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Objective: The longitudinal assessment of physical function with high
temporal resolution at a scalable and objective level in patients recovering
from surgery is highly desirable to understand the biological and clinical
factors that drive the clinical outcome. However, physical recovery from
surgery itself remains poorly defined and the utility of wearable tech-
nologies to study recovery after surgery has not been established.
Background: Prolonged postoperative recovery is often associated with
long-lasting impairment of physical, mental, and social functions. Although
phenotypical and clinical patient characteristics account for some variation
of individual recovery trajectories, biological differences likely play a major
role. Specifically, patient-specific immune states have been linked to pro-
longed physical impairment after surgery. However, current methods of
quantifying physical recovery lack patient specificity and objectivity.
Methods: Here, a combined high-fidelity accelerometry and state-of-the-
art deep immune profiling approach was studied in patients undergoing
major joint replacement surgery. The aim was to determine whether
objective physical parameters derived from accelerometry data can
accurately track patient-specific physical recovery profiles (suggestive of
a ‘clock of postoperative recovery’), compare the performance of derived
parameters with benchmark metrics including step count, and link
individual recovery profiles with patients’ preoperative immune state.
Results: The results of our models indicate that patient-specific temporal
patterns of physical function can be derived with a precision superior to
benchmark metrics. Notably, 6 distinct domains of physical function and
sleep are identified to represent the objective temporal patterns: ‘‘activity
capacity’’ and ‘‘moderate and overall activity (declined immediately after
surgery); ‘‘sleep disruption and sedentary activity (increased after surgery);

‘‘overall sleep’’, ‘‘sleep onset’’, and ‘‘light activity’’ (no clear changes were
observed after surgery). These patterns can be linked to individual patients
preopera-tive immune state using cross-validated canonical-correlation
analysis. Importantly, the pSTAT3 signal activity in monocytic myeloid-
derived suppressor cells predicted a slower recovery.
Conclusions: Accelerometry-based recovery trajectories are scalable and
objective outcomes to study patient-specific factors that drive physical
recovery.
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C urrently, more than 300 million surgeries are performed
annually worldwide.1 Recovery after surgery is highly varia-

ble, and protracted recovery affects up to 30% of patients, leading
to personal suffering, impaired daily function, delayed return to
work, and major socioeconomic costs.2–4 Although rapid advances
in surgical and perioperative care have significantly shortened
hospital length of stay, surgical recovery far exceeds the hospital-
ization period.5,6 From a patient’s perspective, recovery includes
the return to preoperative levels of independence and well-being.7

As such, studying the entire surgical recovery process, which can
last weeks to months, is logistically challenging, resource-intense,
and largely contingent on subjective data typically obtained with
questionnaires.8–11 Additional concerns regarding subjective data
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include reporting biases and limited reliability.12 For example, self-
reported physical performance metrics are imprecise as they both,
under and overestimate activity when compared to objective
metrics.12,13 Finally, a large-scale study conducted in 6 countries
comparing subjective and survey-based physical activity metrics to
sensor-based metrics of physical activity that measured time spent
in sedentary behavior and specific intensity levels of physical
activity (light, moderate, and vigorous), indicated a large dis-
cordance between self-reported and sensor-based outcomes.13

One sentinel recovery outcome after surgery is physical
function, which is likely to impact other domains of recovery. The
scalable, low-cost, objective, remote, and continuous assessment of
physical function over extended periods of time is highly desirable
to understand mechanisms that improve, or conversely, impede
physical function. As such, the application of sensing technologies
included in wearable devices for monitoring of physical function is
rapidly emerging in different clinical domains including inpatient
rehabilitation, sleep, geriatric, and feto-maternal medicine.14–16

However, the utility of wearable technologies to study recovery
after surgery has not been established.

The role of the immune system in determining recovery in
patients suffering from trauma including major surgery is promi-
nent.17–19 Mass cytometry,20 a recent breakthrough technology for
highly parameterized single-cell immune profiling has rapidly been
adopted in different clinical settings including vaccine develop-
ment,21 feto-maternal health,22,23 oncology and immunotherapy.24

More recently, mass cytometry has been used in perioperative
medicine, by our group, to study how a patient’s preoperative
immune state and immune responses to surgery determine clinical
recovery trajectories (derived from self-reported measure-
ments).19,25 Evidence from these important and resource-intense
but limited-sized studies suggests that patient-specific differences in
immune cell signaling responses are strongly associated with the
rate at which patients regain physical function after surgery.

