
RESEARCH ARTICLE

Integrated 3d flow-based multi-atlas brain

structure segmentation

Yeshu LiID
2, Ziming Qiu3, Xingyu Fan4, Xianglong Liu2, Eric I-Chao Chang5, Yan XuID

1,5*

1 School of Biological Science and Medical Engineering, State Key Laboratory of Software Development

Environment, Key Laboratory of Biomechanics, Mechanobiology of Ministry of Education and Beijing

Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China, 2 School of

Computer Science and Engineering, Beihang University, Beijing, China, 3 Electrical and Computer

Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America,

4 Bioengineering College, Chongqing University, Chongqing, China, 5 Microsoft Research, Beijing, China

* xuyan04@gmail.com

Abstract

MRI brain structure segmentation plays an important role in neuroimaging studies. Existing

methods either spend much CPU time, require considerable annotated data, or fail in seg-

menting volumes with large deformation. In this paper, we develop a novel multi-atlas-

based algorithm for 3D MRI brain structure segmentation. It consists of three modules: reg-

istration, atlas selection and label fusion. Both registration and label fusion leverage an inte-

grated flow based on grayscale and SIFT features. We introduce an effective and efficient

strategy for atlas selection by employing the accompanying energy generated in the regis-

tration step. A 3D sequential belief propagation method and a 3D coarse-to-fine flow match-

ing approach are developed in both registration and label fusion modules. The proposed

method is evaluated on five public datasets. The results show that it has the best perfor-

mance in almost all the settings compared to competitive methods such as ANTs, Elastix,

Learning to Rank and Joint Label Fusion. Moreover, our registration method is more than 7

times as efficient as that of ANTs SyN, while our label transfer method is 18 times faster

than Joint Label Fusion in CPU time. The results on the ADNI dataset demonstrate that our

method is applicable to image pairs that require a significant transformation in registration.

The performance on a composite dataset suggests that our method succeeds in a cross-

modality manner. The results of this study show that the integrated 3D flow-based method is

effective and efficient for brain structure segmentation. It also demonstrates the power of

SIFT features, multi-atlas segmentation and classical machine learning algorithms for a

medical image analysis task. The experimental results on public datasets show the pro-

posed method’s potential for general applicability in various brain structures and settings.

Introduction

Accurate parcellation of neural regions in human brains plays an important role in brain dis-

order diagnosis [1], progression assessment [2], surgical planning [3] and large-scale neuroim-

aging studies [4, 5]. For instance, the hippocampus, as a distinctive neural structure situated in
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the medial temporal lobe under the cerebral cortex, is crucial to memory, navigation and

learning [6–8]. Its atrophy is an important clinical indicator of many brain diseases, such as

Alzheimer’s disease [9], schizophrenia [10] and temporal lobe epilepsy [11]. The dopaminergic

dysfunction of the caudate nucleus has been shown to be related to cognition in Parkinson’s

disease [12, 13]. Magnetic resonance imaging (MRI) images are popular and a major focus in

the study of neuroimaging, especially the accurate delineation of brain structures, which can

provide neuroscientists with volumetric and structural information. Therefore, accurate and

reliable brain structure segmentation in MRI data can help neuroscientists track and under-

stand relevant disease progression better and faster.

Manual segmentation labeled by clinical pathologists has long been considered the gold

standard or ground truth for neuroanatomical images. It is a laborious and time-consuming

task for experts to manually delineate brain structures. The fact that there are a growing num-

ber of datasets makes labeling even more difficult. Moreover, manual segmentation is required

to follow some protocols, which still need improved unity and consistency [14–18]. Thus, pro-

posing efficient automated brain image segmentation methods will ease the burden of labeling

brain anatomical regions in MRI images and speed up the labeling processes. Fully automated

segmentation methods, which delineate structure boundaries directly [19–24] without any

human involvement, are able to help experts with their tedious and low-productive labeling

tasks.

Atlas-based segmentation is a commonly used technique for segmenting medical images

[25–28]. In atlas-based segmentation, it is non-trivial to apply non-linear image registration to

a pair of images (i.e. a fixed target image and a moving atlas image). The transformed atlas

image after registration, whose segmentation is usually given, propagates to the target image

for anatomical labeling. Due to large variations in individual anatomical structures, it is hard

to achieve perfect alignment between a pair of images.

Multi-atlas-based segmentation methods [22, 23, 29–36], which take advantage of having

multiple atlases associated with manually delineated labels, have received growing interest in

the past few years. The key assumption of the multi-atlas-based approach is that multiple

atlases contain richer anatomical variability than a single atlas does. In multi-atlas-based seg-

mentation, each atlas image is registered to align with a target image based on some similarity

metrics; the annotated label map is transformed into the input image space; all the resulting

transformed label maps are then combined to form the final segmentation for the input image,

typically through label fusion mechanisms. Since multiple atlases incorporate inter-subject

variability, more accurate and reliable segmentation results can be obtained through label

fusion from multiple atlases. Many label fusion techniques have been widely investigated in

the literature [31, 37–40]. Before applying any state-of-the-art label fusion method, it is non-

trivial to introduce an atlas selection step to select the best candidate atlases that contribute to

achieving better segmentation performance. The major drawback of multi-atlas segmentation

is that it is computationally expensive. Therefore, the trade-off between accuracy and speed

necessitates considerate algorithmic design in multi-atlas segmentation.

Deep learning methods have been adopted for multi-atlas [35, 41–44] and direct brain seg-

mentation [5, 45–47]. However, most of the existing deep learning methods require a large

amount of manually labeled data, substantial CPU training time and sophisticated fine-tuning

in order to perform well on a dataset [46]. Furthermore, a neural network trained for image

registration in an unsupervised learning manner is not easily comparable to traditional regis-

tration methods [48].

Inspired by the success of the 2D Scale Invariant Feature Transform (SIFT) flow approach

in performing large-scale image matching [49–51] and 3D SIFT flow for atlas-based CT liver

image segmentation [52], we propose a novel multi-atlas method for automated brain
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structure segmentation in MRI volumes. As shown in Fig 1, the method consists of three

sequential steps: registration, atlas selection and label fusion. In the registration stage, an inte-

grated flow, based on grayscale and SIFT features, is introduced to generate voxel-wise corre-

spondence between a pair of images. The SIFT descriptor [53] has been considered a

milestone achievement in computer vision and has been widely adopted in a variety of applica-

tions such as object recognition [54], point tracking [55, 56], and panorama [57]. The SIFT

descriptor is robust, to a certain degree, to local deformation, orientation, scaling, and illumi-

nation. SIFT has also been widely used in medical imaging [58–60]. At the same time, optical

flow has already been successfully used in the medical imaging domain due to its efficiency

and precision in mapping structures of interest [61]. Many models based on 2D as well as 3D

optical flows have been developed and are available for medical image registration applications

[62, 63], but the optical flow is only based on image intensity which sometimes fails to capture

sufficient information between a pair of images. Apparently, the integrated flow, as an appro-

priate combination of optical flow and SIFT flow, is more robust to image variation and

expected to produce better registration results. The integrated flow is incorporated into Mar-

kov random field (MRF) modeling and an improved sequential belief propagation optimiza-

tion algorithm to generate a displacement flow field. In the second stage, the accompanying

energy from the registration step is leveraged to select the best K atlases for label fusion.

Finally, a nonparametric label fusion approach [64] is adopted to extract information from

flows, grayscale atlas images, SIFT images and annotations to generate the corresponding

brain structure segmentation of the target image. The predicted segmentation can be used by

pathologists for rapid positioning and further analysis of the subject’s cerebral structures.

In our experiments, we apply our method to several well-known publicly available datasets,

such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1 Baseline 3T standardized

dataset [65] and 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset [66], with

several evaluation metrics such as the Dice coefficient and average Hausdorff distance. Choos-

ing the patients’ images as targets and the normal subjects’ images as atlases in the ADNI data-

set leads to a setting where there are large transformations and variations between images in

the target dataset and that in the atlas set. The experiment on a composite dataset, in which

the IBSR dataset [67] serves as targets and the EADC-ADNI dataset [68] serves as atlases, illus-

trates the effectiveness of our method in a cross-modality setting. We achieve comprehensive

improvement in segmentation performance in comparison with widely used state-of-the-art

methods such as Advanced Normalization Tools (ANTs) [69] symmetric image normalization

registration (SyN) [70] method combined with Joint Label Fusion method [31, 71]. The regis-

tration time for a pair of images with our method is reduced to less than 1 minute in our

processed datasets, which is estimated on a standard CPU node of the Microsoft High-Perfor-

mance Computing (HPC) cluster. This is more than 7 times faster than the ANTs SyN registra-

tion method given the same input. Additionally, the execution time of our label fusion method

grows linearly with regard to the number of participating atlases. The result of comparing dif-

ferent fusion methods shows that, given 135 candidate atlases, our label transfer method is 18

times faster than Joint Label Fusion [31] in the same pure CPU setting. It’s noteworthy that,

compared to the label fusion step in a multi-atlas segmentation system, registration is usually

more time-consuming. The experimental results indicate that our method is sufficiently robust

in dealing with large non-linear deformation, accurate in generating labels for target images,

and efficient in terms of overall execution time.

A brief summary of our work is as follows:

1. A novel multi-atlas segmentation system based on the 3D integrated flow is proposed. The

integrated flow is the essential element that connects all the components in the system.
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2. We adopt an atlas selection method based on the final convergence value of the energy

function in registration. This approach estimates the best candidate atlases for fusion,

which costs almost no time because it only involves trivial sorting according to the numeri-

cal energy values from registration.

