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Abstract

In a neural integrator, the variability and topographical organization of neuronal firing rate 

persistence can provide information about the circuit’s functional architecture. Here we use optical 

recording to measure the time constant of decay of persistent firing (“persistence time”) across a 

population of neurons comprising the larval zebrafish oculomotor velocity-to-position neural 

integrator. We find extensive persistence time variation (10-fold; coefficients of variation 0.58–

1.20) across cells within individual larvae. We also find that the similarity in firing between two 

neurons decreased as the distance between them increased and that a gradient in persistence time 

was mapped along the rostrocaudal and dorsoventral axes. This topography is consistent with the 

emergence of persistence time heterogeneity from a circuit architecture in which nearby neurons 

are more strongly interconnected than distant ones. Collectively, our results can be accounted for 

by integrator circuit models characterized by multiple dimensions of slow firing rate dynamics.

Introduction

Neural integrators are brain circuits specialized for performing the mathematical operation 

of integration on a time-varying signal1. This temporal integration is fundamental to a range 

of motor, memory, and decision-making tasks2–4. In the velocity-to-position neural 

integrator for horizontal eye movements (hVPNI) in the vertebrate oculomotor system, 
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neurons temporally integrate brief eye velocity-encoding burst signals that drive saccades. 

This integration generates steps in the firing rate of hVPNI neurons that encode an eye 

position signal necessary for stabilizing gaze5,6. The steps in firing rate of an hVPNI neuron 

can persist following saccadic input for tens of seconds, ensuring that eye position changes 

only slowly (decay time constants are typically 10–100 s) during fixations between 

saccades. The cellular and circuit mechanisms that explain temporal integration and this 

persistent neural activity remain poorly understood7. Understanding these mechanisms in 

the hVPNI may provide a general framework for understanding integration in other neural 

systems.

The firing rates of any ipsilateral pair of hVPNI neurons are approximately linearly related 

to each other over eye positions at which both are active8–10. This observation of the mutual 

linearity of firing rates lead to the idea that the circuit dynamics could be considered as that 

of a one-dimensional line attractor11. In addition to capturing this linearity, the most 

commonly considered line attractor-based model of the hVPNI has two other defining 

characteristics, both of which are aspects of the firing rate persistence in component neurons 

following a transient stimulus. First, consistent with experimental observations, the firing 

rates of neurons in the circuit decay slowly toward a baseline level, persisting far longer than 

typical membrane and synaptic time constants (1–100 ms). Second, this decay is dominated 

by a single time constant so that the rate of decay is uniform across neurons (Fig. 1a).

Although line attractor dynamics have provided a general framework for conceptualizing 

parametric memory in neural systems12,13 and are approximated by several proposed models 

of the hVPNI14–16, other neuronal circuit architectures have also been proposed. 

Importantly, these architectures make different predictions of firing rate persistence across 

the neuronal population. In particular, recurrent network models with circuit architectures or 

intrinsic neuronal biophysics giving rise to not one but multiple long time scales of firing 

rate decay have been suggested to be more consistent than line attractor-based models with 

firing during vestibular stimulation17 and after detuning18,19 and partial inactivation20 of the 

hVPNI, and may be more robust to perturbation11,21. A network with such an architecture 

could display heterogeneous firing rate persistence across cells (Fig. 1b). Similarly, recently 

described integrating circuits that differ from line attractor models by emphasizing 

feedforward connectivity22 could also display heterogeneous firing rate persistence across 

cells, with cells further down the feedforward chain showing progressively longer 

persistence. Despite its capacity to help distinguish circuit model architectures in terms of 

the firing dynamics they generate, a systematic experimental study of the similarity of firing 

rate persistence across hVPNI neurons has not been reported. This is primarily because 

simultaneous measurement from many neurons has been difficult in adult preparations 

studied previously with electrophysiological methods. Recently, we have developed an 

optical recording-based method for identifying and measuring calcium changes in 

populations of hVPNI neurons in larval zebrafish23; these calcium changes can be used to 

estimate firing rate dynamics. This created an opportunity to investigate the similarity of 

persistence times within these populations, which is a principal focus of the present work.

Imaging methods enable not only simultaneous measurement from many neurons suitable 

for examining the diversity of dynamics, but also precise anatomical localization of the 
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recorded cells. Electrophysiological approaches to studying the hVPNI have been limited in 

resolving the relative locations of neurons from which action potentials were recorded. This 

has prevented assessment of topography in firing rate dynamics amongst hVPNI neurons on 

short spatial scales (≤ ~100 μm), yet such structure could also indicate functional 

organization of the circuit these neurons comprise. For example, in a neuronal population 

showing diverse firing rate persistence, cells could be randomly arranged with respect to this 

persistence (Fig. 1c), or they could be ordered along one or more spatial dimensions (Fig. 

1d). This sort of order might reflect the time course of neuronal maturation during 

development24 or differential connectivity between neurons25, as have been observed in 

other neuronal circuits. Because in general there is a relationship between connectivity and 

circuit dynamics22, characterization of topography could facilitate the understanding of 

circuit mechanisms underlying neural integration. Observation of structure on these scales in 

terms of firing patterns could also help elucidate genetic determination or organization of the 

hVPNI, since genetically defined cell types can be ordered on short spatial scales26,27.

Here we report a quantitative analysis of the variation in firing rate persistence, and the 

anatomical organization of this variation, among hVPNI neurons optically recorded with 

cellular resolution in awake larval zebrafish during spontaneous eye movements23. Firing 

rate persistence is quantified for these neurons as the persistence time, the time constant of 

the decay in firing during fixations. Persistence times were measured from cellular 

fluorescence time series deconvolved with calcium impulse response functions estimated for 

individual cells from data. These times varied over ten-fold across cells within individual 

larvae. A corresponding spatial organization on a short length scale (< 100 μm) was also 

observed in which persistence times were graded along the rostrocaudal and dorsoventral 

axes. This spatial organization in functional activity is consistent with a dependence of 

coupling strength on proximity, resulting in a circuit architecture ordered in terms of firing 

rate persistence.

Results

Identification and variability of eye movement-related hindbrain neurons

We used a recently described23 optical recording-based method to identify and characterize 

putative hVPNI neurons in awake larval zebrafish based on the temporal correlation of 

calcium concentration changes with simultaneously measured eye position. Hindbrain 

neurons were bolus-loaded with Oregon Green BAPTA-1 AM (OGB-1) and a custom-built 

two-photon microscope was used to collect image time series from sagittal windows 20 to 

70 μm lateral of the midline that spanned from 100–130 μm to 200–230 μm caudal of the 

Mauthner cell soma (rhombomere 7/8; Supplementary Fig. 1) during spontaneous eye 

movements (Fig. 2a). These imaging windows spanned the lower ~2/3 of the dorsoventral 

extent of the hindbrain. In larval zebrafish, spontaneous eye movements (both in the light 

and in the dark) frequently consist of a stereotypical back and forth scanning pattern of 

sequential saccades and fixations. Eye positions are often similar across fixations following 

saccades in a given direction, producing eye position distributions that are somewhat 

bimodal. However, gaze stability is demonstrated at multiple eye positions (Fig. 2b, “Left 

Eye Position”), indicating that eye position in larval zebrafish is governed by an hVPNI 
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capable of achieving at least an approximate continuum of stable eye positions, rather than 

just two.

