),
H245E/K443V, H245E/K443P, and H245E/K443A were
selected. FlimPIA was performed using each candidate and the
FRB/Ppy Acceptor (K529Q/S440F) (Supplementary Figure
S6A). However, the results using these candidates were almost
the same for several ATP concentrations. In addition, FRB/LlL
(H245E/K443A/I530R) and FRB/LlL (H245E/K443A/I530K)

were expressed in E. coli and purified. Because I530R is
effective for the stabilization of ATP in Ppy (Fujii et al., 2007),
we hypothesized that the positively charged amino acids at this
position (I530R, I530K) might enhance the adenylation activity.
However, in FlimPIA, these mutations decreased the
luminescence intensities and could not increase the S/B ratios
under several ATP concentrations (Supplementary Figure S6B).

3.5 FlimPIA Using Selected Enzymes
Because of the low intensity and S/B ratio of the FKBP/LlL Donor
(H245E/K443A) and FRB/LlL Acceptor (S440M/K529M), the
stability of the heterologous pair of the Ppy Donor and LlL
Acceptor was compared with that of the LlL Donor and LlL
Acceptor pair (Supplementary Figure S7). FlimPIA was
performed after two overnight incubations at 25°C.
Unexpectedly, the S/B ratio and luminescence intensity of the

FIGURE 3 | Optimization of the assay condition. (A) FlimPIA under the optimized condition. (B)Measurement using the Lumitester PD-30. Error bar: ±1 × SD (n �
3). Ppy Donor (50 nM) and LlL Acceptor (50 nM) were reacted with LH2 (33 μM) and ATP (1.25 mM) with/without rapamycin (Rap, 50 nM) in the presence of 1 mM of
coenzyme A.

FIGURE 4 | Effect of preincubation in FlimPIA. (A) The pair of FKBP-Ppy Donor and FRB-Ppy Acceptor. (B) The pair of FKBP-Ppy Donor and FRB-LlL Acceptor.
After the incubation at 37°C FlimPIA was performed. Error bar: ±1 × SD (n � 3). Donor (50 nM) and Acceptor (50 nM) were reacted with LH2 (33 μM) and ATP (1.25 mM)
with/without rapamycin (Rap, 50 nM). The reaction buffer was added with 1 mM of coenzyme A.
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heterologous pair were as high as those of the homologous pair.
Ppy Donor might have produced an excess amount of LH2-AMP
for FlimPIA; therefore, the lower production of LH2-AMP after the
incubation might not remarkably change the result of FlimPIA.

We then selected the heterologous pair of FKBP/Ppy Donor
and FRB/LlL Acceptor and optimized the assay conditions. Under
the conditions of 1.25 mM ATP, 33 μM LH2, and 1 mM
coenzyme A, the maximum S/B ratio reached more than 6
(Figure 3A). In addition, when a portable luminometer
(Lumitester PD-30, Kikkoman, Chiba, Japan) was used, an S/B
ratio of more than 2 was attained (Figure 3B). Finally, we
compared the thermostabilities of the Ppy pair of FKBP/Ppy
Donor and FRB/Ppy Acceptor and the heterologous pair of
FKBP/Ppy Donor and FRB/LlL Acceptor at 37°C (Figure 4).
After incubation for 20 and 60 min, the signal intensity of the Ppy
pair was 58 and 17%, while the intensity of the heterologous pair
was still 72 and 41%, respectively.

In conclusion, we succeeded in improving the thermostability
of FlimPIA, enhancing its applicability for clinical diagnoses and
inspections in such as food factories. In this study, it was revealed
that both Ppy Fluc and LlL Fluc could be applied to FlimPIA. In
the future, other similar enzymes such as Eluc (enhanced green-
emitting luciferase) (Nakajima et al., 2010), which produces a
brighter light in mammalian cells, may further expand the scope
of this assay in practical applications.
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