3. A coarse-to-fine flow matching approach and a 3D sequential belief propagation method

with an improved message passing scheme are developed in registration. In addition, a sim-

pler sequential belief propagation method is adopted in label fusion. These strategies not

only make the system efficient but also lead to better segmentation results. Extensive experi-

ments are conducted on five publicly available datasets under different settings. Our pro-

posed method outperforms the competitive baseline methods in terms of efficiency and

effectiveness.

Method

In this section, we make a thorough description of our proposed system, which consists of the

integrated 3D flow-based registration, the energy-based atlas selection and the integrated 3D

flow-based label transfer.

System overview

The core idea of our multi-atlas brain image segmentation system is inspired by the success of

the 2D SIFT flow approach in performing large-scale image matching [49–51] and 3D SIFT

flow for atlas-based CT liver image segmentation [52]. To segment a target image, we first reg-

ister each image in the atlases to align with the target image based on the integrated flow. As a

result, we obtain a dense correspondence and an accompanying energy value between each

atlas image and the target with our integrated 3D flow-based registration method. Subse-

quently, we select the atlas images with the lowest matching energy as voting candidates,

which are similar to the target images. With the candidate atlas images and their correspond-

ing flows, we leverage the integrated 3D flow-based label transfer method to merge this infor-

mation to generate a predicted segmentation volume for the target image. Nevertheless, many

practical issues are to be resolved to build a reliable system for 3D MRI brain image

segmentation.

As illustrated in Fig 1, the pipeline of our system consists of three main modules as follows:

• Registration: Establishing dense correspondence between the target image and each of the

atlas images. Generating an integrated flow and an energy value for the correspondence of

each pair of images. Warping the atlas images as well as their segmentations via the flows.

Fig 1. A simple diagram for the pipeline of our proposed system. The rectangles are three key components in our system: registration, atlas selection, and

label fusion. Ovals and cylinders denote data representations.

https://doi.org/10.1371/journal.pone.0270339.g001
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• Atlas selection: Sorting the warped atlases and segmentations in ascending order based on

the corresponding energy values. Choosing the first K of them as fusion candidates.

• Label fusion: Merging the selected warped candidates into final segmentation for the target

image by reconciling labels with features, and imposing spatial smoothness as well as other

constraints via the label transfer.

The detailed flowchart for our complete system design is shown in Fig 2. The pseudo-code

of our multi-atlas segmentation method is shown in Algorithm 1.

Algorithm 1 Integrated 3D Flow-based Multi-atlas Segmentation Algorithm
1: Input: Atlas Images I = {I1, . . ., In}, Atlas Labels L = {L1, . . ., Ln},
Target Image Itarget
2: Output: Predicted Segmentation Ltarget
// Calculate SIFT features for all the images:

3: Starget = CalculateSIFT(Itarget)
4: for i = 1 ! n do
5: Si = CalculateSIFT(Ii)
6: end for
// Combine grayscale and SIFT features into an integrated feature

vector:
7: Mtarget = CombineFeatures(Starget, Itarget)
8: for i = 1 ! n do
9: Mi = CombineFeatures(Si, Ii)
10: end for
// Calculate an integrated flow and an energy value for each pair:

11: for i = 1 ! n do
12: Fi, Ei = IntegratedFlow(Mtarget, Mi)
13: end for
// Sort the indices by obtained energies:

14: IDoriginal = (1, . . ., n)

Fig 2. Flowchart for our integrated 3D flow-based multi-atlas segmentation system. Initially, every atlas image volume is registered with the target

image, producing a flow field and a corresponding energy value. After sorting the registration results by their energy values from lowest to highest, the top

K flow fields are chosen and applied to warp the corresponding atlas images and annotations to obtain K candidates. Upon performing fusion with the

candidates, the predicted segmentation for the target image is produced. For convenience, we use selected slices of MRI images to denote 3D MRI volumes.

https://doi.org/10.1371/journal.pone.0270339.g002
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15: IDsorted = SortIndexByEnergy(IDoriginal, {E1, . . ., En})
16: IDcandidate = FirstKElements(IDsorted, K)
// Denote IDcandidate = {id1, . . ., idK}:
// Use the label transfer to fuse the labels of the top K candidates:

17: Ltarget ¼ LabelTransferðMtarget; fMid1...K
; Lid1...K

; Fid1...K
gÞ

Integrated 3D flow-based registration method

In this subsection, we provide a detailed description of the formulation of our integrated 3D

flow-based registration method by introducing the underlying integrated feature descriptor,

the objective function, a 3D message passing optimization method and a 3D coarse-to-fine

flow matching scheme.

Integrated dense feature descriptor. Two types of voxel-wise features are extracted and

used consistently throughout our approach, more specifically, in the integrated 3D flow-based

registration, the energy-based atlas selection and the integrated 3D flow-based label transfer.

The grayscale feature for a voxel in an MRI image is a single value that contains merely inten-

sity information, which is inherently located in an MRI image as a default image representa-

tion. Since the grayscale feature is common and widely used, we focus on the other feature

used in our system.

SIFT is a type of feature descriptor that captures the gradient information of an image on a

local scale. The typical SIFT feature extraction algorithm involves scale-space extrema detec-

tion, keypoint localization and keypoint feature extraction. In our approach, we develop a

dense correspondence image registration method [72], which suggests that we can ignore the

detection part of the original algorithm and focus on the feature extraction part. Similar to [52,

59, 60], we compute the gradient magnitude and orientation for each voxel (x, y, z) as follows:

mðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xðx; y; zÞ þ G2
yðx; y; zÞ þ G2

zðx; y; zÞ
q

;

y x; y; zð Þ ¼ tan� 1
Gyðx; y; zÞ
Gxðx; y; zÞ

;

� x; y; zð Þ ¼ tan� 1
Gzðx; y; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
xðx; y; zÞ þ G2

yðx; y; zÞ
q ;

Gxðx; y; zÞ ¼ Gðxþ 1; y; zÞ � Gðx � 1; y; zÞ;

Gyðx; y; zÞ ¼ Gðx; yþ 1; zÞ � Gðx; y � 1; zÞ;

Gzðx; y; zÞ ¼ Gðx; y; z þ 1Þ � Gðx; y; z � 1Þ;

ð1Þ

where G(x, y, z) denotes the intensity value in location (x, y, z), Gx, Gy, and Gz are gradients

computed as finite difference approximations, whereas m, θ, ϕ represent the magnitude and

angular coordinates respectively. Intuitively, (Gx, Gy, Gz) is a vector representing an approxi-

mate sub-gradient in (x, y, z), and (m, θ, ϕ) is its spherical coordinate, e.g., m is the magnitude,

θ is the azimuthal angle and ϕ is the polar angle.

With each voxel’s magnitude and orientation obtained, we compute a histogram for each

voxel. In this paper, we consider the neighborhood of a voxel to be an 8×8×8 cube, with the

voxel being in the center, where we choose the one with the smallest coordinates by conven-

tion. We observe that the chosen neighborhood size is good enough in the experiments and

the performance gain brought by increasing it does not outweigh the increased memory usage.

The cube is further divided into eight 4 × 4 × 4 sub-blocks. A sub-histogram for each sub-

block is generated based on the magnitudes and orientations of the 64 voxels it contains. For

simplicity and the best performance in our experiments, exactly 6 bins, denoting 6 directions,
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where there are two opposite directions for each of the three dimensions, are adopted to fit the

orientations into histograms. A gaussian weighting function is applied to the sub-histogram of

each sub-block to account for their importance to the center voxel so that the farther one has

less contribution to the weighted histogram, with coefficients shown in Table 1. The 6 histo-

gram bins simply divide the space according to the angular coordinates θ and ϕ, in which, for

instance, y 2 p

4
; 3p

4

� �
, � 2 � p

4
; p

4

� �
together represent one of the bins. Such division is not dis-

joint (e.g., y 2 p

4
; 3p

4

� �
, � 2 � p

4
; p

4

� �
overlaps with θ 2 [0, 2π], � 2 p

4
; 3p

4

� �
) thus introducing over-

lap among bins because this is not the geographical way of creating parallels and meridians,

which instead can perfectly create a partition of the space of all vectors based on their direc-

tions. However, our dividing strategy is intuitive and more computationally efficient. To over-

come rotation dependence, we subtract the dominant orientation of the center voxel from all

the orientations in the histogram so that the dominant one points to (θ = 0, ϕ = 0) and rotation

invariance is thus guaranteed, which is equivalent to rotating an object to its most prominent

gradient direction. In the end, the histograms of the eight sub-blocks are concatenated alto-

gether, which ends up with a 48-dimensional SIFT feature vector for the center voxel. An illus-

tration of one similar SIFT descriptor transformation with a 4 × 4 × 4 neighborhood is shown

in Fig 3.

Table 1. Coefficients of the filter used in computing the histogram in a cell for SIFT features.