For each ipsiversive saccade and subsequent fixation, ipsilateral eye position-encoding 

neurons in the caudal hindbrain regions we imaged, like integrator neurons in other species, 

show a burst of action potentials followed by persistent action potential firing at an elevated 

rate23. Typically, bursts scale with saccade amplitude (“velocity sensitivity”) while the 

persistent firing rate scales with eye position (“position sensitivity”). We have shown that 

this firing rate behavior produces somatic OGB-1 fluorescence time series that can be 

understood as a sum of ipsilateral eye position and thresholded eye velocity (“ipsiversive 

velocity”) convolved with a temporal filter that captures the mapping between action 

potential firing and intracellular calcium concentration changes, the calcium impulse 

response function (CIRF). We use CIRFs with the form of an instantaneous increase in 

calcium followed by an exponential decay. A regression-based approach in which CIRF-

convolved eye position and ipsiversive velocity variables served as regressors in a linear 

model fit to calcium-sensitive fluorescence image series can be used to identify in an 

unbiased way putative hVPNI neurons23. Selection is based on significance measurements 

of the correlation of each pixel’s fluorescence time series with these regressors.

We employed this method to identify neurons, focusing all subsequent analysis on somatic 

regions of interest (ROIs) whose fluorescence time series had a Pearson correlation of > 0.5 

with either CIRF-convolved eye position or ipsiversive velocity (n = 691 “identified” cells, 

combined dark and light conditions). Examples of identified somata are outlined in the time 

projection of an image time series in Fig. 2b. Fluorescence time series for these cells show 

clear correspondence with the CIRF-convolved eye position and ipsiversive velocity time 

series. We observed a great deal of diversity across cells in the response structure during 

fixations. Some cells showed relatively stable fluorescence levels during fixations (e.g. Fig. 

2b–1 and 2b–2), while others showed decaying fluorescence (e.g. Fig. 2b–4 and 2b–5).

Halorhodopsin-mediated hVPNI localization

Before further analyzing the variability in identified eye movement related neurons, it is 

important to demonstrate that these neurons are part of the hVPNI. We have previously 

shown that laser ablation within the hindbrain region imaged here produces deficits in the 

ability of zebrafish larvae to hold their eyes at eccentric positions23 without eliminating 

saccades. This supports the notion that neurons within this region belong to the hVPNI. In 

adult preparations, transient pharmacological inactivation has been used to identify the 

hVPNI20,28. However, such experiments are difficult to perform in a larval nervous system. 

Given the importance of demonstrating this for the present work, we decided to provide 

additional evidence using a method for transient optical silencing of neuronal firing 

analogous to pharmacological inactivation.

We used previously described transgenic zebrafish expressing halorhodopsin (NpHR) in 

most neurons29 to perturb firing in the hindbrain region imaged above. A similar method 

was used previously to localize saccade-generating neurons in rhombomere 530. 633 nm 

illumination from a low NA optical fiber was used to focally stimulate NpHR in an ~200 

micron diameter column29 covering the caudal hindbrain (primarily rhombomere 7/8) while 
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eye position was measured (Fig. 3a,b). Both long (6 s) and short (200 ms) activations 

markedly reduced eye position stability, causing the eyes to drift rapidly towards the center 

of gaze (Fig. 3c); centripetal drift was observed regardless of which side of this center the 

eyes were on prior to activation (Fig. 3e). The changes in induced eye position were 

persistent, as the eyes remained at their new positions following the termination of 

illumination until the subsequent saccade (Fig. 3c, right panels). Eye stability was quantified 

as the slope of linear fits to plots of eye velocity versus eye position (PV plots; Fig. 3d,e). 

During illumination, eye positions in NpHR expressing animals were significantly less 

stable than those in wildtype larvae (Fig. 3f; p = 0.0007 for short and p = 0.0015 for long 

activations), as is observed with pharmacological inactivation of the hVPNI in adults20,28.

Based on measurements of the effect of localized optical fiber-based NpHR activation on 

firing in hindbrain neurons in the strains used for these experiments29, we expect such 

activation to markedly reduce the average firing rate across these neurons. The 

demonstration that NpHR activation in neurons of the caudal hindbrain diminishes gaze 

stability and permanently alters eye position, when combined with our previous results 

obtained with laser ablation, demonstrates that the neurons we imaged include the hVPNI.

Distributed firing rate persistence times

To quantify the dynamics of fluorescence changes, ipsiversive and contraversive saccade-

triggered average (STA) fluorescence responses were first computed to represent these 

changes with an improved signal-to-noise ratio. Only fluorescence measurements 

surrounding saccades for which the previous saccade was in the opposite direction were 

included in these averages. This ensured that STAs captured fluorescence changes averaged 

over repeats of highly similar behaviors. When compared to STA convolved eye velocity 

(Fig. 2e) and eye position (Fig. 2f), these averages reveal a range of relative ipsiversive 

velocity and position dependences, from the highly ipsiversive velocity-correlated (e.g. Fig. 

2g) to the highly position correlated (e.g. Fig. 2i). Most responses resided between these two 

extremes (e.g. Fig. 2h).

To quantify this variation in relative dependences, a response index was computed for all 

identified cells (see Methods) that is zero for purely velocity-correlated time series and one 

for those purely position-correlated (Fig. 2j). Index values varied widely within individual 

fish; the width of the middle 95% of their distribution within fish ranged from 0.59 to 0.93 

in the dark (n = 6 larvae with ≥ 18 identified cells) and 0.83 to 0.97 in the light (n = 6 larvae 

with ≥ 18 identified cells). The wide range of sensitivities among cells demonstrated by this 

distribution is similar to that observed in sequential single unit recordings of putative hVPNI 

neurons in cats31 and monkeys9. Our simultaneous measurements of activity in many cells 

confirm that such heterogeneity is characteristic of population activity in the hVPNI.

Because the fixations typical in our larval preparation are long (generally > 5 s), we were 

able to use OGB-1 STA fluorescence responses to examine the uniformity of firing rate 

persistence across many identified hVPNI neurons in individual larvae. Our strategy was to 

first compute STA firing rate estimates from STA fluorescence responses by deconvolving 

fluorescence responses with the CIRF determined individually for each cell (Supplementary 

Fig. 2). The CIRF decay time constant τ was calculated for each neuron from an analysis of 
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the fluorescence decay following contraversive saccades23 (see Methods). This analysis was 

limited to cells whose fluorescence had a Pearson correlation of > 0.5 with CIRF-convolved 

eye position (n = 455 “position” cells) to include only cells having robust persistent activity, 

and further to cells with CIRF τ estimates of reasonable quality (R2 > 0.5, n = 416).

The estimated firing rate for most cells appeared to decay over several seconds during 

fixation toward a baseline level associated with the center of gaze. However, across cells 

within individual fish, STA firing rate estimates displayed extensive variation in the rate of 

this decay, and thus in the degree of firing rate persistence. To quantify this persistence, time 

constants from exponential fits to firing rate estimates were used to measure persistence time 

(Fig. 4a,b; Supplementary Fig. 3; see Methods). Because of some ambiguity in CIRF τ and 

the baseline level to which firing rate estimates decay, each estimate is consistent with a 

distribution of persistence times. We refer here to the extent of the middle 99% of this 

distribution as the persistence time range.

