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Abstract: DNA methylation maintains genome stability and regulates gene expression in plants.
RNA-directed DNA methylation (RdDM) is critical for appropriate methylation. However, no effi-
cient tools are available for the investigation of the functions of specific DNA methylation. In this
study, the cucumber mosaic virus vector was used for targeted DNA methylation. Methylation was
rapidly induced but gradually decreased from the 3′ end of the target endogenous sequence in
Nicotiana benthamiana, suggesting a mechanism to protect against the ectopic introduction of DNA
methylation. Increasing 24-nt siRNAs blocked this reduction in methylation by down-regulating
DCL2 and DCL4. RdDM relies on the sequence identity between RNA and genomic DNA; however,
this identity does not appear to be the sole determinant for efficient DNA methylation. The current
findings provide new insight into the regulation of DNA methylation and promote additional effort
to develop efficient targeted DNA methylation in plants.
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1. Introduction

DNA methylation is an important epigenetic mark for regulating genome stability
and gene expression in plants. DNA methylation plays a critical role in several biological
processes, including the development and response to biotic and abiotic stresses. RNA-
directed DNA methylation (RdDM) mediates de novo DNA methylation. The general
RdDM model in Arabidopsis thaliana [1] suggests that RNA polymerase IV (Pol IV) tran-
scribes RNA (P4-RNA) at target loci. P4-RNAs are converted into double-stranded RNAs
(dsRNAs) by RNA-dependent RNA polymerase 2 (RDR2). dsRNAs are cleaved into 24-nt
siRNAs by Dicer-like protein 3 (DCL3), and siRNAs are loaded onto ARGONAUTE (AGO)
proteins, including AGO4, AGO6, and AGO9. siRNAs/AGOs complexes pair with ho-
mologous scaffold RNAs transcribed by Pol V, which is recruited and regulated by DNA
methylation reader proteins, including the suppressor of variegation 3–9 homolog protein
2 (SUVH2) and SUVH9, ATPaes, microrchidia 1 (MORC1) and MORC6, and DDR complex
containing defective in RNA-directed DNA methylation 1 (DRD1), defective in meristem
silencing 3 (DMS3), and RNA-directed DNA methylation 1 (RDM1). Domains rearranged
methylase 2 (DRM2) then interacts with AGO4 and methylates DNA at target loci.

DNA methylation for transposon control and gene regulation at specific loci has
been investigated in previous studies with mutants that show a global change in DNA
methylation. Caution is needed in concluding that any observed change directly reflects
the regulation at a target region. One strategy to overcome this problem is targeted DNA
methylation/demethylation. Targeted methylation of a foreign gene has been success-
fully achieved by expressing homologous RNAs with a target sequence from a trans-
gene [2–6]. Targeted methylation of an endogenous gene was reported in petunia [4],
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maize [7], potato [8], rice [6,9], and A. thaliana [10,11], though silencing of the endogenous
gene was less efficient as compared to an exogenous gene [6,12]. Zinc-finger and CRISPR
technologies used for gene editing were successfully applied to targeted DNA methylation.
Johnson et al. demonstrated that Zinc-finger-fused SUVH9 enabled targeted DNA methyla-
tion in A. thaliana FWA gene [13]. Recent studies also showed that several zinc-finger-fused
RdDM components could induce targeted DNA methylation [14] and CRISPR/CAS-based
recruitment of tobacco DRM could also achieve targeted DNA methylation in A. thaliana
FWA gene [15]. For targeted demethylation, the zinc-finger-fused ten-eleven translocation
1 (TET1) catalytic domain could induce DNA demethylation at the FWA gene and CACTA1
transposon in A. thaliana [16].

Both expression of homologous RNAs against target regions and utilization of effector
proteins for gene editing are powerful tools, and these approaches require transgenic
plants that are laborious and time-consuming to develop. Further, transgenic technology
is only useful if experimental systems are available to create transgenic plants (e.g., gene
delivery into plant cells and regeneration of plants). Plant virus vector technology can
overcome these problems since it does not require transgenic plants. Targeted methylation
of a foreign gene by a plant virus vector was achieved by expressing RNA identical to the
target sequence [17–20]. Similar methylation of endogenous genes has also been achieved
in petunia [21,22], tomato [21], and A. thaliana [23]. However, as observed in transgene
expression, targeted DNA methylation using a plant virus vector against endogenous
genes was less efficient compared to methylation of exogenous genes. Further, success has
only been achieved for limited genes in a few plant species. More efficient targeted DNA
methylation by plant virus vectors will require a deeper understanding of the characteristics
of targeted DNA methylation. At present, such understanding is limited.

In this study, characteristics of targeted DNA methylation against an endogenous gene
using a cucumber mosaic virus (CMV) vector in Nicotiana benthamiana was investigated.
Previous successful studies used virus vectors to target regions that are natively regulated
by DNA methylation in tomato LeSPL-CNR [21] and A. thaliana FWA [23], but this study
targeted the promoter region in the phytoene desaturase (PDS) gene, which does not
appear to be under native regulation by DNA methylation. This strategy was adopted to
avoid intrinsic regulation of DNA methylation that would complicate the interpretation
of outcomes. The tetraploid plant, N. benthamiana [24], was chosen as a model because
more than 70% of flowering plants are polyploids and epigenetic control plays a critical
role in genome evolution [25]. CMV is a positive-stranded RNA virus consisting of three
RNA segments, RNA1-3. CMV infects a variety of plants, including more than 1200 species
in over 100 families [26]. A CMV vector based on the CMV-Y strain has been developed
for gene silencing in plants, including N. benthamiana [20,27], Glycine max [28], Capsicum
annuum [29], and for efficient gene expression in N. benthamiana [30,31]. Targeted DNA
methylation by the CMV vector was achieved against a foreign gene in N. benthamiana [20]
and also against endogenous genes in petunia and tomato [21].