Offset X Offset X Offset Z Coefficient

±1 ±1 ±1 0.253

0 ±1 ±1 0.252

±1 0 ±1 0.252

±1 ±1 0 0.252

0 0 ±1 0.25

±1 0 0 0.25

0 ±1 0 0.25

0 0 0 1

https://doi.org/10.1371/journal.pone.0270339.t001

Fig 3. Illustration of 3D SIFT descriptors. The large arrow in the center points from a diagram showing the gradient distribution for a voxel’s 4 × 4 × 4

neighborhood to a diagram showing how the distribution fits into eight 2 × 2 × 2 sub-blocks with 6 directions/histogram bins.

https://doi.org/10.1371/journal.pone.0270339.g003
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By experiments, we find that the SIFT features and intensities include complementary

information for voxel-wise alignment. Hence, we adopt an integrated per-voxel feature vector

consisting of the 48-dimensional SIFT descriptor and the grayscale value, which is formulated

as

Iðx; y; zÞ ¼ Sðx; y; zÞ � zGðx; y; zÞ

Sðx; y; zÞ ¼ ðS1ðx; y; zÞ; . . . ; S48ðx; y; zÞÞ;
ð2Þ

where I(x, y, z), S(x, y, z),�, z denote the integrated feature vector of dimension 49 for voxel at

location (x, y, z), the 48-dimensional SIFT feature vector, vector concatenation and a trade-off

coefficient respectively. The introduction of z results from the fact that neither SIFT nor gray-

scale alone can capture the essential information for a voxel. For example, the SIFT feature is

well suited to capturing image structures and voxel contexts, while grayscale values provide

complementary raw intensity information in an MRI image when SIFT feature fails in align-

ment between two voxels because of gradient field homogeneity. The coefficient z also helps

prevent inconsistency after feature vector normalization.

3D integrated flow algorithm. Based on the integrated dense feature descriptor explained

above, in this work, we come up with an integrated 3D flow-based registration method. The

motivation is that the 2D SIFT flow method performs well in alignment between complicated

and spatially dissimilar scenes [49], as well as the success of the widely adopted optical flow

[73] in image registration. Moreover, 3D SIFT flow with only SIFT features works well in 3D

CT liver image segmentation [52]. A flow-based registration method is expected to produce

better matching results with more than one single type of feature.

In our method, we have a mixed feature descriptor for each voxel, so our objective is to esti-

mate the correspondence between a pair of images in which every voxel is replaced by a multi-

dimensional feature vector. Let p = (x, y, z) represent the spatial coordinate of a voxel, and f(p)

= (u(p), v(p), w(p)) being the flow vector at p. We denote by I1 and I2 the per-voxel integrated

feature descriptors for two images, while ε is a set of all the spatial neighborhood pairs (a six-

neighbor system is used in this paper). To obtain the estimated registration displacement field,

we adopt an MRF approach so that the objective is to minimize an energy function as follows:

Eðf ; I1; I2Þ ¼
X

p

minðkI1ðpÞ � I2ðpþ fðpÞÞk; tÞþ

X

p

ZðjuðpÞj þ jvðpÞj þ jwðpÞjÞþ

X

ðp;qÞ2ε

½minðajuðpÞ � uðqÞj; dÞþ

minðajvðpÞ � vðqÞj; dÞþ

minðajwðpÞ � wðqÞj; dÞ�þ

log Z;

ð3Þ

which consists of a data term, a displacement term and a smoothness term, from left to right. Z
is the partition function for normalizing the potentials to be a legal probability distribution. So

finding the optimal flow can be interpreted as finding the most probable configuration in this

MRF, namely maximum a posteriori (MAP) inference in the literature on graphical models.

The data term forces the corresponding voxel pairs to be matched as similar in their features as

possible. The second term, the displacement term, restricts the flow vector to be small in its

Manhattan distance to the origin. The smoothness term at the end of Eq (3) constrains the

flow vectors of adjacent voxels to be close so that two adjacent voxels in the atlas image are
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aligned with spatially close correspondences. t and d are the thresholds of the truncated

norms. η and α are the weights of the displacement term and the smoothness term, respec-

tively. Note that minimization of the weighted sum of the displacement term and the smooth-

ness term ensures that the flow vector does not deviate from the zero vector drastically.

In this energy function, truncated L1 norms are adopted in both the data term and smooth-

ness term to combat outliers and preserve flow discontinuities respectively. Intuitively, if the

L1 norm in the smoothness term is not truncated, the final flow field will be smooth locally

and globally. In general, the registration/mapping field observes regularity in the global

smoothness, while encountering local discontinuity at the boundary of the anatomical struc-

tures. On one hand, our proposed method consists of a regularization term that encourages

the smoothness of the field; on the other hand, the SIFT features capture the important ana-

tomical structures that observe robustness and informativeness to be able to model local dis-

continuity in the registration map. The truncated norms thus control the level of allowed local

discontinuity while global smoothness is always imposed with α> 0. We give an example of

the displacement fields produced by our method and ANTs in Fig 4 with weak and strong

local smoothness. The histograms are based on the smoothness terms for all pairs of adjacent

voxels with α = 1 and d =1. Note that our method produces less smooth fields than ANTs

because of the discrete nature of integrated flows. However, smoother displacement fields can

be obtained by choosing larger α and d (the middle column in Fig 4). The displacement fields

of our method are smooth overall since 90% of the gradients of displacements are under 2.0

(the left column in Fig 4).

Fig 4. Examples of the visualized displacement fields and their corresponding histogram statistics. The histograms are based on the smoothness

terms for all pairs of adjacent voxels with α = 1 and d =1. From left to right: the integrated flow with less restriction on local smoothness; the

integrated flow with stronger local smoothness; ANTs SyN.

https://doi.org/10.1371/journal.pone.0270339.g004
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3D ternary-layer message passing for belief propagation. Since classic MRF energy min-

imization algorithms such as graph cuts [74] and max-product belief propagation [75] find

local minima that are good approximations of global minima but are not efficient in practice,

especially for large 3D image volumes in our case, we adopt a sequential belief propagation

(BP-S) approach [49, 76–78] to optimize the above energy function. To avoid passing messages

inefficiently in a six-neighbor system while still pursuing a good approximation for energy

minimization, an appropriate message update schedule is required by exploring the special

structure of a 3D image grid. As suggested by Liu et al. [49] and Shekhovtsov et al. [79], the

smoothness term in the energy function in Eq (3) is decoupled in L1 norm form for three

dimensions, which makes the MRF model decomposable in belief propagation. Hence, the

message of a flow vector about the smoothness penalty can be divided into three individual

parts for its three-dimensional components. Each part is passed around in an isomorphic 3D

volume for its own dimension. In this way, the original volume becomes three isomorphic vol-

umes. The messages of the smoothness term, which are called intra-layer messages, are propa-

gated independently within the respective volumes, while the messages of the data term and

displacement term that connect the corresponding duplicate nodes belonging to the three vol-

umes, are called inter-layer messages, or ternary-layer messages. We use the term, layer, for the

isomorphic volume when referring to inter-layer and intra-layer messages, which follows from

the 2D dual-layer expression. With this setup and the help of Shekhovtsov et al. [79], an effi-

cient 3D message passing scheme is designed as follows. During propagation, at the beginning

of one iteration, we update inter-layer messages by passing them from the two counterpart vol-

umes to the current volume. Afterwards, the intra-layer messages within the current volume

are updated accordingly in which a forward updating routine is followed by a backward one in

reverse order. This approach not only reduces time complexity and space complexity of the

algorithm, but also makes registration results more robust and less sensitive to noise.

Formally, following from the notations in [79, 80], we define the graph as G ¼ ðV; EÞ and

the node set as V ¼ VX
[ VY

[ VZ
, where VX

� VY
� VZ

� VI
for layer X, Y, Z in three

dimensions, with� denoting isomorphism and VI denoting the node set of the original image

volume. The edge set is E ¼ EX
[ EY

[ EZ
[ EXY

[ EXZ
[ EYZ

, in which EX
is a set of adjacent

voxel pairs for VX
in a six-neighbor system and EXY

¼ fðpX; pYÞjpX 2 VX
; pY 2 VY

; pX � pYg
represents the inter-layer edge set for any pair of isomorphic nodes that shares the same loca-

tion p in the original volume but in different layers. In addition, EX
ðpÞ ¼ fq 2 VX

jðp; qÞ 2
EX
g stands for the set of neighbors of node p in VX, where (p, q) is treated as an unordered

pair. The superscript of pX is omitted for conciseness when the context is clear. Let mX
pq be the

intra-layer message passed from node p to q in VX
, mX

p be the inter-layer message for node p in

VX
, xp be the label assigned to p, in which the label encodes the offset in registration, and xX�p

be the optimal solution for p in layer X. Generally, the message update process and the belief

vector as well as the optimal assignment can be formulated as

mX
p ðxpÞ ¼ min

yp ;zp
ðDpðxpÞ þ

X

q2EY ðpÞ

mY
qpðypÞ þ

X

q2EZðpÞ

mZ
qpðzpÞÞ

mX
pqðxqÞ ¼ min

xp
ðVðxp; xqÞ þmX

p ðxpÞ þ
X

t2EX ðpÞnq

mX
tpðxpÞÞ

bXp ðxpÞ ¼ Vð0; xpÞ þmX
p ðxpÞ þ

X

q2EXðpÞ

mX
qpðxpÞ

xX�p ¼ min
xp

bXp ðxpÞ;

ð4Þ
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where V(xp, xq) denotes the smoothness penalty or discontinuity cost and V(0, xp) accounts for

displacement cost in belief computation, with unary term Dp(xp) being the data cost. In this

framework, we leverage the min-sum belief propagation [80] and compute the minimum mar-

ginal whenever the messages meet at a node. Message passing in these isomorphic volumes is

performed in the order of X, Y, Z. Because of the truncated L1 norms in the energy function,

distance transform techniques in [80] is adopted during intra-layer message computation. All

the messages are initialized to zero before the first iteration. In the first iteration, for instance,

we update the inter-layer message for layer X based on information from layer Y and Z. After

that, a forward passing starts from the node in VX
with the smallest indices, say, (0, 0, 0), and

updates the messages to the neighbor nodes whose indices are coordinate-wise larger than this

node, for example, (0, 0, 1) and (1, 1, 1). The forward updating process scans the nodes in VX

in lexicographical order of the indices while the backward updating that follows operates on

the nodes in a totally reverse order. The subsequent iterations update messages for layer Y and

Z similarly and go back to layer X. Normalization is applied to the computed messages for bet-

ter convergence. The final optimal solution is simply the label assignment with the smallest

belief value, or equivalently, the maximum a posteriori (MAP) estimate.