Because the canonical line attractor model predicts that persistence times among hVPNI 

neurons would be similar (Fig. 1a), we sought explicit evidence for non-overlapping 

persistence time ranges in individual larvae. Several non-overlapping persistence time 

ranges were observed in each larvae both in the dark (n = 5 larvae with ≥ 16 position cells) 

and the light (n = 5 larvae with ≥19 position cells), consistent with the presence of multiple 

distinct persistence times across cells within individual fish. Fig. 4c shows the persistence 

time ranges calculated for 25 cells recorded in one larvae in the dark. The gray bars span the 

ranges for seven cells for which the ranges do not overlap. For each larva, persistence time 

distributions were statistically unlikely to be drawn from a single underlying distribution 

(Kruskal-Wallis test, p < 10−10 for each larvae, n = 5 in the dark and n = 5 in the light). The 

median values from persistence time distributions varied by approximately an order of 

magnitude or more within individual larvae, both in the dark and in the light (Fig. 4c,d; 

Supplementary Fig. 4a). The width of the middle 95% of the distribution of these medians 

within larvae ranged from 13.41 to 48.00 s in the dark (n = 5) and 21.63 to 62.76 s in the 

light (n = 5). The shape and width of these distributions of medians was not sensitive to the 

choice of thresholds for data inclusion (Supplementary Table 1). The coefficient of variation 

for these distributions of medians ranged from 0.58 to 0.94 in the dark (n = 5) and 0.70 to 

1.20 in the light (n = 5).

The presence of multiple distinct persistence times within individual larvae is further 

illustrated by average STA firing estimates for cells grouped according to median 

persistence time (Supplementary Fig. 5). Persistence time heterogeneity is still observed if 

firing rate estimates are calculated for all cells with a single CIRF instead of CIRFs for 

which τ was determined cell-specifically (Supplementary Fig. 5g–i).

We validated the finding of persistence time heterogeneity using a second approach in which 

a function modeling the convolution of underlying firing with a CIRF was fit directly to 

STA fluorescence responses (see Methods). This approach yielded similar heterogeneity in 

persistence time estimates (Supplementary Fig. 4b). Although single exponential decays do 

not capture all of the structure in ipsiversive STA firing rate estimates (Supplementary Fig. 

6a), they adequately capture the magnitude of firing rate decay during fixation, which is 
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sufficient to reveal heterogeneity in persistence time across cells. Similar heterogeneity is 

also observed via a different metric of persistence time, the fractional change of STA firing 

rate estimates during fixation (Supplementary Fig. 6b). The presence of multiple distinct 

persistence times is inconsistent with neural integrator models characterized by uniform 

firing rate persistence across cells, like the canonical line attractor-based circuit model.

Validation of fluorescence-based firing rate estimates

To confirm that persistence time estimates from fluorescence reflect the actual dynamics of 

action potential firing, these estimates were compared with persistence times determined 

from electrical recordings from the same cell. Following image time series acquisition, 

single-unit loose-patch recordings were made from cells identified using our online 

regression-based strategy23. Persistence times were calculated for recorded neurons both 

from deconvolved STA fluorescence (Fig. 5a) and STA firing rates (Fig. 5b). The 

correlation between deconvolved STA fluorescence responses and STA firing rates was 

strong (Fig. 5a,b, and d). Similarly, CIRF-convolved STA firing rate was highly correlated 

with STA fluorescence (Fig. 5c,d). The somewhat lower correlation for deconvolved STA 

fluorescence and STA firing rate is likely due to the amplification of noise in fluorescence 

measurements upon deconvolution.

Persistence times calculated from STA firing rates ranged from 2.65 to 13.87 s (n = 8; Fig. 

5e). The correlation between these values and persistence times calculated in a similar 

fashion for the simultaneously measured ipsilateral (left) eye position was 0.30, suggesting 

that only a small amount (~10%) of the variance in persistence times can be explained by 

variation in the stability of the eyes themselves. This fact, coupled with the greater than 5-

fold difference between the shortest and longest persistence times is itself strong evidence of 

heterogeneity in firing rate persistence across hVPNI cells. Moreover, persistence times 

estimated from fluorescence and firing rate for the same neurons show strong agreement 

(Fig. 5f; slope = 0.62; R2 = 0.91, rms error = 0.88 s). These results confirm that the 

distribution of persistence times measured from STA fluorescence responses reflects a 

similar distribution of persistence times for the underlying firing rates. An analogous 

validation was performed for response indices. Correlations between firing rate time series 

and time series of both eye position and ipsiversive velocity were used to calculate a firing 

rate-based response index for recorded neurons. These values agree well with response 

indices calculated from fluorescence for the same neurons (Fig. 5g; slope = 0.77; R2 = 0.69, 

rms error = 0.13). This suggests that fluorescence-based response indices report relative 

burst and position sensitivities in firing rates with an accuracy sufficient to conclude that the 

distribution of response indices we observed corresponds to a distribution of relative 

sensitivities in firing rates.

Topography of pairwise correlation, persistence time, and response index

In addition to providing measurements of activity from many cells simultaneously, optical 

recording identifies the precise anatomical location of each recorded cell. We used this 

information to examine whether the variation in saccade-related firing presented above 

corresponded to a topographic organization among neurons. Topography was observed in 

Miri et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2013 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms of three quantities: (1) correlation between fluorescence time series, (2) firing rate 

persistence time, and (3) response index.

The Pearson correlation for fluorescence time series was calculated for all pairs of somata of 

identified cells within individual image time series. When the correlation with a particular 

cell was plotted using color-coded somata for all other identified cells--this included 

position cells and those that may be exclusively ipsiversive velocity-sensitive--nearby cells 

appeared to be more highly correlated (Fig. 6a). When the data from all image time series 

were combined, pairwise correlation was significantly negatively correlated with the 

distance separating the cells (“pairwise distance”) in three dimensions both in the dark and 

light (Fig. 6b; in the dark: Spearman rank correlation (src) = −0.36, p < 10−9; in the light: src 

= −0.33, p < 10−9). The same held true for pairs of position cells (Fig. 6c; in the dark: src = 

−0.36, p < 10−9; in the light: src = −0.34, p < 10−9). Significant dependence of pairwise 

correlation among position cells was seen for pairwise distance along both the rostrocaudal 

(in the dark: src = −0.29, p < 10−9; in the light: src = −0.24, p < 10−9) and dorsoventral (in 

the dark: src = −0.23, p < 10−9; in the light: src = −0.27, p < 10−9) axes.

In order to rule out the possibility that these correlations stemmed from specimen motion-

induced correlations or fluorescence from processes overlapping cellular ROIs out of the 

image plane, we examined the proximity dependence of the correlation between position 

cells and a control population of non-position-dependent cells (absolute value of Pearson 

correlation with CIRF-convolved eye position < 0.15). Pairs of position and control cells 

showed pairwise correlation that was weakly distance dependent at short distances but was 

not significantly dependent on distance beyond 35 μm (Fig. 6c). For position/control cell 

pairs ≥ 35 μm apart, the src of pairwise correlation and pairwise distance was −0.02 (p = 

0.60) in the dark and −0.02 (p = 0.50) in the light. However, for position cell pairs ≥ 35 μm 

apart, the src of pairwise correlation and pairwise distance was −0.29 (p < 10−9) in the dark 

and −0.16 (p < 10−9) in the light. These results suggest that the proximity dependence of 

correlation between identified position neurons is unlikely to be explained by motion-

induced fluorescence correlations or overlapping processes.