Here, a novel patient-centric computational approach is
presented that leverages wearable acceleration data and high-
parameter functional immune profiling to (1) objectively quan-
tify the temporal pattern of physical recovery in individual
patients (suggestive of a ‘clock of postoperative recovery’ indi-
cating time to return to their preoperative state), and (2) link
such recovery patterns to individual patients’ preoperative
immune states. Integration of accelerometry and biological data
is a novel and personalized framework to identify biological
factors that drive physical recovery. The outlined approach, once
validated, can be scaled to larger and more diverse surgical
cohorts with the final goal to advance physical recovery in a
personalized and preemptive fashion.

METHODS

Clinical Study Design
Patients undergoing primary hip arthroplasty were recruited

at the Arthritis and Joint Replacement Clinic of the Department of
Orthopedic Surgery at Stanford University School of Medicine
(see ‘‘CONSORT Chart’’ and ‘‘Study Materials’’ in Supplemental
Digital Content, http://links.lww.com/SLA/D476). The study was
approved by the Institutional Review Board of Stanford Uni-
versity. Seventy-five patients were enrolled after providing written
informed consent. Fifty-three patients completed the study and 49
patients provided accel-erometry data suitable for analysis
(Table 1). Refer to ‘‘Study Materials’’ in Supplemental Digital
Content for the exclusion criteria.

Accelerometry for Measurement of Physical Activity
and Sleep Patterns

Physical activity and sleep patterns of each participant
were collected via an ActiGraph smartwatch (ActiGraph, LLC,
FL) continuously worn on the wrist of the dominant arm starting
5 days before surgery and ending 40 days after surgery (Fig. 1A).
Two patients wore the watch on the nondominant wrist. The
3-dimen-sional acceleration data were sampled at 30 Hz, which
produced about 350 million acceleration measurements per
patient. A broad array of algorithms extracted time-series
attributes (or features) representing various aspects of daily
physical activity (eg, step counts, energy expenditure, and time
spent at various physical activity levels) and sleep features. For
example, the Cole-Kripke algorithm26 and the Freedson algo-
rithm27 were used for deriving sleep and energy expenditure
features, respectively. A complete list of features is provided in
Supplemental Digital Content Table 1, http://links.lww.com/

TABLE 1. Patient Data
Demographics and presurgical clinical characteristics

Sex (male/female) 23/26
Age (yrs; median & IQR) 63 (57–68)
Body mass index (kg/m2 ; median & IQR) 26.7 (24.2–30.5)
Race/ethnicity
African American 1
Asian 2
White 42
Unknown 4

Cumulative Illness Rating Scale (0–56; median &
IQR)

10 (7–12)

Beck Depression Inventory (0–63; median & IQR) 7 (5–14)
Profile of Moods Anxiety Scale (0–36; median & IQR 7 (3–11)
10-time Stress Scale (0–40; median & IQR) 12 (6–18)
36-item Short Form Health Survey (median & IQR)
Physical component summary score (15.0–61.7) 33.9 (30.0–38.0)
Mental component summary score (7.4–65.6) 42.7 (35.9–52.8)

Surgical Recovery Scale (17–100; median & IQR) 63.7 (54.1–72.6)
Western Ontario and McMaster Universities

Osteoarthritis Index (median & IQR)
Hip pain (0–40) 21.5 (15.5–28.5)
Hip function (0–60) 32.5 (23.0–42.0)

Hip Disability and Osteoarthritis Outcomes Score (0–100; median &
IQR)

Pain 45.0 (32.5–52.5)
Symptom 35.0 (20.0–50.0)
Activity of daily living 50.0 (32.0–60.0)
Sport 18.8 (6.3–31.3)
Quality of life 19.0 (6.0–31.0)

Anesthesia and surgery
ASA class (1–5; median & IQR) 2 (2–3)
Anesthetic technique
General & neuraxial 30
General 10
Neuraxial 9