In this study, we show that CMV vector-induced DNA methylation in the PDS gene’s
promoter region is dynamically changed in N. benthamiana. The vector induces DNA
methylation within two weeks at all cytosine contexts, but the methylation level gradually
decreased from the 3′ end of the targeted region. Increasing 24-nt siRNAs instead of
21-nt and 22-nt siRNAs by down-regulating DCL2 and DCL4 expression leads to enhanced
durability of the high DNA methylation state. Targeted DNA methylation is also induced in
the region that contains mismatch sequences to expressed RNAs, suggesting that sequence
identity may not be the sole determinant of the efficiency of DNA methylation.

2. Results
2.1. CMV Vector Induces DNA Methylation Specifically in the Targeted Promoter Sequences of the
PDS Gene

The phytoene desaturase (PDS) gene was chosen as a model for characterizing virus-
induced targeted DNA methylation. Two copies of the PDS gene (designated as NbPDSa
and NbPDSb in this study) are found in N. benthamiana draft genome sequences [32].
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The region, −1225 to −1 of NbPDSb, had promoter activity via transient expression of
β-glucuronidase (GUS)-fused construct using agroinfiltration in N. benthamiana leaf tissues
(Figure 1A,B).
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Figure 1. Experimental system for virus-mediated targeted DNA methylation against PDS gene in
Nicotiana benthamiana. (A,B) Promoter analysis of PDS gene in N. benthmaiana leaf tissues. Schematic
representation of binary plasmid containing the NbPDSb promoter (−1225 to −1) -fused GUS gene
fragment (NbPDSp::GUS) (A). GUS staining of leaf discs collected from leaves where GUS gene was
expressed transiently by agrobacterium carrying NbPDSp::GUS (B). (C) Schematic representation of
the cucumber mosaic virus (CMV) A1 vector. T7p = T7 promoter, MP = movement protein, CP = coat
protein. (D) Inducers for DNA methylation. The red arrow and blue arrows indicate NbPDSa-based
and NbPDSb-based inducers, respectively. The black arrow indicates the region analyzed in bisulfite
sequencing. TSS = transcriptional start site [33].

The DNA methylation inducers for the promoter region using the CMV vector are
provided (Figure 1C,D) [20,21]. The bisulfite sequencing indicated that the methylation
level around the target region (−957 to −565) was quite low in both plants without CMV
infection and plants inoculated with vector control expressing a partial sequence of GFP
at 21 days after inoculation (dpi) (Figure 2A). The expression of the T2s inducer RNA
significantly induced methylation at all cytosine contexts (CG, CHG, and CHH) throughout
the target region (Figure 2A). The average levels of CG, CHG, and CHH methylation in
the target region were approximately 45%, 81%, and 62%, and no clear differences in DNA
methylation levels were observed between constructs designed in a coding strand (T2s) and
an opposite strand (T2as) (Figure 2A,B). When T3s inducer (5′ half of the analyzed area) was
expressed, DNA methylation was specifically induced in the targeted region (Figure 2A),
and there were no clear differences in DNA methylation levels between constructs based
on a coding (T3s) and an opposite strand (T3as) (Figure 2A,B).

Twenty-one-nt, 22-nt, and 24-nt small RNAs play an important role in RdDM. Almost
no small RNAs (18–50 nt) accumulated around the region (−957 to −565) in healthy plants
(Figure 2C,D). In contrast, various sizes of small RNAs, including 21-, 22-, and 24-nt,
accumulated in the targeted region in T3s-expressing plants at 21 dpi (Figure 2C,D). The
order of accumulation levels was 21-nt > 22-nt > 24-nt. Secondary siRNAs appeared not to
be generated in both upstream and downstream regions (Figure 2C), which is consistent
with no spread of DNA methylation from the target region to the downstream region
(Figure 2A). mRNA levels of the NbPDS gene by real-time PCR show that total mRNA
levels of NbPDSa and NbPDSb decreased in the presence of inducers, and no clear difference
between constructs was seen based on coding and an opposite strand (Figure 2E).
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Figure 2. Induction of DNA methylation in the promoter region of the NbPDS gene using the CMV vector. (A) Targeted
bisulfite sequence analysis in the promoter region of NbPDSb gene (−957 to −565). Genomic DNAs from the upper non-
inoculated leaves at 21 days after inoculation were used for the bisulfite sequencing. The black, blue, and red bars indicate
CG, CHG, and CHH methylation, respectively. The color bars below each graph indicate the position of cytosine. The
blue arrows below the color bars indicate inducers expressed by the CMV vector. (B) The percent of cytosine methylation
in each context was calculated in the targeted region. The black, blue, red, and gray bars indicate CG, CHG, CHH, and
total methylation, respectively. (C) IGV snapshots of 21-nt, 22-nt, and 24-nt small RNAs mapped in the region analyzed by
bisulfite sequencing (−957 to −565). Small RNA sequencing used the total RNAs from the leaves where the T3s inducer
(−938 to −739) was expressed from the CMV vector at 21 days after inoculation. The y-axes indicate raw reads on a log
scale, normalized by total mapped reads. (D) Length distribution of 18–50-nt small RNAs in the targeted region. (E) Total
mRNA levels of NbPDSa and NbPDSb were analyzed in the upper non-inoculated leaves infected with CMV/NbPDSb-T2s,
-T2as, -T3s, -T3as, and -asGFP (vector control) at 21 days after inoculation. The expression levels were normalized relative to
NbEF1α. The error bars indicate the standard deviation of four biological replicates. Statistical analysis used the Dunnett’s
method. Data from vector control (asGFP) was used as a control for statistical analysis. **, p < 0.01.