Topography was also seen among cells in terms of persistence time. Strikingly, we observed 

gradients of persistence time along spatial dimensions. For pairs of position cells, we 

quantified the similarity between persistence times using their ratio. To introduce 

directionality, the ratio’s denominator was the value for the cell relative to which pairwise 

distance was measured. We found a clear dependence of this ratio on pairwise distance 

along individual spatial dimensions (Fig. 7a–c; Supplementary Fig. 7a). The src of this 

persistence time ratio with rostrocaudal, dorsoventral, and mediolateral distance were 0.22, 

0.28, and 0.06, respectively in the dark; and 0.35, 0.11, and −0.21, respectively in the light. 

The magnitude of these correlation values depends only weakly on the choice of thresholds 

for data inclusion (Supplementary Table 2). The dependence is most prominent across both 

dark and light conditions along the rostrocaudal axis (Fig. 7a,b; Supplementary Figs. 8,9). In 

the dark, higher persistence time cells tend to be located more caudally and ventrally than 

low persistence time cells.
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Response index similarity had a somewhat different spatial dependence across all identified 

cells (Fig. 7d–f; Supplementary Fig. 7b). The response index ratio varied most prominently 

over the dorsoventral and mediolateral axes. The src of response index ratio with 

rostrocaudal, dorsoventral, and mediolateral distance were 0.05, 0.30, and 0.19, respectively 

in the dark; and −0.10, 0.45, and 0.32, respectively in the light. Collectively, these 

dependencies between saccade-related firing and proximity mark the first observation of 

spatial structure on the length scale of our measurements (< 100 μm) among neurons 

implicated in neural integration.

Discussion

We report two major results on functional organization of the hVPNI. First, our optical 

recordings reveal a heterogeneity in firing rate persistence. Second, we observed persistence 

times graded along the rostrocaudal and dorsoventral axes, implying that cells with similar 

persistence times tended to be closer together in space. This topography represents the first 

elucidation of functional organization within a neuronal circuit subserving temporal 

integration or parametric short-term memory in general on a sub-100 μm length scale.

Advances in methodology are also demonstrated by our study. The heterogeneity we 

observed in the relative position and ipsiversive velocity sensitivity is similar to findings 

from electrode studies in adult vertebrates, supporting larval zebrafish as a model for 

investigating the mechanisms and development of neural integration. In addition, the 

correspondence demonstrated between electrode recordings and CIRF-deconvolved optical 

recordings establishes that the latter can be a reliable reporter of collective neuronal 

dynamics.

To explain the apparent continuum of stable eye positions observed during fixations in adult 

vertebrates, hVPNI firing rate dynamics have been modeled as approximating a line 

attractor11,14. In a state space where each axis represents one neuron’s firing rate, a line 

attractor is a continuous line of stable points, each representing the set of firing rates 

corresponding to one horizontal eye position (Fig. 1 in reference 12). This line represents the 

continuum of eye positions possible during fixations. Both eye position and hVPNI neuronal 

firing rates are observed to slowly drift centripetally during fixations, suggesting that 

positions along the line are only semi-stable, with the circuit’s representation in state space 

drifting slowly along the line toward a single fixed point corresponding to the center for 

gaze. The firing of all hVPNI neurons would then decay at a uniform rate (Fig. 8a,b), 

implying a one-dimensional circuit dynamics. However, we observed hVPNI neuron firing 

decaying on multiple time scales (Fig. 8c), inconsistent with the line attractor model as 

originally formulated11 and directly demonstrating that the dynamics are multidimensional.

Previous studies of the adult hVPNI have not systematically examined the uniformity of 

firing rate drift dynamics across neurons during fixations. Our discovery of persistence 

heterogeneity was facilitated by optical recording, which provided simultaneous activity 

measurements from groups of hVPNI neurons. Heterogeneity could also be masked in adults 

by the fact that persistence times increase while the duration of individual fixations 

decreases, making it more challenging to observe and then quantify differences across 
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neurons. However, a wide range of persistence times (~4 s to −21 s) from cells measured 

across many adult goldfish has been previously reported18. These measurements were not 

simultaneous and bounding these estimates or quantifying their relationship to variation in 

integrator performance across fish would be required for a direct comparison with our 

results. The authors further found extensive evidence of persistence heterogeneity in 

sequential electrode recordings in goldfish whose hVPNI were detuned via erroneous visual 

feedback18. The larval zebrafish we examined here show fixation stability like that of a 

somewhat detuned adult, raising the possibility that persistence heterogeneity becomes less 

prominent in a properly tuned adult hVPNI. This would imply that the persistence time 

distribution may narrow during development.

Exploring this idea quantitatively, we re-analyzed previously published simultaneous 

recordings from pairs of adult goldfish hVPNI neurons during spontaneous eye 

movements32 to estimate the percent difference in persistence time between each pair. The 

median percent difference was 34% (n = 6 ipsilateral pairs). We then calculated the percent 

difference between persistence times for pairs of simultaneously imaged zebrafish neurons 

and found a median percent difference of 69% (n = 1576 ipsilateral pairs). The two data sets 

were statistically unlikely to be drawn from a common distribution (Wilcoxon test, p = 

0.048). Our results suggest both that some persistence heterogeneity exists in adult goldfish 

and that larval heterogeneity may be comparatively more exaggerated. However, a more 

systematic characterization of adult persistence times present would be necessary to directly 

compare larval and adult persistence time distributions.

Persistence time heterogeneity is consistent with other findings in adults beyond those 

mentioned above, further supporting its existence in the adult hVPNI. First, during 

sinusoidal vestibular stimulation, the dependence on stimulus frequency of putative hVPNI 

neurons’ firing phase relative to eye position9,33 is captured by models in which cells show 

non-uniform firing rate decay 17,34. Second, hysteresis in the dependence between firing 

rates of hVPNI neurons during fixation is inconsistent with canonical line attractor 

dynamics35 yet would be expected if multiple time scales of decay were present to varying 

degrees in these firing rates. Third, the results of experiments on monocular optokinetic 

stimulation point to a lack of uniformity in firing dynamics across hVPNI neurons36. 

Finally, evidence for a broad distribution of relaxation times in the eye plant37 suggests that 

diverse persistence times in hVPNI neurons could contribute to gaze stabilization. Optimal 

control of such a plant would necessitate neuronal drive to eye muscles with a similar 

distribution of relaxation times to stabilize gaze; this could be provided by appropriately 

patterned innervation of motor neurons from hVPNI neurons with different persistence 

times.

The topography of hVPNI neuronal persistence we observed on sub-100 μm length scales 

has not been previously reported; however, the poor spatial resolution of electrode recording 

would preclude characterization of topography on this scale. The response index gradients 

we found are analogous to the rostrocaudal gradients in relative position and velocity 

sensitivity seen among hVPNI neurons in cats 31, although similar organization was not 

observed among goldfish hVPNI neurons10. Looking on a shorter length scale, we did not 
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see a prominent rostrocaudal gradient in relative sensitivity, yet saw a strong dependence of 

persistence time along this dimension.

The topography we observed may reflect developmental patterning within the nascent 

hVPNI circuit. A recent study found that older cells reside more ventrally in the caudal 

hindbrain38 during early larval stages, suggesting that relative position sensitivity and 

persistence time may increase with neuronal age during these stages. This could reflect 

synaptic input tuning that improves firing rate persistence as neurons mature. This study also 

found that neuropil clusters according to neuronal age in the hindbrain38. This clustering 

may increase the connectivity likelihood for similarly-aged neurons, thereby increasing this 

likelihood for neurons with similar persistence. Such clustering could contribute to a 

proximity bias in connectivity likelihood that may explain the spatial gradients we observed. 