Times (min; median & IQR)
Surgery 102 (81–113)
Anesthesia 183 (158–198)
Postanesthesia care unit 103 (82–148)

Blood loss (mL; median & IQR) 300 (200–300)
Intraoperative fluids (mL; median & IQR) 1500 (1000–2000)
Opioid use postoperative day 1& (mg; median &

IQR)*
7.5 (3.4–12.0)

Time to discharge (days; median & IQR) 2.1 (2.0–2.9)

*Intravenous hydromorphone equivalent.
ASA indicates American Society of Anesthesiology; IQR, i nterquartile range
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SLA/D476. ActiGraph’s actigraphy data analysis software
platform ActiLife v6.13.3 was used for the purpose of feature
extraction. Missing values were imputed using a 2-Nearest
Neighbors imputation approach. The resulting multifaceted
array of daily physical health attributes was used to derive
patient-specific recovery trajectories and infer rates of recovery
surrogates (Fig. 1D).

Single-cell Immune Profiling
To comprehensively characterize a patient’s preoperative

immune state, plasma and whole blood samples were collected
1 hour before surgery for analyses with a highly multiplexed
proteomic platform and single-cell mass cytometry (Fig. 1B and
C). Proteomics and immunome data from 35 patients passed
quality control standards. These 2 platforms were used in com-
bination with objective physical recovery surrogates to elucidate
baseline proteomic and immunological features associated with
the rate of physical recovery (Fig. 1E-G).

Blood for proteomic analysis was collected in ethylenedi-
amine tetraacetic acid tubes, placed on ice, double-spun within
60 minutes and stored at –80°C until further analysis. The pro-
teomic analysis was performed by Olink Proteomics Inc.
(Watertown, MA) with a highly multiplex platform using
proximity extension technol-ogy.28 For this study, 11 panels
were used, each measuring 92 different proteins simultaneously
in 1 μL of plasma. Each protein was detected by a matched pair

of antibodies that were coupled to unique and partially com-
plementary oligonucleotides. When in close proximity, a new
and protein-specific DNA reporter sequence was formed by
hybridization and extension, which was then amplified and
quantified by real-time polymerase chain reaction.29 Quality
metrics were as follows: 538 of 539 plasma samples passed, 865
of 1012 proteins were detected, and the median intraassay
coefficient of variation was 8%.30

Blood collected for mass cytometry analysis was proc-
essed within 30 minutes after blood draw. Individual aliquots
were stimulated with 5 receptor-specific ligands [ie, gran-
ulocyte-macrophage colony-stimulating factor, interferon
(IFN)-α, lipopolysaccharide, a mixture of interleukins (IL)-2,
IL-4, and IL-6, and phorbol 12-myristate 13-acetate and ion-
omycin]. A 46-parameter mass cytometry assay (Supplemental
Digital Content Table 2, http://links.lww.com/SLA/D476) was
used to analyze the distribution and intracellular signaling
activities of 28 major innate and adaptive immune cell subsets
(Fig. 1B and E, Supplemental Digital Content Figure 2, http://
links.lww.com/SLA/D476). Intracellular mass cytometry
parameters were chosen to capture important cell signaling
pathways known to be activated in innate or adaptive immune
cells after surgery (including JAK/STAT, P38MAPK, and
NFkB signaling pathways).18,31 Refer to ‘‘Study Materials’’ in
Supplemental Digital Content for more details on mass
cytometry analysis.

FIGURE 1. Study overview and analytical approach. Forty-nine patients undergoing hip replacement surgery were included in the
analysis. (A) Patients were instructed to wear a clinical grade motion sensing smart-watch continuously on their wrist for 5 days
before and for 40 days after surgery to monitor physical activity and sleep patterns. (B) Whole blood samples were obtained from
each patient 1 hour before surgery for analysis with mass cytometry to determine immune cell-type specific signaling activities at
baseline and in response to ex vivo stimulation with the receptor-specific ligands granulocyte-macrophage colony-stimulating
factor (GMCSF), interferon alpha (IFN-α), interleukins 2, 4, and 6 (IL), lipopolysaccharide (LPS), and a mixture of phorbol
12-myristate 13-acetate and ionomycin (PI). (C) An antibody-based proteomic platform was used for measuring 1012 proteins in
plasma of the same samples. (D) Patient-specific daily activity and sleep patterns adjusted to preoperative metrics were used for
inferring model parameters reflecting the rate of recovery, ie, the time to return to preoperative states. Correlation networks were
built for (E) mass cytometry and (F) proteomic data sets. (G) The feature sets presented in the correlation networks trained
multivariate models predicting the rate of recovery based on patients’ preoperative immune and proteomic states.
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RESULTS