2.2. Gradual Reduction of DNA Methylation from the 3′ End of the Targeted Region

A time-course analysis of DNA methylation using bisulfite sequencing indicated
that DNA methylation in all cytosine contexts began to be induced from 6 dpi in both
inoculated (Figure 3A,C) and upper non-inoculated leaves (Figure 3B,D) infected with
CMV carrying T3s inducer. This timing corresponds to the time when the virus was
significantly accumulated (Figure 3E,F). No spread of DNA methylation to the downstream
region was observed at any time points in both inoculated and upper non-inoculated leaves.
Unexpectedly, we found that DNA methylation level gradually decreased in all cytosine
contexts, especially at the 3′ region of the target region in the NbPDSb promoter in plants
inoculated with CMV carrying T2s inducer (Figure 4).
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(A,B) Targeted bisulfite sequence analysis in the promoter region of NbPDSb gene (−957 to −565). Genomic DNAs from the
inoculated leaves at 0, 2, 4, 6, 10, and 14 days after inoculation (A) and from the upper non-inoculated leaves at 4, 6, 10,
and 14 days after inoculation (B) were used for bisulfite sequencing. The black, blue, and red bars indicate CG, CHG, and
CHH methylation, respectively. The color bars below each graph indicate the position of cytosine. The blue arrows below
the color bars indicate inducers expressed by the CMV vector. (C,D) The percent of cytosine methylation in the targeted
region was calculated in inoculated (C) and upper non-inoculated leaf (D). The black, blue, red, and gray bars indicate
CG, CHG, CHH, and total methylation, respectively. (E,F) Accumulation level of CMV RNA1 in inoculated (E) and upper
non-inoculated (F) leaves. The accumulation level of viral RNA was normalized relative to that of NbEF1α. The error bars
indicate the standard deviation of four biological replicates.
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Figure 4. The gradual decline of the DNA methylation level after 21 days post-inoculation. Targeted
bisulfite sequence analysis in the promoter region of NbPDSb gene (−957 to −565). Genomic DNAs
from upper non-inoculated leaves of wild-type plants infected with CMV/NbPDSb-T2s at 14, 21,
35, and 50 days after inoculation were used for bisulfite sequencing. The black, blue, and red bars
indicate CG, CHG, and CHH methylation, respectively. The color bars below each graph indicate the
position of cytosine. The blue arrows below color bars indicate inducers of DNA methylation.

As 24-nt siRNAs are important for maintaining DNA methylation [23], increasing the
amount of 24-nt siRNAs was expected to maintain the elevated DNA methylation levels in
our system. We used DCL2 and DCL4-double knock-down (d2d4) N. benthamiana transgenic
plants [34], where increases in 24-nt siRNAs are expected by reducing the transcription of
21-nt and 22-nt siRNAs that are produced by DCL4 and DCL2, respectively [35]. To confirm
the increase in 24-nt siRNAs generated from inducers expressed from CMV vector in d2d4
plants, we analyzed the pattern of small RNAs produced from the T2s inducer by small
RNA sequencing. The results in 21 dpi showed that most siRNAs produced from the T2s
inducer in d2d4 plants were 24-nt siRNAs, which accounted for about 74.3% of total 21-nt,
22-nt, and 24-nt siRNAs, in contrast to about 4.9% in wild-type plants (Supplementary
Figure S1). CMV/NbPDSb-T2s and CMV/NbPDSb-T3s were inoculated onto wild-type
and d2d4 plants, and methylation levels were assessed. At 35dpi, DNA methylation level
at NbPDSb was dramatically reduced in wild-type plants but remained high in d2d4 plants
(Figure 5A,B). Small RNA sequencing indicated that amounts of 24-nt siRNAs dramatically
increased in d2d4 plants in the low-methylation region observed in wild-type plants at
35 dpi (Figure 5C,D; Supplementary Figure S2). Virus accumulation in d2d4 plants is
not consistently higher compared to wild-type plants at 35 dpi (Figure 5E). These results
suggest that low accumulation of 24-nt siRNAs leads to a reduction in DNA methylation
levels in wild-type plants, and enhanced accumulation of 24-nt siRNAs suppresses this
reduction in d2d4 plants. Virus accumulation pattern showed that the virus level reached
a peak at 10 dpi and declined thereafter (Figure 5F), suggesting that amounts of 24-nt
siRNAs generated from inducers decline in a similar fashion, which leads to a reduction of
DNA methylation. Consistent with this notion, elimination of DNA methylation was not
observed throughout the region in three transgenic plants (T0 generation) that constitutively
express an inverted repeat sequence of the NbPDSb promoter along with the accumulation
of 24-nt siRNAs (Figure 6). Notably, the amount of 25–50-nt small RNAs, the size of
P4RNA suggested to be important for RdDM [36], increased in low methylation regions
in d2d4 plants (Figure 5C; Supplementary Figure S2). This observation suggests that
increased 25–50-nt small RNAs enhance de novo methylation or accumulate as precursors
for 24-nt RNAs.
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Figure 5. Maintenance of DNA methylation at 35 days after inoculation. (A) Targeted bisulfite sequence analysis in the
promoter region of NbPDSb gene (−957 to −565). Genomic DNAs from upper non-inoculated leaves of wild-type and
d2d4 plants at 35 days post-inoculation (dpi) were used for bisulfite sequencing. The black, blue, and red bars indicate
CG, CHG, and CHH methylation, respectively. The color bars below each graph indicate the position of cytosine. The
blue arrows below the color bars indicate inducers for DNA methylation. Black solid and broken lines indicate high- and
low-methylation regions in wild-type relative to d2d4 plants at 35dpi, respectively. (B) The percent of cytosine methylation
in each context was calculated in the targeted region of NbPDSb. The black, blue, red, and gray bars indicate CG, CHG, CHH,