Spatial gradients in the anatomical position of spinal motor neurons and premotor 

interneurons subserving fast and slow swimming have also been reported in the larval 

zebrafish24,39. Our observations add to the evidence that spatial gradients in the dynamical 

properties of neurons within circuits may be a general property of anatomical organization in 

the developing vertebrate central nervous system. Though continued migration may alter the 

spatial arrangement of cells, the synaptic connections forged during development can 

contribute to the functional organization of adult circuits.

In general, correlation-proximity relations can be ascribed to convergent afferent input. 

However, in the hVPNI, saccadic burst input is transient, sustained vestibular input is not 

eye position dependent40,41, and persistent firing encoding eye position must emerge locally 

via recurrent excitation and/or cell-intrinsic mechanisms20. Convergent afferent input from 

neurons external to the hVPNI does not seem a tenable explanation. However, if a new 

source of eye position feedback to the caudal hindbrain was discovered, convergent input 

would warrant reconsideration.

Persistence heterogeneity is consistent with hVPNI circuit models dynamically distinct from 

the canonical line attractor model. The classic line attractor exhibits one approximately 

stable dimension in firing rate state space along which firing rates change slowly, while 

persistence heterogeneity requires mechanisms generating slow firing rate dynamics along 

multiple dimensions. Interestingly, integrator models with slow dynamics along multiple 

dimensions will be more robust than line attractor-type models to local perturbations of the 

circuit such as the loss of a neuron11,21.

One possibility is that locally-biased synaptic feedback amongst hVPNI neurons generates a 

multidimensional attractor with several approximately stable dimensions (Fig. 8d). 

Simulations of such a model can produce persistence time distributions qualitatively similar 

to those experimentally observed (Fig. 8e,f). Here, the variation in persistence emerges from 

structured connectivity in which cells with more similar (disparate) persistence times tend to 

be more strongly (weakly) coupled. If the spatial gradients we observed emerge from a 

proximity bias in the likelihood any two neurons are connected, they would imply exactly 

this type of circuit structure.
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A second possibility is that persistence heterogeneity arises by a progressive filtering of 

activity propagating down a feedforward cascade22. Such circuits need not be purely 

feedforward, and may involve a mixture of feedback and feedforward connections, or even 

functionally feedforward interactions. An example of a circuit utilizing feedforward 

dynamics is shown in Fig. 8g, where locally-biased synaptic connectivity is modified with a 

feedforward bias, generating firing rate dynamics that resemble those seen in our data (Fig. 

8h,i). In general, the activity of all neurons in this circuit type eventually decreased during 

simulated fixations if the contribution of feedforward activity was substantial. Further work 

would be needed to address whether this circuit type is capable of generating persistence on 

longer time scales when the number of neurons is of the order considered here.

A third possibility is that two distinct time scales of firing rate decay are generated 

separately by recurrent feedback and a cell-intrinsic mechanism (Fig. 8j). Previous results 

following partial inactivation of the goldfish hVPNI are consistent with the presence of a 

cell-intrinsic mechanism generating 1–2 s firing rate persistence. Differential manifestation 

across cells of this persistence and a longer time scale persistence due to recurrent feedback 

could create varying persistence times. The topography we observed would then suggest that 

saccadic burst input to the hVPNI is spatially structured to vary the degree to which each 

time scale dictates a cell’s persistence. Simulations demonstrate that such a model can 

recapitulate spatially-graded persistence heterogeneity (Fig. 8k,l).

Recent theoretical results have demonstrated that randomly-connected recurrent networks 

with heterogeneous unit activity can execute functional transformations like temporal 

integration19,42. Investigating such networks may identify further circuit architectures that 

can generate the firing dynamics we observed. In general, while our measurements in larvae 

expose a multidimensional firing dynamics that can reconcile a number of observations from 

adults, the precise hVPNI circuit architecture instantiating these dynamics remains the 

subject of future work. Emerging techniques for comprehensive connectivity reconstruction 

could further these efforts43.

hVPNI neurons by definition must have eye position-dependent firing, and eye position, but 

not saccades themselves, must causally depend on that firing. Previous results demonstrate 

that laser ablation in the caudal hindbrain region studied here, which contains neurons with 

position-dependent firing, reduces gaze stability23. Here we additionally show that 

halorhodopsin-mediated perturbation of firing in an ~200 micron diameter focal area 

encompassing the same region induces rapid centripetal drift in eye position, causing 

position changes that persist following termination of halorhodopsin activation. These 

complementary results localize hVPNI functionality to neurons in this hindbrain region.

An important question is whether all neurons we have designated as position cells and 

estimated persistence times for belong to the hVPNI, since other distinct functional 

oculomotor populations display neuronal firing with related parameter sensitivity. We 

expect few if any of our position cells to be exclusively ipsiversive velocity-sensitive like 

saccadic burst neurons, since electrical recordings from cells meeting our criteria for 

classification as position cells revealed eye position-dependent firing in all cases23. We 

further expect the fraction of designated position cells participating instead in the velocity 
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storage integrator to be very low. Neurons in this population show firing that depends only 

weakly on eye position during spontaneous eye movements in adult goldfish44 and its 

anatomical location in larval zebrafish45 overlaps minimally with the region we imaged.

Assuming that halorhodopsin activation directly hyperpolarizes hVPNI neurons rather than 

just their tonic inputs (as suggested by centripetally drifting exponential relaxation in eye 

position), the effects of halorhodopsin activation are inconsistent with some hypothesized 

cell-intrinsic neural integration mechanisms . Though circuit mechanisms of integration 

have been strongly implicated in the hVPNI20,46,47, a contribution from cell-intrinsic 

mechanisms cannot be excluded7. In contrast to proposed membrane voltage-independent 

mechanisms48–50, the persistent change of firing in hVPNI neurons following transient 

hyperpolarization we observed suggests that both cellular and circuit contributions to 

integration are membrane-voltage dependent. Further studies using optogenetic probes to 

perturb activity in hVPNI neurons could be fruitful in elucidating the cellular and circuit 

mechanisms underlying neural integration in the hVPNI.

Methods

All experiments were performed in compliance with protocols approved by the Princeton 

University Institutional Animal Care and Use Committee. mitfa−/− (nacre) mutant zebrafish 

larvae aged 6–12 days post-fertilization (dpf) ranging in length from 4.0 to 4.8 mm were 

used for all experiments. Methods for functional imaging, eye tracking, and targeted 

electrical recording are described elsewhere23.

Functional inactivation

Animals (5–6 dpf) were transgenic for a combination of transgenes: Et(E1b:Gal4-

VP16)s1101t, Tg(UAS:NpHR-mCherry)s1989t, Tg(UAS:Kaede)s1999t. “Wildtype” refers to 

siblings of NpHR expressors that were potentially expressing Gal4 and Kaede. Animals 

were mounted in agarose in a 35 mm dish and the agarose was removed around the eyes. A 

200 μm diameter optic fiber was placed above the caudal hindbrain to activate NpHR (633 

nm, 50 mW/mm2). Animals were imaged at 20–30 frames/s under infrared illumination. Eye 

tracking was performed using a custom LabView program that detected saccades and 

triggered fiber illumination one s after half of saccades (both ipsiversive and contraversive) 

Only animals that showed a high frequency of saccades into both directions were used. 