3D coarse-to-fine flow matching. Generally speaking, the integrated 3D flow-based reg-

istration method matches a voxel in the fixed image with any voxel in the moving image,

which indicates at least O(N6) time complexity in terms of a 3D image’s dimensional length N.

Hence it is not feasible in practice, especially in 3D medical image analysis, typically with

N> 100.

Motivated by [49, 81], to speed up the matching and registration process, we develop a 3D

coarse-to-fine window searching approach [82] for our registration method. The main idea is

similar to the classic divide-and-conquer approach but in an approximate probabilistic algo-

rithm setting. Initially, the original image is downsampled several times, which leads to a hier-

archical structure of images from the finest to the most compressed. At each level in the

hierarchy, an individual matching window is set up for every voxel based on the resulting flow

vector from last level. This coarse-to-fine flow matching scheme computes the flow at a coarse

level of an image volume, while gradually propagating and refining the flow from coarse to

fine. More formally, assume that the fixed image I is to be downsampled h times, resulting in h
+ 1 images, I(0), I(1), . . ., I(h), in which I(0) is the original fixed image I and for any k> 0, I(k) is a

downsampled image of I(k−1). Consider a fixed image’s voxel p(h) = (x, y, z) to be matched in

the coarsest level and the current flow vector for it is initialized to be (0, 0, 0). According to the

energy function, the best matching flow vector f(h)(p(h)) = (u(h)(p(h)), v(h)(p(h)),w(h)(p(h))) is

found within a searching window centered at c(h)(p(h)) = p(h) + (0, 0, 0), whose size is fixed to

be W ×W ×W in our method. The voxel and centroid of the searching window are all updated

and upsampled to their corresponding new coordinates during propagation to the finer level.

The coarse-to-fine propagation process can be formulated as

Ið0Þ ¼ I

IðkÞðx; y; zÞ ¼
X

dx;dy;dz2f0;1g

Iðk� 1Þð2xþ dx; 2yþ dy; 2z þ dzÞ=8

cðhÞðpðhÞÞ ¼ pðhÞ

cðk� 1Þðpðk� 1ÞÞ ¼ 2ðpðkÞ þ f
ðkÞ
ðpðkÞÞÞ 8k 2 ½1; h�;

ð5Þ

where p(k−1) denotes the corresponding upsampled voxels of p(k). So the flow vector is refined

from a coarse level to the original volume while updated in a searching window at each level. It

is noteworthy that the window size W should be at least the dimensional length of the coarsest

image for global voxel matching, but should not be too large for stable searching in fine levels.
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Downsampling without pre-filtering may cause aliasing. However, in our case, the coarse-

level downsampled image simply serves as a small-sized image with aggregated intensity infor-

mation of the original image in order to compute a good starting point for the fine-level image

to search for more accurate correspondences. Moreover, we smooth the volumes prior to mes-

sage passing and generating coarser levels in belief propagation.

Energy-based atlas selection

Since the population represented by the atlases is typically heterogeneous, in terms of age, gen-

der and morphology, it would be better to only propagate and combine certain atlases analo-

gous to the target image instead of the whole atlas database. In our study, a flow vector and the

corresponding matching energy between a pair of images are obtained by optimizing the

energy function in the registration step. Based on observation and analysis, low matching

energy indicates a higher similarity between the target image and the atlas image. Therefore, in

order to achieve a higher accuracy in final segmentation results, we develop an effective atlas

selection strategy based on the registration energy. The basic procedures of our atlas selection

strategy can be summarized as follows: (i) the set of flows and atlases for the target image are

sorted in increasing order based on their corresponding registration matching energy. (ii) the

top K flows and their corresponding original atlas images are selected from the sorted

sequence. The optimal value for the number of candidates K� can be determined by cross-vali-

dation or a judicious choice.

There are two advantages of our energy-based atlas selection strategy. First, unlike the

sophisticated fine-grained Support Vector Machine (SVM) Rank [83], our method leverages

an optimization energy value as the similarity measure, which is usually the final objective

value of an optimization method, and efficiently filters out those potentially unbeneficial

atlases with large energy values, which is almost cost-free in terms of time. Second, although

our atlas label fusion method is linear in the number of candidate atlases as discussed in the

experiments, some label fusion methods such as Joint Label Fusion [31] explore the inter-

dependency among candidate atlases and involve computation of the inverse of a large matrix,

which leads to a quadratic time complexity with a non-trivial constant that is not negligible in

practice. Since the practical execution time of such label fusion methods grows much faster

than that of a linear method, which is studied in the experiments, it is of great significance to

deal with only a few candidate atlases by means of our atlas selection method instead of com-

puting a label fusion result for one hundred atlases.

Integrated 3D flow-based label transfer method

With the selected candidate atlases and their flows, we can merge this information to predict a

segmentation for the target image by fusion methods. In this paper, we develop an integrated

3D flow-based label transfer method inspired by the non-parametric scene parsing in natural

images [64] and the 3D SIFT flow-based registration method [52]. As the name of the method

indicates, it transfers all the warped labels of the atlas images into a single label image. At first,

we have a target image I and some atlases {I1, I2, . . ., IK} with known annotations to help pre-

diction, all of which are in the form of a multi-dimensional integrated feature vector. The com-

plete candidate set is denoted by {Ii, Li, fi}i=1:K, where Ii is one of the aforementioned atlases, Li
is the corresponding annotation or segmentation image, and fi is the flow vector from registra-

tion. After applying the flow vectors, a set of warped candidates, fI0i ; L
0
igi¼1:K , is obtained. We

aim to use the above information to generate L, the corresponding annotation for I, which is

the final predicted segmentation for the target image. Similar to the previous registration

method, we use a method based on the MRF model to estimate the final result. The objective
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energy function takes into consideration the object’s prior information, atlas data information

and spatial smoothness information:

FðI; L; S0Þ ¼
X

p

cðLðpÞ; I; fI0igÞþ

a
X

p

lðLðpÞ; fI0 igÞþ

b
X

ðp;qÞ2ε

�ðLðpÞ; LðqÞ; IÞþ

log Z;

ð6Þ

where Z serves the purpose of normalization and α, β are introduced to account for a trade-off

among the three terms.

The first summation is the likelihood term, which is defined as follows:

cðLðpÞ ¼ l; I; fI0igÞ ¼
min
i2Op;l
kIðpÞ � I0iðpþ fðpÞÞk if Op;l 6¼ ;;

t if Op;l ¼ ;;

ð7Þ

8
><

>:

where Op,l is the index subset of the participating atlases in which the registered label is l at

voxel location p. Note that if there is no atlas found to have label l at the specific location, a

threshold τ is assigned.

The prior term, after the likelihood term, simply accounts for the prior information of all

candidate labels. We count the number of occurrences for each label at each location:

lðLðpÞ ¼ l; fI0igÞ ¼ �
log

histlðpÞ
maxqhistlðqÞ

log
�prior

K þ �prior

; ð8Þ

in which histl(p) is the histogram of the occurrence of label l at location p and �l is a parameter

for prior information for label l.
The smoothness term is expanded into:

�ðLðpÞ; LðqÞ; IÞ ¼ dðLðpÞ; LðqÞÞ
�þ e� ð2hkIðpÞ� IðqÞk2iÞ� 1kIðpÞ� IðqÞk2

�þ 1

 !

; ð9Þ

where δ is a penalty weight function of the difference between two voxel labels, h � i denotes an

average operation over the whole image, k � k represents the L2 norm of a vector and � is a

parameter for scale modification.

Similar to the previous registration method, we adopt a simpler sequential belief propaga-

tion algorithm to optimize the energy function for faster convergence, in which a coarse-to-

fine propagation algorithm is adopted as well.

Asymptotic analysis

For complexity analysis, we assume that there are N × N × N voxels in each image, D-dimen-

sional image data (D = 3 in our case), L types of labels, E voxels in the defined neighborhood

system, F dimensions for a voxel’s feature vector, W voxels in the coarse-to-fine searching win-

dow, M atlas images and T iterations of message passing in belief propagation.
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In the integrated 3D flow-based registration, the coarse-to-fine searching and the belief

propagation process are the main contributors to the total execution time. Because of the

divide-and-conquer characteristics of downsampling, according to master theorem [84], the

recurrence relation gives us O(DEWN3F + TW3N3), where the first term accounts for message

allocation preprocessing and the second term indicates the complexity of message passing and

the overall coarse-to-fine scheme.

In atlas selection, common sorting algorithms would require a quasilinear complexity O(M
log M).

As for the label transfer method, the preprocessing of the candidate set takes O(MLFN3)

while the complexity of the message passing is O(TDELN3). Thus the time complexity of the

label transfer is O(MLFN3 + TDELN3).