An Accelerometry-based Clock of Postoperative
Recovery

Tridimensional acceleration data were collected con-
tinuously in 49 patients wearing a clinical-grade ActiGraph

smartwatch (Acti-Graph GT9X Link, LLC, FL) starting 5 days
before and ending 40 days after surgery. The average 12 nor-
malized vector magnitude of the 3-dimensional data is depicted
over time in Figure 1A. Each spike represents a 24-hour cycle
with peak and trough activities. Magnifications of a 24-hour
cycle at different postoperative days is shown in Figure 2A.

FIGURE 2. Accelerometer signal processing and feature extraction. (A) Depicted is the average normalized (l2 norm) vector
magnitude of high-fidelity 3-dimensional acceleration measurements recorded over distinct 24-hour periods. Color-coded lines
track the signal magnitude at different postoperative days. (B) The correlation network of relevant activity and sleep parameters
(nodes) reveals distinct components derived by applying an unsupervised clustering algorithm (kMeans). Major components of
the network included moderate and overall activity (orange), activity capacity (blue), light activity (yellow), overall sleep attributes
(ocean green), sleep onset (lawn green), and sleep disruption overlapping with sedentary activity (pink). Node sizes indicate
the strength of the correlation between a parameter and the number of days after surgery. The edges indicate statistical
significance (P < 0.01, Spearman correlation). (C) Shown is the average magnitude for each component over the course of the
observation period starting 5 days before and ending 40 days after surgery. The color code is identical with (B), shaded areas mark
the 90% confidence intervals, the horizontal grey line indicates the average before surgery, and the vertical grey line indicates the
day of surgery.
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Physical activity generally began increasing at 6 AM and started
decreasing at 6 PM reaching trough levels close to midnight.
Peak and plateau activity levels continuously increased over the
course of the 40-day postoperative observation period. Although
there were considerable interpersonal variations in the human
physical patterns after surgery, an evident steep decline followed
by a gradual return in overall activity is the dominant pattern
(Fig. 2A and C). Exceptions included light and sedentary
activity, which were increased, and substantial disruption is the
onset of sleep.

Several functional aspects were captured by the wearable
sensors including a range of physical activity parameters (eg,
intensity, periods of activity, daily activity capacity, estimates of
step count, estimates of caloric intake) and sleep patterns (eg,
sleep fragmentation index, sleep onset, number of awakenings).
Developing time-series signal processing algorithms that extract
acceleration-based functional parameters is a high-yield current
research emphasis. Various algorithms were applied to extract 62
temporal physical and sleep features from the current dataset.
Using a static sliding window of 24 hours, daily feature vectors
were derived for each patient. The sliding window approach is a
common high level feature extraction method in time series
physical activity monitoring.32,33 To facilitate the optimization
algorithm and reduce the adverse effects of outliers, a 0 mean
unit variance standard scaler was built on each of the pre-
operative data feature vectors. The scalers were then applied to
the entire corresponding feature vector, independent of the other
feature vectors. A correlation graph displays the complex inter-
connectivity of the 62 features (Fig. 2B). Each node represents 1
feature and edges indicate a significant pairwise statistical cor-
relation (P < 0.01) between nodes.