Experiments were not performed in the dark, since scattered light from the fiber sometimes 

triggered saccades. Instead, a white backlight was used in addition to the infrared light in 

order to reduce the salience of the fiber light. 400 ms segments of eye traces were fit using 

linear regression in order to measure eye velocity for PV plots. Control measurements of eye 

stability in the absence of illumination found no significant difference between NpHR 

expressors and wildtypes.

Data analysis

All analysis was completed in Matlab v.7.8 or 7.10 (Mathworks). The identification of 

somata corresponding the eye position- and ipsiversive velocity encoding neurons from 

fluorescence image time series is described elsewhere23.ROI time series were calculated as 
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the average of pixel time series for all included pixels. Eye position correlation, cp , and 

ipsiversive velocity correlation, cv , for each somata were defined as the Pearson correlation 

coefficient between the ROI time series and CIRF-convolved eye position and CIRF- 

convolved ipsiversive velocity, respectively. The significance threshold used in cell 

identification was set empirically so that identified somata had cp ranging below 0.5 for 

some somata. This ensured that all somata with cp > 0.5 were likely identified. The cellular 

response index, RI, was defined as

Response indices were calculated for somata for which either cp > 0.5 or cv > 0.5. Response 

indices were calculated from firing rate data using the same formula but with cp and cv 

defined using firing rate and unconvolved eye position and ipsiversive velocity 

measurements. Saccade identification and STA generation are described elsewhere23. We 

reiterate here that data inclusion criteria were employed that ensured included saccades had 

reasonably uniform sizes and preceding histories, as is indicated by measurements of the 

distribution of eye positions surrounding included saccades. For each STA response, we 

calculated the coefficient of variation (CV) for eye positions immediately preceding (mean 

from 400 to 300 ms before) and following (mean from 500 to 600 ms after) included 

saccades. For all ipsiversive STAs, the mean CV was 0.26 for pre-saccadic eye positions and 

0.14 for post-saccadic eye positions. For all contraversive STAs, the mean CV was 0.18 for 

pre-saccadic eye positions and 0.16 for post-saccadic eye positions. Only 1.7% of included 

saccades did not cross the center of gaze. STA fluorescence responses and firing rates were 

convolved with a 200 ms box filter before subsequent analysis.

A deconvolution-based approach was used to calculate firing rate estimates for optically-

recorded cells. To do so, CIRFs were first estimated for cells23 for which cp > 0.5 (n = 455 

“position” cells; this eliminates cells that may not have strong persistent activity during 

fixations) Confidence intervals (Matlab function confint) ranging between 0 and 100% in 

width were calculated for the CIRF τ estimate from the fit in order to populate a distribution 

representing this estimate. This method may systematically underestimate the CIRF τ for 

cells whose fluorescence has not completely decayed prior to subsequent saccades. 

However, we expect this underestimation to have minimal impact on firing rate estimation 

since the median CIRF τ · 3 is less than the mean saccade frequency of ~10 seconds23 for 

94% of position cells. Deconvolutions (Matlab function deconv) and convolutions (Matlab 

function conv) were performed with STAs padded on either end with 5 second long 

stretches of zeros using a 5 second long stretch of an exponential decay of a given CIRF τ.

Persistence time estimates were made for cells for which R2 > 0.5 for the fit to estimate 

CIRF τ (416/455 cells) according to the following four steps, which were repeated 1000 

times for each cell (Supplementary Figure 3). First, ipsiversive and contraversive STA 

fluorescence responses were deconvolved with a CIRF defined by a τ chosen randomly from 

that cell’s CIRF τ estimate distribution, generating firing rate estimates. Second, these 
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estimates were used to define the possible range of the baseline null value to which the 

firing rate decays after saccades in either direction. The lower bound for the null value was 

estimated as the mean of the ipsiversive firing rate estimate between 1 and 2 seconds before 

the saccade time. The upper bound was estimated as the average of the means of ipsiversive 

and contraversive STA firing rate estimates 4 to 4.5 seconds following the saccade time 

(Supplementary Figure 3). These bounds were chosen because they account for the 

possibility that neurons may be hyperpolarized below firing-threshold after contraversive 

saccades. Third, a null value was chosen randomly from a uniform distribution of values 

between the bounds calculated in the previous step. Lastly, Ae−t/τ was fit to the ipsiversive 

STA firing rate estimate from 1 to 4.5 seconds following saccade time after subtracting off 

the null value. The decay time τ from this fit is an estimate of the persistence time. 

Confidence intervals ranging between 0 and 100% in width were calculated for the 

persistence τ estimate in order to populate a distribution representing the estimate. These 

estimate distributions from all 1000 iterations were collected into one distribution that 

characterizes the persistence time for a given cell. We defined the middle 99% of this 

collective distribution as a cell’s persistence time range. Negative persistence time ranges, 

indicating a firing rate rising during fixation, were obtained for a fraction of optically-

recorded cells (50/416). These cells and cells for which persistence time ranges straddled 0 

(49/416) were excluded from further analysis. The persistence time distributions for 

individual larvae shown in Figure 4d were populated with the median of persistence time 

distributions for cells with positive persistence time ranges. Fractional change in 

fluorescence during fixation was calculated for these same cells. It was defined as the 

fractional change between the mean of the first 512 ms and the last 512 ms of the segment of 

the STA firing rate estimate used for persistence time estimation.

Since deconvolution of fluorescence can result in an amplification of noise that is unrelated 

to the firing rate, we developed an alternative method for persistence time estimation that 

circumvented this undesirable effect. We calculated persistence time distributions for cells 

as described above a second time, but in the last step of each iteration fit the function below 

to the ipsiversive STA fluorescence. STA fluorescence responses were fit with a model of 

fluorescence that would result from a firing profile consisting of an initial burst followed by 

an exponential decay during fixation. The fluorescence, f(t), resulting from a decaying firing 

rate, r(t) , will be given by the convolution of the firing rate with the CIRF so that

where T is the time constant of the CIRF. Since the fluorescence at time t = 0 also depends 

on the firing rate in the past, an extra term must be included which accounts for the 

fluorescence resulting from past activity, so that the fluorescence during a fixation is given 

by
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The parameters a and τ can be estimated by fitting the STA fluorescence with this function 

at some time after the end of the burst. Typical bursts lasted for 100–500 ms; therefore fits 

began 1 second after the saccade. The parameter c , representing the null value, was held 

fixed at the randomly selected level during each fit.

To determine whether cellular persistence time distributions differed statistically within 

individual larvae, we tested the null hypothesis that the distributions for a given larvae had 

equivalent medians using the nonparametric Kruskal-Wallis test (Matlab function 

kruskalwallis). Because persistence time distributions are not populated by independent 

measurements, the test was not performed directly on these distributions. Instead, we first 

determined approximately how many independent measurements were present in the 

segment of the ipsiversive STA firing rate estimate used for persistence time estimates. This 

was done by iteratively downsampling the residuals of an exponential fit to this segment 

until serial correlation between adjacent measurements was negligible. This method 

involved the following steps:

1. For all cells in the data set, fit the segment of the ipsiversive STA firing rate 

estimate used for persistence time estimates with Ae−t/τ, generating a residual time 

series.

2. For all cells in the data set, similarly fit and generate residuals from 500 random 

permutations of this segment.

For each cell:

3. Calculate the serial correlation for the residual time series from step 1. Serial 

correlation was measured for a sequence of residuals x = x1, x2, ..., xn by calculating 

the Pearson correlation between x = x1, x2, ..., xn–1 and x2, x3,..., xn.