Int. J. Mol. Sci. 2021, 22, 4125 8 of 17

and total methylation, respectively. (C) Small RNA sequencing used total RNAs from leaves, where the T2s inducer (−938
to −568) was expressed from the CMV vector at 35 days after inoculation. IGV snapshots of 21-nt, 22-nt, 24-nt, and 20–50-nt
small RNAs in the region analyzed by bisulfite sequencing (−957 to −565). The y-axes indicate raw reads on a log scale,
normalized by total mapped reads. Black solid and broken lines indicate high- and low-methylation regions, respectively, as
shown in (A). (D) Reads of 21-nt, 22-nt, 24-nt, and 20–50-nt mapped in T2s-targeted regions were counted in wild-type
and d2d4 plants at 21 dpi (data shown in Supplementary Figure S1A) and 35 dpi (C). A relative abundance of small RNAs
indicates reads per total mapped million reads normalized by region length. “High” indicates the relative abundance of
small RNAs mapped to high methylation regions in wild-type plants at 35 dpi (solid black lines in (A)). “Low” indicates the
relative abundance of small RNAs mapped to low methylation regions in wild-type plants at 35 dpi (broken black lines in
(A)). (E) Virus accumulation level at 35 days after inoculation in the samples used in (A–D). Accumulation levels measured
by real-time PCR were normalized relative to NbEF1α. The error bars indicate the standard deviation of three biological
replicates. Statistical analyses were conducted using Welch’s t-test. NS: not significant. (F) Virus accumulation level in upper
non-inoculated leaves of wild-type plants infected with CMV/NbPDSb-T2s. The accumulation levels measured by real-time
PCR were normalized relative to that of NbEF1α. The error bars indicate the standard deviation of four biological replicates.
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mismatch sequences with NbPDSa: T2s and T3s have 84.6% and 87.2% nucleotide identi-
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Figure 6. DNA methylation and small RNA profiles in transgenic plants constitutively expressing an
inverted repeat sequence of the NbPDSb promoter. (A) Targeted bisulfite sequence analysis in the
promoter region of the NbPDSb gene (−957 to−565). Genomic DNA was extracted from the leaves of
each transgenic line (line#11, #21, and #53) that carry a single copy of the inverted repeat sequence of
the NbPDSb promoter (−933 to −681, IR-PDSp). The black, blue, and red bars indicate CG, CHG, and
CHH methylation, respectively. The color bars below each graph indicate the position of cytosine.
The blue arrows below the color bars indicate the inverted repeat inducers expressed from the
transgene. (B) Small RNA sequencing used total RNAs from leaves of wild-type and line #53 plants.
IGV snapshots of 21-nt, 22-nt, and 24-nt small RNAs in the region analyzed by bisulfite sequencing
(A). The y-axes indicated raw reads on a log scale and were normalized by total mapped reads.

2.3. Sequence Identity May Not Be the Sole Determinant of Efficiency of Silencing and Induction of
DNA Methylation of PDS Genes

RdDM induction is homology-dependent, and sequence identity between inducer
and target is a critical factor in determining the induction efficiency of DNA methylation.
We investigated whether sequence identity affects the induction of DNA methylation
and silencing the target genes using the closely related two PDS genes (NbPDSa and
NbPDSb) found in the N. benthamiana genome. Real-time PCR analysis indicated that
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basal expression levels of NbPDSa were about 4.3× higher than the expression of NbPDSb
(Supplementary Figure S3).