An unsupervised k-means clustering algorithm was used to
objectively identify distinct components of highly correlated
features. Six distinct components or domains were identified and
labeled based on the included features: overall sleep, sleep onset,
sleep disruption and sedentary activity, light activity, moderate
and overall activity, and activity capacity (Fig. 2B). The time
course of the average magnitude of the 6 domains is shown in
Figure 2C. Each domain followed a unique temporal pattern.
Importantly, the domains ‘‘moderate and overall activity’’ and
‘‘activity capacity’’ sharply declined immediately after surgery
and then gradually returned to preoperative levels over the
course of weeks. In contrast, the domains ‘‘sleep disruption and
sedentary activity’’ increased moderately after surgery and
gradually returned to preoperative levels. This is consistent with
observed decrease in ‘‘moderate and overall activity’’ and
‘‘activity capacity’’. Although the domains ‘‘light activity’’ and
‘‘sleep onset’’ decreased after surgery, no clear temporal patterns
were observed. Finally, the domain ‘‘overall sleep’’ did not
noticeably change after surgery.

Inferring Patient-specific Trajectories of Recovery
To quantify physical recovery patterns after surgery, the

temporal postoperative accelerometry data were used to build a
patient-specific model, predicting the number of ‘days since
surgery’. A supervised model was trained on the feature matrix
of each individual patient, independently. The feature matrix
consisted of 62 feature vectors of medium to high-level patient
physical attributes characterizing each postoperative day as the
target variable. The Random Forest (RF) regression algorithm34

was used because of the continuity of the output variable and the
highly interrelated nature of the feature vectors. RF is a robust
ensemble method that allows for relatively easy interpretation of
the results, leverages the specificity and nonlinearity of the tree-

based approaches, and takes advantage of the generalization and
robustness of ensemble methods. For each patient, a RF model
was trained to infer time since surgery using the patient-specific
feature matrix (as previously visualized in Fig. 2B). The repeated
k-fold cross-validation showed high performance of the patient-
specific RF model predicting ‘days since surgery’ (P < 0.05)
with median prediction P values of 5.9 × 10−7 (Fig. 3A, Sup-
plemental Digital Content Figure 3, http://links.lww.com/SLA/
D476). Refer to the section ‘‘Modeling and Analysis’’ in Sup-
plemental Digital Content for details regarding model training
and evaluation.

The performance of RF models varied between patients
with a median Root Mean Square Error of ~8days when esti-
mating the ‘day since surgery’ (Fig. 3B). Importantly, the mul-
tivariate model (shown in pink) was compared against univariate
models using a single accelerometry feature as provided by the
manufacturer for training the RF predictor. Six univariate
models are shown in Figure 3B for manufacturer provided fea-
tures (1) total steps taken in a day (24-hour period), (2) estimated
daily metabolic equivalent of task, (3) number of awakening
episodes detected during a patient’s sleep in 1 day, (4) duration
of time spent performing light activities, (5) onset of bedtime for
a given day, and (6) total of activity counts (measured by
Freedson algorithm) detected during sleep intervals for 1 day.
The performance comparisons of all univariate models are
shown in Supplemental Digital Content Figure 4, http://links.
lww.com/SLA/D476. Importantly, the multivariate RF models
were clearly superior to the univariate models using a single
accelerometry feature. As an additional control, the preoperative
baseline data (before the grey dashed line) were fed into the
models to predict a postoperative day. Data were normalized to
baseline to ascertain within-subject control given uncertainties
regarding the accuracy of absolute accelerometry metrics. This
analysis demonstrated that the model’s inference on the baseline
(preoperative) data points ranges more than 21 days after sur-
gery. Interestingly, this observation independently confirms the
sanity of the RF models.

Figure 3C highlights the relative contribution of the 62
accelerometry features used to derive the RF model predicting
‘days since surgery’. The color intensity is indicative of relative
importance of each node computed using Gini importance.35

Features in the domains ‘Activity Capacity’ and ‘Sleep Dis-
ruption and Sedentary Activity’ ranked highest followed by the
features in the domains ‘Moderate and Overall Activity’,
‘Overall Sleep’, and ‘Light Activity’.