Above all, the overall time complexity to compute predicted segmentation for one target

image with our proposed method is O(N3(DEWF + TW3 + MLF + TDEL)), which is linear

with respect to the atlas size and number of labels. In practice, however, an image is usually 2D

or 3D, and the neighborhood size is usually 4 or 6, which makes D and E relatively small con-

stants. In addition, T< 100 and F = 49 could be considered small constants as well compared

to the searching window size and image volume dimensional length. By this simplification, the

complexity can be written as O(N3L(W3 + M)). This form of complexity lacks some details but

clearly points out the main contributors when the image size and atlas set size outweigh other

factors. Thus, our method is expected to be scalable and applicable in large-scale datasets,

which is further empirically validated in our experiments.

Results

In this section, we elaborate on the datasets, preprocessing steps, implementation details, and

the evaluation metrics adopted in our experiments. Subsequently, we report the results of com-

paring different systems and study the influence of individual components.

Datasets and preprocessing

Our proposed method is thoroughly evaluated on five publicly available brain image datasets.

A summary of the relevant information to our experiments on these datasets is shown in

Table 2 and a detailed description of them is given as follows.

1. ADNI: Data used in the preparation of this article were obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Table 2. Summary of the datasets in our experiments.

Dataset No. of subjects Target set Atlas set Age Diagnosis Chosen annotation

ADNI 151 33(AD)+71(MCI) 47(NC) 55-90 AD/MCI/NC Hippocampus

MICCAI 2012 35 20 15 34.16 ± 20.40 AD/MCI/NC Anterior cingulate gyrus

LPBA40 40 LOOCV 40 29.20 ± 6.40 Normal Cuneus

Hammers 30 LOOCV 30 - Normal Amygdala

IBSR-EADC 18+135 18 135 7-71, 55-90 AD/LMCI/MCI/NC Hippocampus

Shown dataset characteristics include the number of subjects in the dataset, the number of volumes in our split target set and atlas set, age, diagnosis, and the chosen

structure segmentation for experiments. Since IBSR-EADC contains two datasets, the age information is separated by a comma. LOOCV: leave-one-out cross-

validation. AD: Alzheimer’s disease subjects. MCI: mild cognitive impairment subjects. NC: normal control healthy subjects. LMCI: late mild cognitive impairment

subjects.

https://doi.org/10.1371/journal.pone.0270339.t002
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Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other biological markers, and clini-

cal and neuropsychological assessment can be combined to measure the progression of

mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date

information, see www.adni-info.org.

In this paper, we use the ADNI1:Baseline 3T dataset in the ADNI 1 Standardized Data Col-

lections [65]. The dataset consists of MRI scans acquired from 151 subjects, aged 55 to 90,

who received 3.0-T scans and passed quality checks under the control of the ADNI MRI

Core. The resulting dataset has one screening scan for each subject. More specifically, there

are a total of 151 T1-weighted 3.0-T MRI scans from 33 Alzheimer’s Disease subjects (AD),

71 Mild Cognitive Impairment subjects (MCI) and 47 Normal Control healthy subjects

(NC). Manual whole-brain segmentations are provided by experts. The initial size of the

image volumes is 256 × 256 × 256 voxels with a voxel resolution of 1.0 × 1.0 × 1.0 mm3. All

the scans in the dataset are used in our experiments. We split the dataset so that the 47 NC

images form the atlases (i.e. the training set), while the 33 AD and 71 MCI images form the

target set (i.e. the test set). The splitting strategy creates a challenging multi-atlas segmenta-

tion dataset in which large deformation is required in registration. We choose the hippo-

campus as the structure to be segmented in this dataset.

2. MICCAI 2012: The MICCAI 2012 Multi-Atlas Labeling Challenging brain image dataset

[66] makes up of 35 T1-weighted brain MRI scans obtained from the Open Access Series of

Imaging Studies (OASIS) project [85]. The dataset comes with segmentation provided by

Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) using the brain COLOR

labeling protocol. All the MRI scans are of size about 256 × 256 × 300 voxels and resolution

1.0 × 1.0 × 1.0 mm3. We follow the same settings of the challenge in which the test set

includes 20 images and the training set includes 15 images. Anterior cingulate gyrus is the

chosen segmentation structure for the MICCAI 2012 dataset.

3. LPBA40: The LPBA40 dataset [86] provided by the Laboratory of Neuro Imaging (LONI)

consists of 40 T1-weighted brain MRI scans of normal subjects. The subject group consists

of 20 males and females, of age 29.2 ± 6.4 years. 124 contiguous coronal slices are acquired

on a GE 1.5T system with 1.5 mm thickness and in-plane voxel resolution of 0.78 × 0.78

mm2 for 2 subjects or 0.86 × 0.86 mm2 for 38 subjects. More than fifty structure delinea-

tions are available, including 50 cortical structures, 4 subcortical areas, the brainstem and

the cerebellum, among which we choose the cuneus as the segmentation target. Since

LPBA40 is a brain MRI image dataset of healthy people, we perform a leave-one-out cross-

validation on it, in which one volume is chosen to be the target image with the remaining

39 volumes being the atlas set in each round.

4. Hammers: The Hammers adult brain atlases [87, 88] are generated by manual tracing of 83

anatomical structures based on MRI scans from 30 healthy adult subjects. Several registra-

tion and statistical analysis steps are performed to produce individual atlases, a probabilistic

atlas and a maximum probability map. We adopt leave-one-out cross-validation similar to

LPBA40 and choose the amygdala as the target structure for segmentation.

5. IBSR-EADC: The Internet Brain Segmentation Repository (IBSR) dataset [67] consists of

18 T1-weighted MRI volumetric images, provided by the Center for Morphometric Analy-

sis at Massachusetts General Hospital. The subjects are 14 males and 4 females, whose ages

range from 7 to 71 years old. In this version of the IBSR dataset, the slices are 1.5 mm apart

with an in-plane resolution of 0.8371 mm, 0.9375 mm, or 1.000 mm. More than 100 cortical

and subcortical parcellations are available in this dataset.
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European Alzheimer’s Disease Consortium (EADC) and ADNI have made an effort to pro-

vide a consensual, harmonized protocol (HarP) [89–91] for MRI scan hippocampus seg-

mentation. Labels of 135 ADNI images were released by Boccardi et al. in 2015 [68].

T1-weighted structural MR images from 135 subjects are acquired by MP-RAGE with a

thickness of 1.2 mm and the acquisition plane as sagittal. Both 1.5T and 3T scans from sub-

jects aged 55-90 years are included in the dataset. Among the 135 subjects, 45 of them are

AD subjects, 17 are late MCI (LMCI) subjects, 29 are MCI subjects and the remaining 44

are NC subjects, or normal people.

We create a composite dataset, called IBSR-EADC, of the above two datasets, in which the

18 images of the IBSR dataset form the test set and the 135 images of the EADC ADNI

HarP dataset are defined as the training set. Since hippocampal volume is the only available

annotation in the EADC ADNI HarP dataset training labels, we perform hippocampus seg-

mentation on the IBSR-EADC dataset.

The ADNI images in the standardized dataset are of good quality and well preprocessed,

including intensity normalization and inhomogeneity correction, so it is not indispensable for

us to perform more preprocessing operations like denoising and normalization before registra-

tion. For the other datasets, MICCAI 2012, LPBA40, Hammers and IBSR-EADC, we apply N4

Bias Field Correction [92] to all the whole brain MRI volumes.

To make better comparisons and reduce the image size, 64 × 64 × 64 sub-volumes with the

same resolution as the original volume and a single annotated brain structure in the center, are

cropped from the original volumes. The bounding box surrounding each structure is obtained

according to the region of interest (ROI) generated by Freesurfer [28]. The guidance of Free-

surfer helps lower memory consumption and produce more accurate results. As shown in Fig

5, each image volume produces two relatively small volumes. Consequently, each original data-

set is split into two disjoint datasets with structures on the left and right evaluated indepen-

dently. For instance, in the ADNI dataset, 33 AD, 71 MCI and 47 NC left hippocampus sub-

volumes form a complete target and atlas dataset, while the 33 AD, 71 MCI and 47 NC right

hippocampus sub-volumes constitute another target and atlas dataset. The final segmentation

results are averaged over the whole dataset including the left structure dataset and the right

structure dataset.

Implementation details

Our proposed methods and baseline methods are evaluated on the same datasets. During each

experiment on a dataset, we take the target images from the test set one by one, take all the

images in the training set as atlases, apply a multi-atlas segmentation method to obtain seg-

mentation for the target image and evaluate the segmentation. All the images in the test set are

processed and evaluated independently.

For visualization of the 3D MRI volumes, we use the ITK-SNAP software [93] and the Free-

Surfer suite [28].

We implement the proposed integrated 3D flow-based multi-atlas segmentation method in

pure C++ without any external library. An ANTs version 2.1.0 Windows release package [69]

as well as its auxiliary tools such as SyN registration [70], Joint Label Fusion [31] and N4 Bias

Field Correction [92], is used in our experiments. As for Elastix [94, 95], a 64-bit Windows

release version 4.8 package is employed. The Learning to Rank method [96] is reimplemented

based on the code provided by the author of the method, with ANTs SyN as the registration

method and Joint Label Fusion as the fusion method. The STAPLE fusion algorithm [97] exe-

cutable comes from Computational Radiology Kit (CRKIT). The atlas selection algorithm after

registration is implemented in C#. The final values of our energy function in registration serve
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Fig 5. Volume examples of the datasets in our experiments. For each MRI volume, we extract the left and right sub-

volumes of some brain structure to obtain a dataset of cropped volumes according to ROIs generated by Freesurfer.

