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OBJECTIVE—Although recent studies have shown that human
genomes contain hundreds of loci that exhibit signatures of
positive selection, variants that are associated with adaptation in
energy-balance regulation remain elusive. We reasoned that the
difficulty in identifying such variants could be due to heteroge-
neity in selection pressure and that an integrative approach that
incorporated experiment-based evidence and population genetics-
based statistical judgments would be needed to reveal important
metabolic modifiers in humans.

RESEARCH DESIGN AND METHODS—To identify common
metabolic modifiers that underlie phenotypic variation in diabetes-
associated or obesity-associated traits in humans, or both, we
screened 207 candidate loci for regulatory single nucleotide poly-
morphisms (SNPs) that exhibited evidence of gene–environmental
interactions.

RESULTS—Three SNPs (rs3895874, rs3848460, and rs937301) at
the 59 gene region of human GIP were identified as prime meta-
bolic-modifier candidates at the enteroinsular axis. Functional
studies have shown that GIP promoter reporters carrying derived
alleles of these three SNPs (haplotype GIP21920A) have signifi-
cantly lower transcriptional activities than those with ancestral
alleles at corresponding positions (haplotype GIP21920G). Consis-
tently, studies of pregnant women who have undergone a screen-
ing test for gestational diabetes have shown that patients with
a homozygous GIP21920A/A genotype have significantly lower se-
rum concentrations of glucose-dependent insulinotropic polypep-
tide (GIP) than those carrying an ancestral GIP21920G haplotype.
After controlling for a GIPR variation, we showed that serum
glucose concentrations of patients carrying GIP21920A/A homozy-
gotes are significantly higher than that of those carrying an an-
cestral GIP21920G haplotype (odds ratio 3.53).

CONCLUSIONS—Our proof-of-concept study indicates that
common regulatory GIP variants impart a difference in GIP and
glucose metabolism. The study also provides a rare example that
identified the common variant-common phenotypic variation pat-
tern based on evidence of moderate gene–environmental interac-
tions. Diabetes 60:726–734, 2011

T
aking advantage of the availability of genome
information from diverse human populations, re-
cent studies have revealed that human genomes
contain hundreds of loci that exhibit signatures

of positive selection (1,2). A number of these variants have
been shown to describe phenotypic variations in appear-
ance, physiologic adaptations, and pathologic responses
to diseases, thereby opening doors to human history, un-
expected involvement of risk alleles, and novel prognosis
power for select diseases (3–10). These recent findings on
gene selection have partially affirmed the “common variants
underlie common phenotypic variation” paradigm.

Complex multifactorial diseases such as diabetes and
obesity have been hypothesized to be a reflection of mal-
adaptation of previously advantageous alleles to current
environments, and the divergent manifestation of different
metabolic syndromes could be associated with adaptation
in response to heterogeneous changes in human culture
(11,12). Therefore, the revelation of adaptive variants that
are associated with energy-balance regulation could reveal
novel regulatory mechanisms underlying diverse metabolic
syndromes and how such variants contribute to phenotypic
variation. However, such variants could be subject to
selection pressures that fluctuate over time or reverse in
a short time in response to shifting human culture; in this
way, these variants are more likely to be associated with
incomplete signatures of selection (13,14). Thus, approaches
for detecting signatures of complete selection may lack
the power to detect metabolic modifiers that confer recent
adaptations in energy-balance regulation or that are asso-
ciated with phenotypic variation in diabetes- and obesity-
related traits. We consequently reasoned that an integrative
approach that embraces both wet-laboratory experiment-
based evidence and statistical judgments of newly available
population genetics data are needed to reveal important
metabolic modifiers.

With this understanding, we applied two intersecting
criteria to explore metabolic modifiers that have been
subject to selection since Eurasians split from Africans.
First, we generated a set of a priori diabetes-related and/or
obesity-related candidate loci based on previous clinical
investigations, genome-wide association (GWA) studies,
and quantitative trait loci analyses (6,15–20).

Second, we conducted a variety of genomic scans of the
candidate genic regions for evidence of integrative signals
of positive selection. Genetic variants in genic regions are
major focuses of the scans because most contributions of
common variation to complex traits are regulatory or non-
synonymous in nature (21). In addition, we focused the
analysis onvariants thathaveaderivedallele frequency.30%
in the overall HapMap population because these variants
presumably would affect most of the population and have
a greater power for the detection of phenotypic association.
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Using this two-step approach, we identified common
variants in the 59 gene region of CDKAL1, CYB5R4, GAD2,
PPARG, and GIP as candidates for metabolic modifiers.
Among these variants, those in GIP are of particular in-
terest because they are highly linked to each other as well
as to a functional nonsynonymous mutation (rs2291725) in
exon 4 of GIP; that is, in a high linkage-disequilibrium (LD)
block (22).