An array of recovery surrogates for each patient was
devised such that it quantifies the patient’s recovery trajectory
with respect to each accelerometry feature. The accelerometry
data collected for 5 days preceding surgery (ie, the baseline
accelerometry feature vectors) were inputted into the personal-
ized RF models to estimate days after surgery. Note that the
baseline inferences are made by models trained solely on post-
operative data. The models use the temporal patterns learned
from postoperative data to infer the time point along the post-
operative timeline that most closely matches baseline patterns.
The RF inference on preoperative data will reveal the day after
surgery that is closest to a patient’s preoperative state. Based on
this, an array of 62 recovery surrogates (corresponding to 62
accelerometry features) is constructed. Each element of this
array (ie, 1 recovery surrogate) indicates the earliest time that the
postoperative feature value returns to the patient’s baseline lev-
els. The smaller the surrogate, the faster a patient is returning to
his/her preoperative physical status (as inferred from the corre-
sponding accelerometry feature). The detailed formulation of
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recovery surrogates is presented in ‘‘Modeling and Analysis’’
section in Supplemental Digital Content, http://links.lww.com/
SLA/D476.

Association of Accelerometry-based Recovery
Surrogates With Self-reported Outcomes

Self-reported outcomes were captured before surgery, on
postoperative days 1 to 3, bi-weekly after discharge for post-
operative weeks 1 to 4, and weekly for postoperative weeks 5 to
6. The surgical recovery scale (SRS) and an adapted version of
the Western Ontario and McMaster Universities Osteoarthritis
Index, 2 extensively validated questionnaires, were used to assess
general fatigue and resulting functional impairment, and pain
and function of the operated lower extremity.19,36,37 The patient-
specific area under the curve was derived for each longitudinal
self-reported outcome. Refer to ‘‘Study Materials’’ in Supple-
mental Digital Content for a detailed description of self-reported
outcome tools. As shown in Figure 4, the univariate analysis
revealed a significant correlation between the SRS and recovery
surrogates derived from the proposed clock of postoperative
recovery (P < 0.003).

Preoperative Immune States are Associated With
Physical Recovery Trajectories

A total of 1848 mass cytometry immune features were
extracted from blood samples collected before surgery. These
included endogenous intracellular activities of 28 innate and
adaptive immune cell subsets and their capacity to respond to the
5 external ligands. The immunological dataset formed a complex
network of cell type-specific frequencies and signaling activities,
which highlight the interconnectivity of the immune system
(Fig. 5A). In parallel, the concentrations of 1008 plasma proteins
were measured. The assay quantifies proteins over a wide
dynamic range as normalized protein expression values, which is
unit less number derived on a log2 scale that is proportional to
relative plasma concentrations. Similar to the immunological
parameters, proteins built a complex correlational network
(Fig. 5B), which is annotated by gene ontology terms as provided
by Olink Proteomics Inc. (Water-town, MA). The resulting
immunome datasets are original and have not been reported
previously.

To determine whether patients’ preoperative immune and
proteomic states could predict their physical recovery surrogates,
canonical-correlation analysis (CCA) models were trained to
reveal linear associations between the physical recovery

FIGURE 3. An accelerometry clock of recovery from surgery. (A) The patient-specific correlated accelerometry network of temporal
physical activity and sleep quality features was used to predict ‘days since surgery’ (Spearman ρ = 0.7, P = 5.9 × 10−7, cross
validation). The model predictions versus ground truth ‘Day since surgery’ is plotted. Personalized model predictions are shown in
grey (n = 49). The mean predictions and 90% confidence intervals are shown in red. The vertical dashed line indicates the day of
surgery. (B) The multivariate clock of recovery in (A) is compared against univariate models using metrics provided by the
manufacturer. The y axis depicts the median Root Mean Square Error and the black line atop each bar depicts the 90% CI. (C)
The correlated accelerometry network shows the major domains of accelerometry-derived attributes (daily sleep and activity). The
color of the nodes corresponds to the relative contribution of each component to the cross-validated model predicting ‘days since
surgery’ (ie, gini importance). The darker shades indicate higher importance.
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surrogates and the correlated immune or proteomic network
parameters. To improve robustness, a leave-one-out cross vali-
dation algorithm was used, so that the results are predictions
derived in patients not included when training the model. Refer
to ‘‘Modeling and Analysis’’ in Supplemental Digital Content,
http://links.lww.com/SLA/D476 for detailed discussion of CCA
training and evaluation. Immune network parameters predicted
physical recovery surrogates of individual patients (P < 0.01),
whereas proteomic network parameters were not predictive
(P = 0.69) as shown in Figure 5C and D.