4. Calculate the serial correlation similarly for 1000 random permutations of this 

residual time series.

5. Calculate the fraction of the 1000 correlation measurements from step 4 larger than 

the correlation measurement from step 3.

6. Perform the calculations from steps 3 to 5 again for each of the residual time series 

generated in step 2. The resulting 500 values define a cell-specific empirical 

distribution for the fractions calculated in step 5 under a null hypothesis of no serial 

correlation.

7. Calculate a p value for the fraction calculated in step 5 assuming a two-tailed test 

against the null distribution generated in step 6. This is:

Miri et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2013 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The use of a two-tailed test here makes the test sensitive to both correlation and 

anti- correlation.

8. Repeat steps 3 to 7 for all cells in the data set. Calculate the fraction of p values for 

all cells from step 7 that fall below 0.3.

9. Downsample the residuals from steps 1 and 2 to half the previous sampling 

frequency (Matlab function downsample). Repeat steps 3 to 8.

In the absence of serial correlation (including anti-correlation), the fraction calculated in step 

8 should equal ~0.3. We observed that as the time series were progressively downsampled, 

this fraction approached and then plateaued at ~0.3. Serial correlation was deemed 

negligible when this fraction first fell below 0.3. At this point, 15 samples remained. Thus 

the Kruskal-Wallis test was performed using 15 random samples from each cell’s 

persistence time distribution.

Somal position was defined using the ROI centroid. Cell positions were measured in 

distances caudal of the Mauthner cell soma, dorsal of the MLF, and lateral of the midline. 

For the plots shown in Figures 6b and c, cell pairs were grouped based on pairwise distance 

into bins divided at 10, 20, 30, 40, 50, and 60 μm. For the plots in Figures 7b, c, and e and 

Supplementary Figure 7b, bins were divided at −40, −24, −8, 8, 24, and 40 μm. For the plots 

in Figure 7f and Supplementary Figure 7a, divisions were made at −30, −18, −6, 6, 18, and 

30 μm. Directional distances were calculated by subtracting the position of one cell of a pair, 

cell b, from the other, cell a, where cell a was the cell whose value was used in the 

numerator when calculating response index or persistence time ratios. Group means were 

plotted as error bars representing the mean ± sem versus the mean pairwise distance for each 

cohort. Outlying ratios were eliminated by including only values between the 2.5th and 

97.5th percentile ratio values. Although data was binned for the purpose of plotting, 

correlation coefficients quoted for data presented in Figures 6 and 7 and Supplementary 

Figure 7 were calculated from individual data points. p values were calculated from two-

tailed Students’ t-tests.

Previously described32 simultaneous firing rate measurements from pairs of adult goldfish 

hVPNI neurons were re-analyzed to extract persistence time estimates. Segments of firing 

rate time series were used in calculating STA firing rates if they corresponded to a fixation 

lasting > 4.5 seconds following the time of the saccade and if the average eye position from 

0.5 to 1 second following the saccade fell in the top quartile of the distribution of such 

values for fixations following both ipsiversive and contraversive saccades. This second 

criteria focused the measurement on data collected during fixations more equivalent to those 

in larval zebrafish that largely saccade back and forth between positions near the extremes 

of their eye position range. The firing rate corresponding to the center of gaze was estimated 

as the y-intercept of a linear function best-fit in the least-squares sense to the relation 

between firing rate and eye position. This null value was subtracted off the STA firing rate, 

and the function Ae−t/τ was fit to the result. τ from this fit was used as the persistence time 

estimate. Percent differences for pairs of persistence times were computed as their absolute 

difference divided by their mean. One cell pair out of seven was excluded from percent 

difference calculation because one cell of the pair yielded a negative persistence time. Only 
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zebrafish neurons having exclusively positive persistence time ranges were used to estimate 

pairwise percent differences.

Simulations

Network simulations used the linear system

where ri represents the firing rate of neuron i and wij represents the weight of the connection 

from neuron j to neuron i . All network simulations were generated using the 4th order 

Runge-Kutta method with 0.002 s time steps. τr was set to 1 s, the same value assumed 

based on experimental results for adult goldfish hVPNI neurons in reference 22, and N = 50. 

All rates were set to 1 at the first time point.

The weight matrix for the uniformly detuned line attractor network was generated as the 

outer product of two random vectors scaled uniformly so that the persistence time of 

simulated units was ~5 s, approximately the median value for optically recorded cells for 

which we calculated persistence times. The weight matrix for the feedback network with 

multiple stable dimensions was constructed by setting the weights between neurons equal to 

max{0,11− |i − j|} for i ≠ j (this effects a proximity bias to the connectivity weights) and 0 

for i=j (no autapses). Entries were then divided by the sum of all entries in their respective 

columns and scaled by 0.185+0.985 (i/N). The constants in this expression were chosen 

empirically to create a distribution of persistence times qualitatively similar to those 

experimentally observed. The weight matrix for the asymmetric network with a feedforward 

bias was constructed by setting the weights between neurons equal to max{0, 20 − (j − i)} 

for i < j, max{0, 10 − (i − j)} for i > j, and 0 for i = j. Entries were then divided by the sum 

of all entries in their respective columns and scaled by 0.21+1.11(i/N).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Potential dynamical and spatial structure amongst hVPNI neurons. (a),(b) Eye position-

dependent firing rates given uniform (a) or non-uniform (b) firing rate persistence across 

neurons. Colored traces show hypothetical firing rates relative to a hypothetical eye position 

measurement (black). Dotted segments correspond to firing rate during fixation from which 

firing rate persistence is measured. (c),(d) Spatial distribution of neurons in terms of firing 

rate persistence given unstructured (c) or structured (d) arrangements. Cells are 

pseudocolored according to their firing rate persistence.
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Figure 2. 
Saccade-related calcium fluctuations in optically-identified hindbrain somata. (a) Schematic 

of the custom-built microscope allowing simultaneous and synchronous eye tracking and 

two-photon laser-scanning imaging. (b) Calcium fluctuations in somata imaged 40 μm 

lateral of the midline. Gray scale image is the time projection of a sagittal image time series 

(scale bar = 20 μm). Ten of the identified somata are outlined in red, labeled with their rank 

in terms of the correlation between their ROI-averaged fluorescence (ΔF/F) time series and 

CIRF-convolved ipsilateral eye position. 100 seconds of their fluorescence time series are 

plotted in black with a regression model fit overlaid in red for several examples. 

Corresponding measured and CIRF-convolved eye variables are also shown. (c,d) 

Representative STA ipsilateral eye velocity (c) and position (d) measurements for 

ipsiversive (black) and contraversive (green) saccades. In (c)-(i), the mean of the first 1.5 s 

of each trace is subtracted off, and the dotted line indicates saccade time. (e,f) CIRF-

convolved STA eye velocity (e) and position (f) calculated from (c) and (d), respectively. (g-

i) Ipsiversive (red) and contraversive (blue) STA fluorescence responses for cells (not 

among those depicted in (b)) with a range of response indices (RI). (j) Histogram of 

response indices. Data collected in both the dark (n = 306 cells) and the light (n = 385 cells) 

were pooled.