Glucose-dependent insulinotropic polypeptide (GIP) se-
creted from duodenal and jejunal K-cells is one of the two
incretin hormones (i.e., glucagon-like peptide-1 [GLP-1]
and GIP) that stimulate insulin release after food intake in
humans (16). In addition, we know that patients with type
2 diabetes or in late pregnancy have a depressed b-cell
response to GIP compared with healthy individuals, and
GIP antagonism has been proposed as a strategy for the
treatment of obesity (23). Thus, the characterization of
potential modifiers resulting from prior GIP–environment
interactions is relevant to a better understanding of mo-
lecular mechanisms that underlie diabetes and obesity as
well as phenotypic variations that are associated with
these diseases. Here, based on an integrative screening
approach and proof-of-concept study of GIP variants, we
show that it is possible to identify metabolic modifiers by
studying genes that exhibit evidence of moderate gene–
environmental interactions, and that regulatory GIP var-
iants impart phenotypic variation in GIP response and
glucose metabolism.

RESEARCH DESIGN AND METHODS

Patients. This study was approved by the institutional ethics committee review
boards of Chang Gung Memorial Hospital Linkou Medical Center and Chang
Gung University. We recruited 123 patients, and all patients gave written in-
formed consent to participate in the study. The screening glucose challenge test
for gestational diabetes was performed as previously described (24).
Genotyping. Genomic DNA samples of participants were extracted and pu-
rified from anticoagulated blood with the DNeasy Blood & Tissue Kit (Qiagen,
Venlo, Netherlands). Genotyping of SNPs was performed using the TaqMan
Validated SNP Genotyping Assays (Applied Biosystems, Foster City, CA). The
genotyping analysis had a .97% success rate and .99% reproducibility.
GIP, insulin, and C-peptide enzyme-linked immunosorbent assay. Blood
samples were collected from patients for hormone measurement 1 h after
administration of the oral glucose tolerance test. Total GIP, insulin, and
C-peptide levels in human serum were measured using sandwich ELISA kits
(Millipore, Billerica, MA; Mercodia, Uppsala, Sweden; and Calbiotech, Spring
Valley, CA).
In vitro GIP promoter reporter analysis. A 2.15-kb fragment of human GIP
promoter with the A allele at rs3895874, rs3809770, rs3848460, and rs937301
(22073 bp to +77 bp) was chemically synthesized (Genescript Inc., Piscat-
away, NJ) and subcloned into the pGL4.2 luciferase reporter vector (Promega

Corp., Madison, WI). Promoter fragments with ancestral haplotypes were
obtained using the site-directed mutagenesis. In the promoter reporter study,
each experiment was conducted at least three times with three or four repli-
cates for each treatment.
FST estimation, LD plot, and hitchhiking mapping for GIP locus and

neighboring regions. The population genetic differentiation statistic FST

was performed using the PGEToolbox (25). LD and haplotype plots were
generated using HaploView 4.1 (26).
Statistical analysis. Patients’ glucose challenge responses and serum hor-
mone profiles were compared with the x2 test or the Student t test with Welch
correction. Ratios of patients with glucose levels exceeding the threshold
were analyzed with the x2 test. All P values were two-sided. All data were
presented as mean 6 SEM, and the statistical significance cutoff value was
0.05.

RESULTS

SNPs at the GIP locus are targets of environmental
selection in humans. To systematically identify putative
metabolic modifiers, we curated and screened SNPs in 207
gene loci that have previously been implicated in the reg-
ulation of diabetes-related and/or obesity-related traits
using FST (Supplementary Table 1). The empiric distribu-
tion of the FST statistic has been used to detect genomic
regions that have rapidly increased in frequency as a result
of local selective pressures (27). Of these 207 genes, 59
carried genic variants with FST values in the top 5% bracket
in comparisons between the corresponding HapMap II
populations YRI (Yoruba from Ibadan), CEU (U.S. resi-
dents with northern and western European ancestry), and
ASN (pooled samples of Chinese from Beijing [CHB] and
Japanese from Tokyo [JPT]; Supplementary Table 1). The
genic region in 29 of these 59 genes also contained another
indication of local selection: long haplotypes in one of the
HapMap populations.