Examination of the most informative immune model fea-
tures (top 10% of ranked model features considering absolute
coefficient) revealed intracellular signaling responses that were
reminiscent of prior studies linking patients’ immune response
to surgery to their recovery.19 Notably, the phosphor-(p)-STAT3
signal in monocytic myeloid-derived suppressor cells (M-
MDSCs) in response to IL-2/4/6 stimulation with IL-2/4/6 pos-
itively correlated with slower physical recovery. Notably, among
the 184 most informative model features, 89.6% (165 features)
were negatively correlated with the physical recovery surrogate
(Supplemental Digital Content Table 3, http://links.lww.com/
SLA/D476). Importantly, the pSTAT1 and pSTAT3 responses to
IFN-a stimulation in CD4T, NK, and memory B cells were
negatively correlated, ie, associated with slower physical
recovery.

To gain a better understanding of the correlations between
specific accelerometry and immune features, additional statistical
analyses considered each accelerometry feature independently
(Supplemental Digital Content Figure 5, http://links.lww.com/
SLA/D476). Inspection of the bipartite correlation between
immunological and accelerometry networks (Supplemental
Digital Content Figure 5A, http://links.lww.com/SLA/D476)
revealed additional interconnected immunological and physical
recovery parameters that change concordantly. Significant cor-
relations were highlighted between the accelerometry and
immune features using graph edges. As shown in Supplemental
Digital Content Figure 5B, http://links.lww.com/SLA/D476, this
analysis confirmed several significant correlations between
pSTAT1 response to IFN-a stimulation in NK cells and CD4T

cells and the ‘‘moderate and overall activity’’, and ‘‘activity
capacity’’ domains.

DISCUSSION
Our results indicate that wearable technologies enable the

objective, scalable, and longitudinal tracking of individual
patient’s physical recovery after surgery. Notably, the machine-
learning centered approach anchored in multivariate vector
analysis offered significantly improved accuracy compared to
benchmark metrics provided by manufacturers such as step
count. Importantly, individual physical recovery trajectories
were linked to patient-specific immune states before surgery.
These findings suggest that accelerometry can be adopted as an
affordable and scalable technology to track individual patient’s
physical recovery over time and link it to presurgical biological
and other attributes that drive such recovery. Such insight is
valuable for risk stratification and interventional strategies
facilitating patients’ physical recovery.

Six distinct groups of physical activity and sleep mon-
itoring represented domains of surgical recovery. Each domain
followed a unique temporal pattern. Each domain pattern indi-
cated a noticeable disruption at the time of surgery with the
exception of ‘‘Overall Sleep’’ domain. Features in the domains
‘Activity Capacity’ and ‘Sleep Disruption and Sedentary Activ-
ity’ were found the most informative in prediction of time after
surgery and demonstrated larger univariate correlation with
recovery surrogates followed by features in the domains ‘Mod-
erate and Overall Activity’. Importantly, the highly informative
‘‘Activity Capacity’’ domain is supported by previous studies of
using submaximal capacity parameters such as ‘‘5-Chair Stand
and Timed Up and Go’’ in assessment of physical performance
and surgical recovery.38 This result warrants studying similar
physical performance attributes in a continuous and pervasive
fashion.

The proposed recovery surrogates derived from the
wearable data demonstrated a significant correlation with the
self-reported SRS. The SRS is specifically designed to capture
surgical recovery as it measures attributes of fatigue and

FIGURE 4. Correlation with self-reported clinical outcomes. The univariate correlation (Spearman) between patients’ objective
physical recovery trajectory, and questionnaire-based subjective outcomes including fatigue (SRS), pain and function of the
operated limb (WOMAC), and comorbidity burden (index) are shown. Fatigue and physical recovery trajectories correlated
significantly (P < 0.003).
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resulting functional consequences on daily activities in surgical
patients.36,39 The SRS is sensitive to change and correlates with
course and severity of postoperative complications.19,40 Impor-
tantly, this result provides validation that the accelerometry
derived surrogates resonate with a relevant patient reported
outcome.