NbPDSb-based inducers were used in the above experiments, and each inducer has
mismatch sequences with NbPDSa: T2s and T3s have 84.6% and 87.2% nucleotide identities
with corresponding regions of NbPDSa, respectively (Supplementary Figure S4). We found
that both T2s and T3s efficiently induced DNA methylation in the homologous region
of NbPDSa (Figure 7A,B). Further, the DNA methylation level of NbPDSa was lower
than that of NbPDSb in all cytosine contexts (Figure 7A,B). Unexpectedly, regardless of
the lower DNA methylation level in NbPDSa, both NbPDSb-based T2s and T3s reduce
NbPDSa expression more efficiently compared to NbPDSb expression (Figure 7C). Also, the
time-course analysis indicated that NbPDSa mRNA was constantly reduced compared to
NbPDSb mRNA in both inoculated (Supplementary Figure S5A) and upper non-inoculated
leaves (Supplementary Figure S5B). These results indicated that NbPDSb-based inducer
reduced NbPDSa mRNA more efficiently than NbPDSb mRNA independent of DNA
methylation level.
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Figure 7. Induction of DNA methylation in the homologous region of the NbPDSa gene using a CMV vector. (A) Targeted
bisulfite sequence analysis in the promoter region of the NbPDSa gene (−995 to −552). Genomic DNAs from the upper
non-inoculated leaves at 21 days after inoculation were used for bisulfite sequencing. The black, blue, and red bars indicate
CG, CHG, and CHH methylation, respectively. The color bars below each graph indicate the position of cytosine. The
dashed blue arrows below the color bars indicate regions homologous with inducers expressed by the CMV vector. (B) The
percent of cytosine methylation in each context was calculated in the targeted region of NbPDSa and NbPDSb (the same
data shown in Figure 2B). The black, blue, red, and gray bars indicate CG, CHG, CHH, and total methylation, respectively.
(C) mRNA levels of NbPDSa and NbPDSb were separately quantified by real-time PCR in the upper non-inoculated leaves
with CMV/NbPDSb-T2s, -T3s, -asGFP (vector control) at 21 days after inoculation. The expression level of vector control
was set to 1.0 for NbPDSa and NbPDSb. The expression levels were normalized relative to NbEF1α. The error bars indicate
the standard deviation of four biological replicates. Statistical analyses used the Dunnett’s method. Data from vector control
(asGFP) was used as a control for statistical analysis. **, p < 0.01.
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The reciprocal experiment for inducing DNA methylation by the NbPDSa-based
inducer (T30s) revealed, by bisulfite sequencing, that NbPDSa-based T30s efficiently in-
duced DNA methylation against the NbPDSb sequence (Figure 8A,B). The level of DNA
methylation in NbPDSb sequences induced by the NbPDSa-based T30s was higher than
that induced by the NbPDSb-based T3s in all cytosine contexts. Further, T30s’ expres-
sion reduced both NbPDSa and NbPDSb mRNA levels more effectively compared to T3s
(Figure 8C), though no significant difference in virus accumulation was seen (Figure 8D).
NbPDSa-based T30s is an effective DNA methylation inducer for NbPDSb regardless of the
presence of mismatches, suggesting that sequence identity alone does not determine the
efficiency of induction of DNA methylation.
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Figure 8. Comparison of DNA methylation and mRNA reduction between NbPDSa-based and NbPDSb-based inducers.
(A) Targeted bisulfite sequence analysis in the promoter region of NbPDSa gene (−995 to −552) and NbPDSb gene (−957
to −565). Genomic DNAs from the upper non-inoculated leaves at 12 days after inoculation were used for bisulfite
sequencing. The black, blue, and red bars indicate CG, CHG, and CHH methylation, respectively. The color bars below
each graph indicate the position of cytosine. Red and blue arrows below the color bars indicate NbPDSa-based and
NbPDSb-based inducers, respectively. The dashed arrows indicate regions homologous with inducers. (B) The percent of
cytosine methylation in each context was calculated in the targeted region of NbPDSa and NbPDSb. The black, blue, red,
and gray bars indicate CG, CHG, CHH, and total methylation, respectively. (C) mRNA levels of NbPDSa and NbPDSb were
separately quantified in the upper non-inoculated leaves with CMV/NbPDSb-T2s, -T3s, -asGFP (vector control) at 12 days
after inoculation. The expression level of vector control was set to 1.0. The expression levels were normalized relative to that
of NbEF1α. The error bars indicate the standard deviation of three biological replicates. Statistical analyses were conducted
using the Dunnett’s method. Data from vector control (asGFP) was used as a control for statistical analysis. **, p < 0.01; NS:
not significant. (D) CMV accumulations in upper non-inoculated leaves at 12 days after inoculation. Virus accumulation
levels were normalized relative to NbEF1α. The error bars indicate the standard deviation of three biological replicates.
Statistical analyses were conducted using the Tukey–Kramer method. NS, not significant.
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3. Discussion

Virus-mediated targeted DNA methylation has significant advantages over transgenic
technology, but is to date, poorly characterized. In this work, we reveal rapid induction
and gradual reduction of DNA methylation in the promoter sequence of the PDS gene
using a CMV vector in N. benthamiana. To the best of our knowledge, this report is the
first to capture dynamic changes in DNA methylation in an endogenous genomic region
in plants.

Previous work showed that DNA methylation is not induced in the targeted region of
the FWA gene in A. thaliana infected with a TRV-carrying target fragment of FWA [23]. The
lack of DNA methylation in the FWA gene might be due to intrinsic epigenetic regulation
of the FWA gene in A. thaliana. The PDS gene in N. benthamiana is apparently not regulated
by DNA methylation, and DNA methylation in this gene would not be influenced by
intrinsic regulation. Even so, T2s-induced DNA methylation gradually declined (Figure 4).
Small RNA sequencing showed a positive correlation between levels of 24-nt siRNA and
DNA methylation. A model from a previous study may provide an explanation [23].
Where initiation and establishment of RdDM are mediated by 21-nt and 22-nt siRNAs,
and induced DNA methylation is reinforced and maintained by 24-nt siRNAs: (1) inducer
dsRNA generated from the CMV vector are cleaved into 21-nt and 22-nt siRNAs by DCL4
and DCL2, respectively (small amounts of 24-nt siRNAs are also generated by DCL3);
(2) 21/22-nt siRNAs are incorporated into ARGONAUTE proteins, and cytosine is methy-
lated via the Pol V pathway; (3) once methylation is established, canonical Pol IV-mediated
RdDM machinery is recruited to a target region, and cytosine methylation is reinforced and
maintained through 24-nt siRNAs. At 35 dpi in the 3′ low methylation region of wild-type
plants (Figure 5A,B), production of 21/22-nt and 24-nt siRNAs was low due to reduced
virus accumulation for efficient initiation/establishment and reinforcement/maintenance
of DNA methylation, respectively (Figure 5C,D). In d2d4 plants, high levels of 24-nt siRNAs
might maintain DNA methylation (Figure 5C,D). Notably, 25–50-nt small RNAs may be
involved in maintaining DNA methylation in d2d4 plants. Previous reports show that Pol
IV generates 25–50-nt small RNAs called P4RNA in A. thaliana [36–39]. Yang et al. found
that DNA methylation at many loci do not require DCLs and proposed that P4RNA itself
is a trigger for DNA methylation at the initiation phase. P4RNA may also function in
establishment/maintenance, independent of 24-nt siRNAs [36]. As the amount of 25–50-nt
RNAs was also positively correlated with the level of DNA methylation (Figure 5C), these
classes of RNAs might also contribute to the maintenance of high methylation in d2d4
plants. The 25–50-nt RNA might provide evidence that canonical RdDM is newly initi-
ated after the DNA is methylated by a virus-mediated Pol IV-independent non-canonical
RdDM pathway.