The dimensional length is annotated alongside the volumes shown in stacked slices.

https://doi.org/10.1371/journal.pone.0270339.g005
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as the atlas selection criteria for our method. The final metric values given in ANTs SyN and

Elastix after convergence or termination are adopted in their atlas selection process, respec-

tively. Evaluation of segmentation results is done with the EvaluateSegmentation Tool [98]

provided by Visual Concept Extraction Challenge in Radiology (VISCERAL). Above all, we

write shell and Python scripts for launching all the programs at a high level. All the experi-

ments are conducted on a Microsoft HPC cluster with 2 Quad-core Xeon 2.43 GHz CPUs for

each compute node.

All the hyper-parameters of our proposed methods are estimated by cross-validation on

the ADNI training set and reused in all the following experiments. In the integrated 3D flow-

based registration, t =1 (no restriction on data terms with good preprocessing), η = 0.005,

α = 2, d = 40, the number of iterations in BP-S is 60, the searching window size is 5 × 5 × 5

and the height of hierarchy in 3D coarse-to-fine flow matching is set to 3, with z = 2 for the

integrated dense feature vector. The number of candidate atlases in atlas selection is set to

K = 15 if there are more than K = 30 atlases, and set to half of the atlas set size otherwise. In

the integrated 3D flow-based label transfer, α = 5, β = 0.9, � = 0.3, �prior = 0.2 and τ = 500. For

ANTs and Joint Label Fusion, we take advantage of the hyper-parameters in [99]. The default

parameter settings are adopted in Elastix, Learning to Rank and any other unmentioned

methods.

Evaluation methods

Three evaluation metrics for volumetric segmentation are adopted in this paper, including the

Dice coefficient, average Hausdorff distance and Cohen’s kappa coefficient.

The Dice coefficient (DC) [100], also known as the Dice similarity coefficient (DSC), the

Sørensen index or the F1 score, is one of the most widely used metrics for 3D medical image

segmentation. DC measures the reproducibility or the spatial overlapping ratio of two segmen-

tation volumes. It is defined as:

DCðG; SÞ ¼
2jG \ Sj
jGj þ jSj

� 100%; ð10Þ

where G is the set of spatial voxel positions in the ground truth segmentation and S is the seg-

mentation result or prediction. \ denotes intersection and |G| represents the cardinality of G.

A higher DC value implies a more accurate segmentation result.

The Hausdorff distance (HD) measures the spatial distance between two sets of points, or

two segmentation volumes in the context. Because of its own characteristics, HD is asymmet-

ric, directed and sensitive to outliers. Thus, we adopt the average Hausdorff distance (AVD)

[98], which is less sensitive to noise and more stable than HD. AVD is simply the average HD

over all pairs of points:

AVDðG; SÞ ¼ max
1

jGj

X

x2G

min
y2S
kx � yk;

1

jSj

X

x2S

min
y2G
kx � yk

 !

; ð11Þ

where G and S are the ground truth and the segmentation result respectively. k � k computes

the Manhattan distance between the vector and origin. A smaller AVD indicates that there is

more similarity between the prediction and the ground truth because AVD measures the vol-

ume difference in some sense.
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Cohen’s kappa coefficient (KAP) [101] is a statistical measure of inter-rater agreement of

two samples, which is defined as

KAP ¼
Pa � Pc

1 � Pc
¼

fa � fc
N � fc

Pa ¼
fa
N

Pc ¼
fc
N

fa ¼ TP þ TN

fc ¼
ðTN þ FNÞðTN þ FPÞ þ ðFPþ TPÞðFN þ TPÞ

N
;

ð12Þ

where Pa is the observed agreement between two samples and Pc is the hypothetical probability

of chance agreement. In our case, for example, for two volumetric segmentations, KAP can be

expressed in terms of the corresponding frequencies fa and fc, with N denoting the number of

voxels in the segmentation result. fa and fc can be further represented with regard to the four

basic cardinalities of the confusion matrix, specifically, the true negatives (TN), the false nega-

tives (FN), the true positives (TP) and the false positives (FP). KAP is a type of probabilistic

metric that gives a higher KAP value for a more consistent segmentation result with the

ground truth.

Comparisons

Since there are several baseline methods for registration, atlas selection and label fusion, as

well as our proposed method, we can choose various corresponding components to form dif-

ferent systems or pipelines. The average performance for each system is recorded in Table 3,

with statistical significance test results for some top-performance systems shown in Table 4.

All the segmentation evaluation results are averaged over all the target images in each dataset

for each system. A series of detailed fusion results in slices for some picked samples are shown

in Fig 6. In order to be succinct, we only demonstrate the results of the best fusion method for

each registration method, for example, Joint Label Fusion results for ANTs SyN and Elastix

without atlas selection in our case. The results indicate that our proposed pipeline, which con-

sists of the integrated 3D flow-based registration, the energy-based atlas selection and the inte-

grated 3D flow-based label transfer, achieves the best performance in terms of DC, KAP, AVD

and computation time for segmenting one volume among all the competitive systems in all the

datasets, with a statistically significant improvement (p< 0.01) over other systems. Atlas selec-

tion is a bonus for our proposed pipeline because it could rule out dissimilar atlas images

which may not benefit the final label fusion result. However, atlas selection is beneficial to the

fusion results of the label transfer and STAPLE but not to that of Joint Label Fusion according

to Table 3.

Influence of registration

We investigate the impact of various registration methods on performance by carrying out a

complete registration experiment for each registration method on the five datasets and com-

pute the Dice coefficient results of thousands of registration pairs (e.g., (33 AD + 71 MCI) × 47

NC × 2 = 9776 pairs for the ADNI dataset). The reason why we have this number of pairs is

that we perform registration between each target volume and atlas volume, and we have built

two sub-datasets for the left and right brain structure sub-volumes, respectively.
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Some randomly selected registration results and three detailed voxel correspondence exam-

ples are graphically illustrated in Figs 7 and 8, respectively. Note that there are high-intensity

contours in the results on LPBA40 with Elastix possibly because of preprocessing in Elastix but

it has no overlap with the warped segmentation. A box plot of the registration results for all the

pairs is shown in Fig 9, with statistical test results shown in the upper part of Table 4. It is clear

that in our registration experiment, the integrated flow outperforms both ANTs SyN and Elas-

tix by a statistically significant margin (p< 0.0001). The standard deviation of the integrated

flow is smaller as well in most cases, which indicates its robustness.

We present precise displacement vectors for individual voxels upon registration in three

picked examples from the ADNI and LPBA40 datasets in Fig 8. The bottom example demon-

strates alignment between the hippocampus sub-volume of an MCI subject and that of a nor-

mal subject. The hippocampus in the target image is intensely deformed because the subject

(i.e. the owner of the volume) is in the MCI stage, producing noticeable shrinkage of the hip-

pocampus, and at the risk of developing Alzheimer’s disease in the future. Such a pair of

images requires a large non-linear deformation and a large search scale in the algorithm. The

correspondences denoted by green and blue crosses in all three examples show that our inte-

grated flow registration method performs well in detecting important landmarks on the out-

line of a brain structure for either small or large non-linear deformation. The large intensity-

homogeneous region in the cuneus and the yellow crosses in the hippocampus suggest our

good detection results in areas where low contrast appears.

Influence of atlas selection

Between registration and fusion, we can perform atlas selection if we have some evaluation

quantity that measures whether the warped atlas image is more similar to the target image,

thus more likely to contribute to high segmentation accuracy.

We plot the Dice coefficient of the warped atlases as a function of their corresponding

amount of deformation to study their underlying relationship. We choose the deformation

amount instead of energies in order to make consistent and fair comparisons among registra-

tion approaches because all of them do not use the same energy definition. The deformation

amount for registration in our case is defined as the sum of the Euclidean norms of all the dis-

placement vectors. As shown in Fig 10, there is a roughly linear relationship between the defor-

mation amount and the mean Dice, obviously observed in the second and third rows but not

for the integrated flow in the first row. When registration induces a large amount of

Table 4. Dice coefficient evaluation results of three registration methods and three best-performing systems on five datasets.

Method/System ADNI MICCAI 2012 LPBA40 Hammers IBSR-EADC

AD MCI DC(μ ± σ) p-value DC(μ ± σ) p-value DC(μ ± σ) p-value DC(μ ± σ) p-value

DC(μ ± σ) p-value DC(μ ± σ) p-value

ANTs 0.691 ± 0.098 <10−30 0.706 ± 0.095 <10−30 0.646 ± 0.082 <10−30 0.656 ± 0.091 <10−30 0.735 ± 0.050 <10−30 0.605 ± 0.146 <0.0001

Elastix 0.652 ± 0.084 <10−30 0.666 ± 0.081 <10−30 0.591 ± 0.078 <10−30 0.637 ± 0.089 <10−30 0.720 ± 0.052 <0.0001 0.590 ± 0.133 <10−30

IF (ours) 0.775 ± 0.065 - 0.784 ± 0.064 - 0.714 ± 0.085 - 0.690 ± 0.078 - 0.724 ± 0.066 - 0.613 ± 0.126 -

ANTs + JLF 0.859 ± 0.049 0.0068 0.865 ± 0.049 <0.0001 0.790 ± 0.095 0.13 0.795 ± 0.057 <0.001 0.812 ± 0.038 <0.00001 0.767 ± 0.037 0.028

Elastix + JLF 0.852 ± 0.046 <0.0001 0.859 ± 0.047 <10−11 0.778 ± 0.095 0.021 0.751 ± 0.055 <10−21 0.797 ± 0.042 <10−9 0.763 ± 0.036 0.0029

IF + AS + LT (ours) 0.867 ± 0.038 - 0.875 ± 0.037 - 0.802 ± 0.077 - 0.809 ± 0.055 - 0.829 ± 0.037 - 0.778 ± 0.034 -

One-tailed paired t-tests with a significance level of 0.05 are performed for competitive methods against our method to test whether the mean difference between two

sets of observations is significant. The best values are shown in bold. ANTs: ANTs SyN. IF: the integrated flow. JLF: Joint Label Fusion. LT: the label transfer. AS: atlas

selection. DC: the Dice coefficient.

https://doi.org/10.1371/journal.pone.0270339.t004
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Fig 6. Final fusion segmentation results of four best-performing systems. Three target images are chosen for demonstration in each dataset or cohort.