The CCA revealed immune correlates of clinical recovery
that echoed findings of previous studies.18,31 Importantly, the
pSTAT3 signal activity in M-MDSCs predicted a slower
recovery. M-MDSCs are a monocyte subset with suppressive
capacity that expand in the context of certain malignancies,
sepsis, and traumatic injury.41-43 Prior in vitro and in vivo studies
suggest that STAT3 is an essential transcription factor for
M-MDSCs to suppress the proliferation and function of CD4T
cells and other immune cells, including NK cells.44 In the context
of surgery, our group previously showed that the pSTAT3 signal

in M-MDSCs strongly correlated with prolonged postoperative
functional recovery.19 As such, the derived recovery surrogates
can reveal biological determinants of surgical recovery.

Additional analysis in Supplemental Digital Content
Figure 5, http://links.lww.com/SLA/D476 revealed negative
correlations between preoperative adaptive immune responses
and the rate of postoperative recovery. They included the
STAT1 and STAT6 signaling responses to IFN-a in B and
CD4T cell subsets (particularly related to ‘‘moderate and overall
activity’’ and ‘‘activity capacity’’ domains). Type I IFN-a stim-
ulation lowers the threshold for adaptive cell activation, espe-
cially by inducing up-regulation of CD69, CD86, and CD25
receptors.45 Interestingly, adaptive cells such as B and T cells are
well described as being key elements in bone46,47 and wound
healing.48 They also included the STAT1 response to IFN-a
stimulation in NK cells. Taken together, the results suggest that

FIGURE 5. Preoperative immune parameters predict patient-specific physical recovery trajectories. (A) The immune correlation
network within and across various features is color-coded to reflect cellular phenotypical and functional basal conditions and
cellular responses to ex-vivo stimulation with different ligands including granulocyte-macrophage colony-stimulating factor
(GMCSF), interferon alpha (IFN-α), interleukins (IL)-2, -4, and -6, lipopolysaccharide (LPS), and a mixture of phorbol 12-myristate
13-acetate (PMA), ionomycin (PI). (B) The proteomic correlation network is colored by gene ontology terms. (C) Preoperative
immune network parameters predict physical recovery trajectories (R = 0.46, P =5.2 × 10−3). The shaded area denotes the 90%
confidence interval of the regression line (solid black). (D) Preoperative proteomic network parameters were not predictive.
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preopera-tive immune states characterized by increased JAK/
STAT signaling in B cell, CD4+T cell, and NK cell and
decreased JAK/STAT signaling in M-MDSC JAK/STAT benefit
patients’ physical recovery trajectory. An important next step is
to examine whether selective modulation of the JAK/STAT
signaling pathways before surgery can accelerate physical
recovery.

This study has several limitations. Although the models
were cross-validated and tested on previously unseen patients,
the relatively small sample size limits the generalizability of our
results. As such, larger studies are required to independently
validate our results and test the boundaries of their general-
izability. The study was conducted in patients undergoing major
joint replacement surgery. As such, larger studies are likely
needed to develop models general-izable across, or specific to,
various surgery types. Finally, the preoperative period was lim-
ited to only 1 week. We note that data during this week before
surgery are likely impacted by pain and impairment and do not
represent baseline activity levels of cohort not suffering from
osteoarthritis. However, a post-hoc analysis demonstrated that
our results were not confounded by preoperative activity levels
(Supplemental Digital Content Figure 6, http://links.lww.com/
SLA/D476).

Taken together, to the best of our knowledge this is the
first study to combine wearable technologies, machine learning
approaches, and state-of-the-art immune monitoring to describe
patient-specific physical recovery trajectories that outperform
benchmark metrics and provide insight into biology that may
drive important aspects of postoperative recovery. The outlined
strategy is scalable and therefore amenable for implementation
in larger scale studies providing more detailed and generalizable
insight into peri-operative patient factors that drive clinical
recovery.

Reproducibility and Data Availability
Data and source codes for reproduction of the results are

publicly available at https://github.com/raminfl/hipval. Acti-
Graph’s actigraphy data analysis software platform ActiLife
v6.13.3 can be downloaded from https://actigraphcorp.com/
actilife/.
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