The reduction of DNA methylation was biased at the 3′ end of the targeted region of
the PDS promoter sequence (Figures 4 and 5A). In the A. thaliana FWA gene, DNA methy-
lation was introduced in progenies from plants infected with TRV, but it was not always
introduced throughout the target region. Some plants showed methylation only at the 5′

end region near the transcription start site [33]. A recent study demonstrates that artificial
site-specific transcriptional activation reduces promoter methylation of the FWA gene in
A. thaliana [15]. These reports suggest that transcription by polymerase II perturbs the intro-
duction of DNA methylation near the transcriptional start site (Figure 9). This suggestion is
not inconsistent with genome-wide analyses that show low DNA methylation levels in this
region [40]. RNA-seq data available in the Sol Genomics Network database [32] indicate
an accumulation of the PDS gene transcripts with a 5′ end within T2s and T3s-targeted
regions in N. benthamiana. Thus, some transcription could start within the target region
and reduce DNA methylation in wild-type plants, and this reduction might be countered
by maintenance mechanisms involving highly accumulated 24-nt siRNAs and/or 25–50-nt
RNAs in d2d4 plants. Importantly, demethylases, such as ROS1, might also be involved
in the removal of DNA methylation (Figure 9), which is consistent with previous work
showing CMV-mediated targeted methylation against a 35S promoter. This methylation
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was enhanced by down-regulating ROS1 expression in N. benthamiana [41]. Thus, strong
maintenance activity of RdDM is required to introduce stable DNA methylation around
transcriptional start sites.

Int. J. Mol. Sci. 2021, 22, x  12 of 17 
 

 

indicate an accumulation of the PDS gene transcripts with a 5’ end within T2s and T3s-
targeted regions in N. benthamiana. Thus, some transcription could start within the target 
region and reduce DNA methylation in wild-type plants, and this reduction might be 
countered by maintenance mechanisms involving highly accumulated 24-nt siRNAs 
and/or 25–50-nt RNAs in d2d4 plants. Importantly, demethylases, such as ROS1, might 
also be involved in the removal of DNA methylation (Figure 9), which is consistent with 
previous work showing CMV-mediated targeted methylation against a 35S promoter. 
This methylation was enhanced by down-regulating ROS1 expression in N. benthamiana 
[41]. Thus, strong maintenance activity of RdDM is required to introduce stable DNA 
methylation around transcriptional start sites. 

 
Figure 9. Model for induction and reduction of DNA methylation by the CMV vector in the N. 
benthamiana PDS gene. The CMV vector produces dsRNAs against a target sequence, which are 
processed into 21-nt, 22-nt, and 24-nt siRNAs by DCL4, DCL2, and DCL3 proteins, respectively. At 
the early stages of infection (until 21dpi) in wild-type plants, DNA methylation is initiated and 
established through highly accumulated 21-/22-siRNAs (step1) and maintained via 24-nt siRNAs 
(step2). In d2d4 plants, though the level of 21-nt and 22-nt siRNAs are low, highly accumulated 
24-nt siRNAs effectively maintain high DNA methylation states. At later stages of infection (after 
21dpi) in wild-type plants, the introduced DNA methylation is gradually eliminated, presumably 
due to the reduction in accumulated small RNAs. In contrast, in d2d4 plants, highly accumulated 
24-nt siRNAs maintain a high methylation state. The reduction of DNA methylation may be 
caused by competition between RdDM machinery and polymerase II transcription. Alternatively, 
but not exclusively, DNA demethylase may be preferentially recruited to the 3′ end of the target 
region by an unknown mechanism and erase DNA methylation because the DNA methylation 
appears to be erased from the 3’ end. 

The expression of the NbPDSb-based inducer efficiently introduced DNA methyla-
tion at the homologous sequence of NbPDSa, and vice versa (Figures 7A,B and 8A,B). 

After 21dpi

maintenance 
via 24-nt siRNAs

initiation/establishment
via 21/22-nt siRNAs

Step1 Step2

trace level of methylation

Methylation state

High

PDS gene promoter

22-nt
24-nt

CMV vector

21-nt

d2d4

WT

M M M M M MMM

M M M M M MMM M M M
M

M
M

M
M

M M M M M MMM M M M M M MMM M M M M M MMM

DNA demethylasePol II DNA demethylasePol II

DNA demethylasePol II DNA demethylasePol II

DNA demethylasePol II

M M M M M MMM

DNA demethylasePol II

High

M M M M M MMM

competitive? work from 3’end?

Low

High

Low

High

M M M M M MMM M M M M M MMM M M M M M MMM

DNA demethylasePol II DNA demethylasePol II

d2d4

WT

Figure 9. Model for induction and reduction of DNA methylation by the CMV vector in the N. ben-
thamiana PDS gene. The CMV vector produces dsRNAs against a target sequence, which are processed
into 21-nt, 22-nt, and 24-nt siRNAs by DCL4, DCL2, and DCL3 proteins, respectively. At the early
stages of infection (until 21dpi) in wild-type plants, DNA methylation is initiated and established
through highly accumulated 21-/22-siRNAs (step1) and maintained via 24-nt siRNAs (step2). In
d2d4 plants, though the level of 21-nt and 22-nt siRNAs are low, highly accumulated 24-nt siR-
NAs effectively maintain high DNA methylation states. At later stages of infection (after 21dpi)
in wild-type plants, the introduced DNA methylation is gradually eliminated, presumably due to
the reduction in accumulated small RNAs. In contrast, in d2d4 plants, highly accumulated 24-nt
siRNAs maintain a high methylation state. The reduction of DNA methylation may be caused by
competition between RdDM machinery and polymerase II transcription. Alternatively, but not
exclusively, DNA demethylase may be preferentially recruited to the 3′ end of the target region by
an unknown mechanism and erase DNA methylation because the DNA methylation appears to be
erased from the 3′ end.