Cuneus sub-volumes in the LPBA40 dataset are shown as sagittal slices while all the other volumes are represented by coronal slices. (a) Target image and

ground truth. (b) ANTs SyN + Joint Label Fusion. (c) Elastix + Joint Label Fusion. (d) ANTs SyN + Learning to Rank + Joint Label Fusion. (e) integrated

flow + atlas selection + label transfer (our system). Ground truth segmentation is also shown in white color below each resulting segmentation in (b)-(e) for

reference. DC: the Dice coefficient.

https://doi.org/10.1371/journal.pone.0270339.g006
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Fig 7. Graphical comparisons of three registration methods. Three examples from each dataset or cohort are illustrated. The shown images are the

ground truth, the moving image, the registration result of ANTs, Elastix and our method, from left to right. Sagittal slices are adopted for the LPBA40

dataset while coronal slices are used for other datasets. ANTs: ANTs SyN. IF: the integrated flow (our method). DC: the Dice coefficient.

https://doi.org/10.1371/journal.pone.0270339.g007
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Fig 8. Voxel correspondence of 3 pairs of subjects for our registration method. The example in the top shows coronal slices of registration between an

AD subject volume and an NC subject volume of the left hippocampus in the ADNI dataset. The sagittal slices in the middle demonstrate registration

between two right cuneus volumes in the LPBA40 dataset. The registration example in the bottom shown in sagittal slices illustrates large deformation from

an NC subject’s right hippocampus volume to an MCI volume in the ADNI dataset. Three landmarks either on the boundary or in a homogeneous region

for each example are annotated with crosses and displacement vectors in different colors. All the coordinates are in the native space of the target image.

https://doi.org/10.1371/journal.pone.0270339.g008
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deformation to transform the atlas, the resulting warped segmentation has a wide distribution

of its Dice coefficients with regard to the ground truth, because even if the atlas image is dis-

similar to the target image, there is still some chance to lead to a well-formed warped candidate

atlas with high DC. In contrast, a small amount of transformation implies a similar atlas image

to the target, which is more likely to result in a warped segmentation of good quality. Fig 10

also suggests that the approximate upper bound and lower bound of the DC distribution for

each deformation amount are actually decreasing linearly as the deformation amount becomes

larger. In other words, the expected Dice coefficient tends to become higher with less variance

as the deformation amount decreases. It is noteworthy that we are only interested in the

warped atlases with small deformation, whose expected quality is guaranteed. To conclude,

deformation amount is a feasible atlas selection criterion with high confidence regarding atlas

registration quality.

An experiment is conducted to study the relationship between the DC of the final segmen-

tation and the number of selected candidates. To allow a fair comparison among three label

fusion methods, we fix the registration method to be the integrated flow and perform atlas

selection on the resulting warped atlas set with the optimization energy of the integrated flow

as the selection criterion, while varying the number of candidate atlases. After sorting atlases

according to their energies in ascending order, we choose the top K candidates and warp them

with their corresponding flow fields. Finally, Joint Label Fusion, STAPLE and the label transfer

are applied to the same candidate atlas set for the final label fusion. The results of the atlas

selection experiment on the ADNI dataset are plotted in Fig 11.

Fig 9. A box and whisker diagram of registration results in Dice coefficients on five datasets for three registration

methods, ANTs SyN, Elastix and the integrated flow (our method).

https://doi.org/10.1371/journal.pone.0270339.g009
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We can infer from Fig 11 that there is an approximately optimal value for the atlas selection

quantity. The three methods have different behaviors. In our method and STAPLE, the opti-

mal segmentation accuracy is achieved at about 7-15 atlases, while Joint Label Fusion produces

better segmentation as more atlases come in. Even when there is a large set of atlases, choosing

several atlas candidates is sufficient for our proposed method to obtain an accurate segmenta-

tion, which is consistent with the results reported in [23, 27, 102–104].

Execution time

We record the execution time of all the conducted experiments and compute the average time

for individual modules as well as the whole system.

The average time taken to predict an annotated volume for one target image is shown in the

Time column of Table 3. The results suggest that our proposed system is the most efficient one

among all the competitive systems. For example, it takes a total of 11 minutes to generate seg-

mentation for a target image in the MICCAI 2012 dataset, which is twice as fast as the Elastix

system and at least 7 times faster than the ANTs system. It is also scalable and linear in the size

of the atlas set by comparing the results across five datasets.

Registration time is the main contributor to the overall execution time. We compute the

mean time for three registration methods with our datasets. As shown in Table 5, the inte-

grated flow takes less than 1 minute for the registration of a pair of images while Elastix takes

about 2 minutes and ANTs SyN spends about 6 minutes performing one registration. All the

time values are measured in the same CPU compute node with a single-threaded limit for the

sake of fairness.

Fig 10. Approximately linear relationships between the expected Dice coefficient and the amount of deformation in registration. A subplot is made

for each registration method and each dataset. The deformation amount is the sum of the Euclidean norms of all the displacement vectors. The best-fitting

straight line through the data points is based on linear regression. For better illustration, some data points are out of range, thus absent in this figure. ANTs:

ANTs SyN. IF: the integrated flow (our method).

https://doi.org/10.1371/journal.pone.0270339.g010
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Although label fusion is not time-consuming as registration, it is still useful to record the

time and observe the behaviors of the three adopted label fusion methods in this work, includ-

ing Joint Label Fusion, STAPLE and the label transfer (our method). As shown in Fig 12, both

the times of our proposed method and STAPLE are linear in the number of chosen candidates

and grow slowly even when performing fusion for more than 100 atlases. STAPLE takes

slightly more time than the label transfer does, but is significantly outperformed by it in seg-

mentation results. In contrast, the time of Joint Label Fusion is approximately a quadratic

function of the number of candidates, which empirically demonstrates that Joint Label Fusion

takes into account the inter-dependency information among candidate atlases. The behavior is

consistent with the computational analysis in [31]. Thus, STAPLE and our proposed method

are more scalable than Joint Label Fusion.

Fig 11. The mean Dice coefficient results of three label fusion methods, Joint Label Fusion (middle), STAPLE (bottom) and the label

transfer (top, our method), on the ADNI dataset. The number of selected candidate atlases ranges from 1 to 47.

https://doi.org/10.1371/journal.pone.0270339.g011

Table 5. Average execution time for three registration methods, the integrated flow (our method), ANTs SyN and

Elastix.

Registration method ANTs SyN Elastix Integrated flow

Average time 339.483 102.931 45.319

The values are given in seconds.

https://doi.org/10.1371/journal.pone.0270339.t005
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To conclude, our proposed system, which consists of the integrated flow, the atlas selection

and the label transfer, is much more efficient than other competitive methods in terms of both

the whole system and individual modules.

Disk space usage

We record the disk usage of three systems, our proposed system, ANTs SyN + Joint Label

Fusion, and Elastix + Joint Label Fusion. Disk files include input dataset image files, output

segmentation results and temporary files such as flow files and warped atlases.

Final segmentation files and input files are of the same size if converted to the same file for-

mat, so we only have to compare the temporary by-product files. According to Table 6, it is

clear that the integrated flow requires less disk space than other methods upon registration.

Usually, a system generates a transformation matrix, warps the atlas image with the matrix,

and merges the warped candidate images and labels into a single label image file. So the warped

volume files or flow files are the major part of a system’s disk usage. In our method, we store

only the flow files in the disk, after which we apply the flows to atlas images and labels at run

time, without any warped image files generated to occupy disk space. We make our system

more disk friendly by computing SIFT feature on the fly, which typically takes about 2 seconds

in our datasets. In this way, our proposed system has the least disk usage among all the com-

petitive systems.

Fig 12. Average execution time of label fusion programs with the number of atlas selection ranging from 1 to 135. Three label fusion

methods are Joint Label Fusion (top), STAPLE (middle) and the label transfer (bottom, our method).

https://doi.org/10.1371/journal.pone.0270339.g012
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Discussion

The hyper-parameters of the proposed methods are selected with grid search based on cross-

validation results, which is standard practice for a machine learning task without an evaluation

set. In addition to the guidance of cross-validation, the hyper-parameters should also be cho-

sen to take into account memory limitation (searching window sizes) and tolerance for execu-

tion time (number of iterations, coarse-to-fine levels). During the tuning process, we observe

that performance is sensitive to the hyper-parameters that depend on intensity distributions

such as η and α, but insensitive to change in other integral values such as the number of hierar-

chies. Therefore, equipped with a standard protocol of preprocessing, there should be less

effort in tuning the hyper-parameters dependent on the intensity statistics of the dataset.