Miri et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2013 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
NpHR-mediated silencing of the caudal hindbrain reduces eye position stability. (a) Dorsal 

view of a 6 dpf larva transgenic for Et(E1b:Gal4-VP16)s1101t, Tg(UAS:NpHR-

mCherry)s1989t, Tg(UAS:Kaede)s1999t. The photoconverted region (red) in the caudal 

hindbrain indicates the volume illuminated in experiments analyzed in (c-f). (b) Close-up of 

the photo-activated region with autofluoresence in blue. Scale bar = 100 μm. (c) Eye traces 

of the animal in (a,b). Left: A spontaneous saccade without illumination. Middle: NpHR is 

activated in the caudal hindbrain one second after a spontaneous saccade (red shade). The 

eyes drift back toward the center of gaze. Right: Short NpHR activation (red shade) induces 

transient eye drift. (d,e) Position-Velocity plots for 200 ms illumination experiments with 

least-squares best fit lines of slope k. (d) No significant eye velocity increase is observed in 

a wildtype animal during illumination (Light On: k = −0.16, Light Off: k = −0.16). (e) 

Illumination of the hindbrain in the NpHR-expressing animal shown in (a) induces large 

increases in eye velocity across eye positions (Light On: k = −0.54, Light Off: k = −0.02). 

(f) Quantification of k across animals (n = 4–5 each). Error bars = sem.
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Figure 4. 
The distribution of persistence time ranges within individual larvae. (a) Representative 

ipsiversive (red) and contraversive (blue) STA fluorescence responses, before (translucent) 

and after (opaque) deconvolution with a CIRF. The mean of the first 1.5 s of each trace is 

subtracted off. The black dashed line is the fit of an exponential function (τ= 9.26 s) to the 

deconvolved ipsiversive STA response from 1 to 4.5 s after saccade time. (b) Ipsiversive 

STA fluorescence responses from three cells in one fish from 1 to 5 s after saccade time. 

Black dashed lines show exponential fits with time constants indicated. Traces are 

normalized to the value of the fit 1 s after saccade time. (c) Persistence time ranges for 25 
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cells imaged in one fish in the dark. The vertical extent of each bar spans the persistence 

time range for each cell. Gray bars indicate non-overlapping persistence time ranges. Cells 

are ordered according to their rank in terms of the median of their persistence time 

distribution. (d) Box plots representing the distribution of median persistence times for fish 

imaged in the dark (left panel) or the light (right panel). Horizontal lines indicate the 

minimum, 25th percentile, median, 75th percentile, and maximum values of each 

distribution.
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Figure 5. 
Agreement between electrical and optical recording-based parameterizations of saccade-

related activity (a) CIRF-deconvolved ipsiversive STA fluorescence response for an 

identified position-sensitive neuron prior to electrical recording. The black dotted lines in (a) 

and (b) are fits of exponential functions to STAs from 1 to 4.5 s after saccade time. (b) 

Ipsiversive STA firing rate from targeted electrical recording of the cell from which (a) was 

calculated. (c) Ipsiversive STA fluorescence response (red) and CIRF-convolved STA firing 

rate (blue) for the same neuron. The convolved trace was normalized to have a maximum of 

1. The fluorescence trace had the mean of the first 1.5 s subtracted off, then it was scaled by 

a constant to minimize its mean squared difference from the convolved trace (this did not 

affect correlation measurements). (d) Pearson correlation for ipsiversive STA fluorescence 

and CIRF-convolved STA firing rate (black circles) and for CIRF-deconvolved STA 

fluorescence and STA firing rate (gray circles) for 8 electrically-recorded position cells. 

Dashed lines represent the mean correlation for each comparison. (e) 95% confidence 

intervals for the persistence time estimates (blue) of 8 electrically-recorded position cells, 

along with 95% confidence intervals for the persistence time of left eye position (black) 

measured simultaneously. (f) Scatterplot of persistence times estimated from deconvolved 

STA fluorescence and STA firing rate for cells for which both estimates were > 0 (7/8 

position cells). In (f) and (g), the gray line is a least-squares best fit to the data. (g) 
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Scatterplot of response indices calculated from STA fluorescence and STA firing rate (9 

total cells).
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Figure 6. 
Activity correlations between cells depend on their pairwise distance. (a) Time projection of 

an image time series with 29 identified neurons color-coded according to the Pearson 

correlation of their fluorescence time series with that of the cell labeled “a”. (b) Pairwise 

correlation of fluorescence time series for pairs of identified cells versus pairwise distance 

for data collected in the light (gray) and in the dark (black). For plots (b) and (c), pairs were 

grouped according to pairwise distance, data are plotted along the x-axis according to the 

mean pairwise distance for each group, and error bars = mean ± sem. (c) Pairwise 

correlation of fluorescence time series for position cell pairs and position/control cell pairs 

versus pairwise distance for data collected in the light (gray) and in the dark (black).
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Figure 7. 
Persistence time and response index similarity depend on pairwise distance along spatial 

dimensions. (a) Time projection of an image time series with 13 position neurons color- 

coded according to the log10 of their persistence time. (b),(c) Persistence time ratio versus 

pairwise distance along the rostrocaudal (b) and dorsoventral (c) axes for pairs of position 

neurons. Data are included from cells for which persistence time estimates were > 0. For 

plots (b),(c),(e), and (f), pairs identified in the light (gray) or dark (black) were grouped 

according to pairwise distance along particular spatial dimensions, data are plotted along the 

x-axis according to the mean pairwise distance for each group, and error bars = mean ± sem. 

(d) Time projection of the same image time series with 29 identified neurons colored-coded 

according to their response index. (e),(f) Response index ratio versus pairwise distance 

along the dorsoventral (e) and mediolateral (f) axes for pairs of identified neurons.
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Figure 8. 
Mechanistic implications of heterogeneity in dynamics. (a),(b) Connectivity matrix (a) and 

numerical simulation results (b) for a circuit constructed to generate a line attractor, then 

subjected to uniform detuning of connection weights to achieve a persistence time of ~5 

seconds (approximately the median for the cells from which we estimated this quantity). The 

traces in (b), which all overlap, show the time courses for 50 neurons from simulations. (c) 

Firing rate estimates for 29 neurons imaged in one larvae in the dark. Saccade-triggered 

fluorescence was smoothed by projection onto principal components capturing > 99% of the 

variance in the data before deconvolution. Traces are colored according to the sum of the 

rostrocaudal and dorsoventral location of each neuron, revealing again the correspondence 

between persistence time and location along these dimensions. (d) Recurrent feedback 

circuit in which neurons nearby in space with more similar persistence times are more 

strongly coupled. This generates multiple approximately stable dimensions in firing rate 

state space. The colors of cells in (d) and (g) correspond to the colors of simulation results in 

(f) and (i), respectively. (e),(f) Connectivity matrix (e) and numerical simulation results (f) 

for a network constructed with the features of (d). Cells are ordered in (e) and (h) from 1 to 

50 in order of increasing persistence. (g) Asymmetric recurrent connectivity with a 

feedforward bias. Strong local coupling creates an ordering in which the activity in cells is 

more persistent further down the feedforward chain partially due to progressive input 

filtration. (h),(i) Connectivity matrix (h) and numerical simulation results (i) for a network 

constructed with the features of (g). (j) Cell-intrinsic processes generate one time scale of 

persistence decay (τcell) and tuned recurrent feedback generates another. By tuning the 

inputs to cells to differentially express these two decay times, a continuum of apparent 
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persistence times can be achieved. (k),(l) Connectivity matrix (k) and numerical simulation 

results (l) for a network constructed with the features of (j). Cells are ordered in (k) from 1 

to 50 and colored in (l) according to the fraction of their burst input that projects along the 

circuit-based dimension, from lowest to highest.
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