The expression of the NbPDSb-based inducer efficiently introduced DNA methylation
at the homologous sequence of NbPDSa, and vice versa (Figure 7A,B and Figure 8A,B).
Many small RNAs generated from NbPDSa- or NbPDSb-based inducers are imperfectly
matched with NbPDSb or NbPDSa sequence, respectively. Thus, perfectly matched siR-
NAs might direct DNA methylation, and some mismatches might also share this activity.
Contrary to our notion that methylation is more effectively induced by perfectly matched
inducers than inducers that have mismatches, the expression of NbPDSa-based the T30s
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inducer introduced DNA methylation in the homologous region of NbPDSb more efficiently
than NbPDSb-based T3s (Figure 8B). These results suggest that the sequence identity of
inducers is not the sole determinant of DNA methylation efficiency. Future detailed analy-
ses of the efficiency of small RNA generation from inducers, sequence composition, and
siRNAs responsible for methylation of specific sites will identify factors that determine
efficiency and specificity. Further, regardless of similar or higher levels of DNA methylation
in NbPDSb than in NbPDSa (Figures 7B and 8B), the degree of reduction in NbPDSb mRNA
level was smaller than that for NbPDSa mRNA (Figures 7C and 8C). One explanation
might be that the degree of reduction was small because of lower basal expression lev-
els of NbPDSb (Supplementary Figure S3). Alternatively, regulatory regions required for
transcriptional suppression might differ between NbPDSa and NbPDSb.

In this work, targeted DNA methylation induced by a CMV vector was shown to
dynamically change the methylation of an endogenous gene promoter. Additionally, the
introduction of DNA methylation against homeologs in N. benthamiana was characterized.
The findings contribute to the development of efficient targeted DNA methylation and the
understanding of epigenetic regulation of polyploid genomes. Targeted DNA methylation
by a CMV vector will be a powerful tool to elucidate readily and rapidly functions of
specific methylation in a biological context and create plants with altered expression of
target genes. The latter development would allow the expression of desirable agronomical
traits without changing DNA sequences.

4. Materials and Methods
4.1. Plant Growth

N. benthamiana was grown in soil or hydroponically in a nutrient solution (Otsuka
hydroponic composition, Otsuka Chemical Co., Ltd., Osaka, Japan) at 23 ◦C–25 ◦C and a
16 h light/8h dark cycle as described earlier [42].

4.2. Preparation of Plasmids

For promoter analysis, a genomic fragment of −1225 to −1 from the translational start
site of NbPDSb was amplified by PCR and exchanged with the 35S promoter upstream of
the GUS gene in pBE2113 (pBE2113/NbPDSp::GUS). For targeted DNA methylation with
the CMV vector, T2, T3, T30, and asGFP fragments were amplified by PCR and cloned into
CMV2 A1 [20] at StuI and MluI sites using primers described in Supplementary Table S1.
The “s” is added as a suffix of each inducer indicates strands coding sense transcripts of
the NbPDS gene, and “as” is a complementary strand of “s.” For quantification of mRNA
levels of NbPDSa and NbPDSb, fused NbPDSa and NbPDSb fragments containing amplified
region by real-time PCR, and the fragment was cloned into pCR4 (pCR4/NbPDSab-st)
according to manufacturer’s instructions. Fragments containing the amplified region of
NbEF1α by real-time PCR were also cloned into the pCR4 vector (pCR4/NbEF1α-st) as an
endogenous reference. Primer information is described in Supplementary Table S1.

4.3. Promoter Assay of PDS Gene

Agrobacterium cells (LBA4404) transformed with pBE2113/NbPDSp::GUS were sus-
pended in MES buffer (10 mM MES, 10 mM MgCl2, pH 5.7), and suspensions were adjusted
to an OD 600 nm = 0.5. Acetosyringone was added to the suspensions (final concentration,
150 µM), followed by incubation at room temperature for 2 h. Suspensions were infiltrated
into N. benthamiana leaves. The infiltrated leaves were immersed in GUS staining buffer
(100 mg/mL 5-bromo-4-chloro-3-indolyl-β-D-glucuronide solution was diluted 10 times
with 50 mM sodium phosphate buffer, pH = 7.0) and incubated overnight at 37 ◦C, followed
by de-staining with 70% ethanol as described previously [31].

4.4. Virus Inoculation

CMV inoculation was conducted following Kanazawa et al. [21]. CMV RNAs 1–3
were obtained by in vitro transcription using linearized plasmids containing cDNAs of
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RNA1 (pCY1), RNA2 (CMV2 A1 carrying each inducer), or RNA3 (pCY3) with a restriction
enzyme. RNAs 1–3 were mixed and rub-inoculated onto N. benthamiana leaves.