Some failure cases when applying our methods are worth studying. The third lines of the

examples in each dataset in Fig 7 present negative registration cases. One of the causes of such

failure lies in the difference of modalities between the target and the atlas. For example, the

negative case in the IBSR-EADC dataset makes the warped atlas image with our method less

smooth than other positive cases. The large difference in modality and tissue structure forces

ANTs SyN and Elastix to perform significant affine transformations, by inspecting the dark

background voxels in the example slices, which further has an impact on the performance of

their fine-grained deformable matching. The failure is attributed to the inherency of our algo-

rithm as well. Because the integrated flow is a dense correspondence registration method that

maps voxel to voxel instead of points of interest or supervoxel regions, it places great emphasis

on voxel-wise global image similarity, which in turn might sacrifice some local segmentation

consistency for better convergence and global performance. The negative examples in the

ADNI AD and MCI cohort illustrate that our method produces a highly similar warped atlas

image as the target but fails in some segmentation details. The third line in each dataset block

in Fig 6 shows some of the negative fusion cases as Fig 7 does. Clearly, in these provided cases,

all the systems make similar mistakes and have similar predictions in most of the regions. One

explanation is that the atlas set is biased and in lack of variability. Failure in one registration

pair does not have significant influence on the final fusion result if the atlas set is comprehen-

sive and of good quality in a global perspective. However, in a biased low-quality atlas set, even

if atlas selection is able to pick out few potentially good atlases after registration, the majority

of the poor candidate atlases could dominate, which may result in a poor label fusion segmen-

tation result.

In terms of the SIFT feature we adopt, for a three-dimensional image, the neighborhood

and directions to choose for feature extraction are more complicated than for a two-dimen-

sional image. In our method, only 6 directions and relatively small subblocks are taken into

account when computing the feature vector. Extending the number of directions to 26 and

enlarging the subblock size might be beneficial to better capturing the contextual information

of a voxel, at the expense of a larger-dimensional feature vector.

Table 6. Overall disk usage of three best-performing systems, measured in megabytes, based on our experiment

on ADNI dataset.

Method Raw Feature Reg. Fusion Total

IF + AS + LT 679 0 7342 624 8645

ANTs SyN + JLF 679 0 136864 624 138167

Elastix + JLF 679 0 18477 624 19780

Our system is shown in bold. LT: the label transfer. IF: the integrated flow. JLF: Joint Label Fusion. Reg.: Registration.

AS: atlas selection.

https://doi.org/10.1371/journal.pone.0270339.t006
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Another thing about SIFT features is that it contributes to a large percentage of memory

consumption since its dimension and data type require the operating system to allocate larger

memory than other methods do. It is not feasible for a common personal computer even in 2D

natural image applications as shown in [49], in which the experiments were conducted on a

workstation with 32 GB memory. Henceforward, sacrificing data precision for lower memory

consumption can be adopted though it may have little impact on segmentation accuracy.

To study the effectiveness of enlarging the atlas set, we carry out an additional experiment

with our proposed system, in which the LMCI cohort volumes in the EADC dataset form the

test set, while other volumes in the ADNI and EADC dataset are combined into the training

set. Cropped hippocampus subvolumes are obtained in this experiment. Initially, the atlas set

is empty. A complete multi-atlas segmentation experiment on the current target set and the

current atlas set is performed as we append a set of additional atlases to the atlas set every time.

We incrementally expand the atlas set by adding atlases to it in the following order: the ADNI

dataset, the AD cohort volumes in the EADC dataset, the MCI cohort volumes in the EADC

dataset and the NC cohort volumes in the EADC dataset. We report the average segmentation

evaluation results in Table 7. It is shown that our system has learning ability and generates bet-

ter predictions as more atlases come in.

We also record memory usage for registration and label fusion methods. We randomly

select 5 training images and 1 test image from the MICCAI 2012 dataset and report the average

maximum allocated memory for each method. The results are reported in Table 8. Methods

that only make use of gray-scale features undoubtedly consume much less memory than our

methods (IF and LT) do because a 48-dimensional SIFT feature vector is extracted for each

voxel, expanding the size of an image by a factor of 48. So large memory usage is one of the dis-

advantages brought by the expressive SIFT feature.

In optimization of the integrated flow, a sequential BP approach is adopted in order to get

better efficiency and convergence. In fact, it might be a good choice to replace sequential BP

with a tree-reweighted message passing (TRW) approach to sacrifice some efficiency for better

results when segmentation accuracy is the main concern. Moreover, the adopted min-sum

belief propagation is in fact sensitive to the order of message updating. In contrast, an

improved version of TRW called sequential TRW (TRW-S) [76] has a theoretical lower bound

estimate non-decreasing guarantee and low memory consumption by some implementations.

Table 7. Mean results of the incremental experiment with our system.

Metrics +ADNI +EADC AD +EADC MCI +EADC NC

DC 0.838 0.858 0.865 0.871

AVD 0.190 0.164 0.156 0.147

KAP 0.836 0.857 0.863 0.870

From left to right in the top row, it represents the appending order of the datasets. DC: the Dice coefficient. AVD:

average Hausdorff distance. KAP: Cohen’s kappa coefficient.

https://doi.org/10.1371/journal.pone.0270339.t007

Table 8. Average maximum memory usage for three registration methods and two label fusion methods.

Method ANTs Elastix IF JLF LT

Average memory 154.9 21.7 387.6 29.3 164.9

The values are given in megabytes. LT: the label transfer. IF: the integrated flow. JLF: Joint Label Fusion.

https://doi.org/10.1371/journal.pone.0270339.t008

PLOS ONE Flow-based brain segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0270339 August 15, 2022 30 / 37

https://doi.org/10.1371/journal.pone.0270339.t007
https://doi.org/10.1371/journal.pone.0270339.t008
https://doi.org/10.1371/journal.pone.0270339


The final value of the energy function in the integrated 3D flow-based registration is

adopted as the only standard for atlas selection. This is not always effective when intensity

homogeneity is not guaranteed. The remaining noise or incomplete preprocessing may cause

the elimination of a contributive candidate. Thus, there are improvements to be made on the

parameters of the energy function and the structure of the formula. Moreover, some other sim-

ilarity measures can be adopted and combined with the current energy function to achieve bet-

ter performance for atlas selection.

Another thing about the energy-based atlas selection is that the decision is only made after

all the registration is done, which is time-consuming if the training set is a large-scale atlas set

even with fast registration. So instead of coming up with a more informative energy function,

it would be good to filter out a subset of atlases with extremely fast algorithms before formal

registration. The filtering algorithm could be coarse-grained but it really helps if the size of the

given atlas set is extremely large, say, more than one thousand for a huge atlas database. The

Learning to Rank method in [96] is motivating but the computation of SVM-Rank [83] is too

expensive.

In the integrated 3D flow-based label transfer, the likelihood term is solely determined by

the minimum difference of feature vectors which depends upon preprocessing and registra-

tion. To make it more robust, incorporating a voxel’s contextual information into the likeli-

hood term might be beneficial.

In our experiments, the obviously separable registration tasks are distributed to cluster

computing nodes, which indeed reduces considerable time for a complete experiment from

about several months to several hours. On top of this high-level parallelization, another consid-

eration lies in the methods’ internal structure parallelism. For instance, downsampling, win-

dow searching and optimizing are good places to experiment on to parallelize. Since we are

not utilizing any GPU resources in the current implementation, an expected efficiency boost

could be seen when we take advantage of the vector instructions.

Although it is an automated brain structure segmentation system that we propose, Freesur-

fer is included to preprocess the whole brain dataset to obtain cropped volumes for brain struc-

tures when we take into account the memory-intensive characteristics of the SIFT feature.

Thus, it would be more practical if we can lower the memory demand in our implementation

and make our system executable for a common personal computer on a whole brain dataset.

Making improvements on this feature is expected to turn our method into a promising auto-

mated multi-atlas whole brain volume segmentation system. We leave it for future research

work.

Deep learning models are promising and widely adopted non-linear hypothesis sets for sta-

tistical learning. Without sophisticated fine-tuning or a large hypothesis space, deep learning

approaches are still not easily comparable to ANTs SyN [48]. The models for volumetric image

segmentation usually require a long clock time to be trained even with GPU. Notwithstanding,

it would be interesting to incorporate deep learning models in the registration, atlas selection

and/or label fusion components, or even substitute the whole framework. If training time is

not counted in registration time, its fast inference makes a significant difference. In datasets

with limited training data, for example, MICCAI 2012, deep learning approaches are still not

comparable to traditional methods such as ANTs SyN. For instance, according to the results

reported in [46, 48], their proposed deep learning approaches are not comparable to tradi-

tional baselines with limited training data in classic settings and outperform them only with a

much larger set of training data available. However, since neural network models form a larger

hypothesis space and are able to learn task-specific representations automatically, we expect

deep learning-based segmentation methods will benefit our multi-atlas segmentation
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framework or outperform it completely in the form of end-to-end direct segmentation [105]

even in the scarce-data setting.

Conclusion

In this paper, we proposed a complete automated multi-atlas brain image segmentation system

that consists of registration, atlas selection and label fusion, with an integrated flow connecting

each target-atlas image pair. We developed an efficient energy-based atlas selection approach,

a 3D coarse-to-fine flow matching scheme and a 3D ternary-layer message passing method for

3D sequential belief propagation. We conducted a series of extensive experiments on five pub-

licly available datasets to compare our method with other methods. The results demonstrate

that our method achieves comparable performance compared to some competitive atlas-based

brain segmentation methods found in the literature in terms of computation time, accuracy,

scalability and disk usage. The systematic pipeline is adaptable to image registration with large

deformation. Anticipating that future work can focus on improvements of the model and

applications of the system in fully automated whole brain segmentation, other medical image

analysis and more general computer vision tasks.
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