4.5. Bisulfite Sequencing

Genomic DNA was extracted from leaf tissues using the DNeasy Plant Mini Kit
(QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. Three hundred
ng of genomic DNA was treated using an EZ DNA Methylation-Lightning Kit (ZYMO
RESEARCH, Irvin, CA, USA), according to the manufacturer’s instructions. The target
region was amplified from the bisulfite-treated genomic DNA using TaKaRa EpiTaq HS
polymerase (TaKaRa Bio, Kusatsu, Japan). The reaction mixture (50 µL) contained 1.25 U
of TaKaRa EpiTaq HS polymerase, EpiTaq PCR buffer, 3 mM MgCl2, 0.2 mM dNTP, 1 µM
(each), and forward and reverse primers. Samples were incubated for 10 s at 98 ◦C, followed
by 45 cycles of 98 ◦C for 10 s, 48 ◦C for 30 s, and 72 ◦C for 1 min. Nested PCR was conducted
from first-round PCR products using PrimeSTAR GXL DNA Polymerase. The reaction
mixture (50 µL) contained 1.25 U of PrimeSTAR GXL DNA polymerase, PrimeSTAR GXL
Buffer, 0.2 mM dNTP, 0.6 µM (each) forward and reverse primers. In the second-round PCR,
index sequences specific to each sample and linker sequence were added to each primer
for deep sequencing. The bulked PCR products from three or four biological replicates
were used for each sample. Library preparation and sequencing using MiSeq (Illumina)
with 300 bp paired-end were conducted at Hokkaido System Science (Sapporo, Japan) or
Bioengineering Lab (Sagamihara, Japan), and methylation was counted using Bismark with
the sequence of amplified regions of NbPDSa or NbPDSb as references. Primer information
is described in Supplementary Table S1.

4.6. Small RNA Sequencing

The leaf tissues of N. benthamiana were homogenized in liquid nitrogen. The total RNA,
including small RNAs, was isolated using the mirVana miRNA Isolation Kit according to
the manufacturer’s instructions. Library preparation and sequencing were conducted at
Hokkaido System Science (Sapporo, Japan) or Bioengineering Lab (Sagamihara, Japan).
Bulked total RNAs from three or four biological replicates were used for each sample except
for Figure 6, where leaves of a single plant from each line were used. In brief, the library
was prepared using a TruSeq Small RNA Library Prep Kit (Illumina) or NEBNext Small
RNA Library Prep Set for Illumina (New England Biolabs, Ipswich, MA, USA). Sequencing
used either a HiSeq (Illumina) with a 100 bp paired-end or NextSeq (Illumina) with a
75 bp paired-end. Small RNA reads were mapped with a 2-nt mismatch allowed for the
N. benthamiana Genome v1.0.1 obtained from Sol Genomics Network [32] using Bowtie [43].

4.7. Real-Time PCR

The real-time PCR was conducted as described previously [42]. The leaf tissues of
N. benthamiana were homogenized in liquid nitrogen. The total RNA was isolated using
the acid guanidinium thiocyanate–phenol–chloroform (AGPC) extraction method [44],
then purified on a FARB minicolumn (Favorgen Biotech Corp., Ping-Tung, Taiwan) [45].
Total RNA was digested with Turbo DNase (Thermo Fisher Scientific, Waltham, MA, USA)
and reverse transcribed using random hexamer by PrimeScript II reverse transcriptase
(TaKaRa Bio), according to the manufacturer’s instructions. Real-time PCR used the
LightCycler 96 system (Roche Diagnostics, Basel, Switzerland). The reaction mixture
(10 µL) contained FastStart Essential DNA Probes Master (Roche Diagnostics), 0.5 µM each
of forward and reverse primers, 0.2 µM Universal ProbeLibrary Probe (Roche Diagnostics)
and cDNA obtained by reverse transcribing 5–10 ng of total RNA. Samples were incubated
for 10 min at 95 ◦C, followed by 45 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. Transcript
levels of each gene were normalized to NbEF1α (GenBank accession number AY206004).
Primers and probes were designed using the Universal ProbeLibrary Assay Design Center
(https://qpcr.probefinder.com/organism.jsp, accessed from 2016 to 2018) and are listed in
Supplementary Table S2.

https://qpcr.probefinder.com/organism.jsp


Int. J. Mol. Sci. 2021, 22, 4125 15 of 17

Basal expression levels of NbPDSa and NbPDSb were quantified by real-time PCR
using standard plasmids, pCR4/NbPDSab-st for NbPDSa and NbPDSb, pCR4/NbEF1α-st
for NbEF1α. NbPDSa and NbPDSb expression levels were normalized to expression levels
of NbEF1α.

5. Conclusions

In this study, we demonstrated that CMV vector-induced DNA methylation in the
promoter region of the PDS gene was dynamically changed, and strikingly, the methylation
level gradually decreased from the 3′ end of the targeted region, which are blocked by
increasing 24-nt siRNAs by down-regulating the DCL2 and DCL4 expressions in N. ben-
thamiana. We also showed that DNA methylation was induced in the region that contains
mismatched sequences to expressed RNAs, suggesting that sequence identity may not be
the sole determinant of the efficiency of DNA methylation. These findings contribute to
the development of efficient targeted DNA methylation and understanding of epigenetic
regulation of polyploid genomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22084125/s1, Figure S1: Small RNA profiles in wild-type and d2d4 plants infected
with CMV vector carrying inducer for DNA methylation; Figure S2: Small RNA profiles in wild-
type and d2d4 plants infected with CMV vector carrying inducer for DNA methylation.; Figure S3:
Small RNA profiles in wild-type and d2d4 plants infected with CMV vector carrying inducer for
DNA methylation.; Figure S4: Sequence alignment of nucleotide sequences of region upstream of
translational start.; Figure S5: Time-course analysis of NbPDSa and NbPDSb expressions in plants
infected with CMV vector carrying inducer for DNA methylation.; Table S1: Primers used in this
study.; Table S2: Primers used in this study.
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