On the basis of the presence of highly divergent allele
frequencies between Eurasians and Africans, the presence
of LD and extended haplotypes in Eurasians, and a .30%
minor allele frequency in the overall Eurasian population,
we identified seven SNPs in the 59 gene region of CDKAL1,
CYB5R4, GAD2, GIP, and PPARG as potential common
metabolic modifiers (Table 1). In earlier GWA studies, se-
lect variants in CDKAL1, CYB5R4, GAD2, and PPARG
were associated with type 2 diabetes-related or obesity-
related traits (28–31). By contrast, there has been no re-
port of linkage of GIP variants in GWA studies. Because
the three GIP variants (rs3895874, rs3848460, and rs937301)
are highly linked compared with those that appeared alone
in other candidate genes (32), and because these GIP var-
iants are partially linked with a nonsynonymous GIP SNP

TABLE 1
SNPs from the 59 gene region that exhibited signals of partial selection

Gene (candidate SNPs) Association with disease risk Position

Frequencies of
derived alleles* Associated with LD

& long haplotypesYRI CEU ASN

CDKAL1 (rs9368197) T2D, ulcerative colitis, GD, Crohn, OB Chr. 6, 20641362 0.051 0.233 0.511 ASN
CYB5R4 (rs1325471) Near a T2D susceptibility locus on Chr. 6 Chr. 6, 84624394 0.143 0.958 0.715 CEU & ASN
GAD2 (rs2839670) OB, alcohol dependence, schizophrenia Chr. 10, 26544346 0.217 0.817 0.578 CEU
GIP (rs3895874) None Chr. 17, 44402867 0.193 0.517 0.753 CEU & ASN
GIP (rs3848460) None Chr. 17, 44402113 0.193 0.517 0.753 CEU & ASN
GIP (rs937301) None Chr. 17, 44401275 0.193 0.517 0.753 CEU & ASN
PPARG (rs2920502) T2D, obesity, coronary artery diseases Chr. 3, 12304195 0.026 0.357 0.753 CEU & ASN

ASN, pooled samples of Chinese from Beijing and Japanese from Tokyo; CEU, Utah residents with northern and western European ancestry;
GD, gestational diabetes; LD, linkage-disequilibrium; OB, obesity; SNP, single nucleotide polymorphism; T2D, type 2 diabetes; YRI, Yoruba in
Ibadan, Nigeria. *The allele frequency is significantly different among HapMap II populations (P , 0.01).
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(rs2291725) (22), these GIP variants have a low likelihood
of being false positive (Table 1). Hence, we focused sub-
sequent functional analysis on GIP variants.

Fine mapping of the GIP locus showed that these var-
iants are linked with more than three dozen neighboring
SNPs (from rs9904761 to rs3895874 on chr17: 44,311–
44,402 kb), and these linked SNPs exhibited FST values in
the top 2–10% bracket in comparisons between YRI and
ASN (Supplementary Fig. 1) (33). A plot of a 250-kb region
of genotypes around GIP in the three HapMap II pop-
ulations showed that whereas genotypes surrounding GIP
in YRI exhibited a high degree of homozygosity for an-
cestral alleles (Fig. 1A, upper panel), in the same region,
genotypes of ASN and CEU exhibited a high degree of
homozygosity for the derived alleles (Fig. 1A, middle and
lower panels). Consistently, analysis of genic SNPs at the
GIP locus between 11 populations from the HapMap III
project (34) showed that FST values were the highest for
comparisons between East Asian and African populations
(Fig. 1B). This result is consistent with our recent finding
that a nonsynonymous variant in the exon IV of GIP
(rs2291725) and a 71-kb haplotype block surrounding this
variant were positively selected in Eurasians in the last
2,000 to 11,800 years (22).

Interestingly, analyses of LD and haplotype block di-
versity of the genomic region that encompassed the three
GIP variants at the 59 gene region showed that a 91-kb LD
block was represented by five inferred haplotypes in CEU
and four in and ASN chromosomes, respectively (Fig. 2;

Supplementary Fig. 2, left panel; Supplementary Fig. 3,
SNP No. 36–79). By contrast, the same region was repre-
sented by 58 haplotypes in YRI. In addition, these analyses
showed that the high FST values and the major shift in al-
lele frequencies of GIP variants at the 59 gene region
between Eurasian and African populations could be at-
tributed to the increase of a derived haplotype (haplotype
50 in Fig. 2) from less than 5% in Africans to more than 50%
in Eurasians. Because the three 59 gene region variants are
completely linked with the positively selected rs2291725 in
ASN (22), we inferred that rs3895874, rs3848460, and
rs937301 at the human GIP promoter region were posi-
tively selected in East Asian populations as well.

Importantly, we found that the 59 gene region variants
(i.e., rs3895874, rs3809770, rs3848460, and rs937301 at
positions 21920, 21650, 21158, and 2320 of GIP, re-
spectively) are located in a haplotype block that is sepa-
rated from the one containing the nonsynonymous variant
rs2291725 by a hotspot for recombination in CEU and YRI
(Supplementary Fig. 2, right panel, and Supplementary
Fig. 3). In this haplotype block, a tetranucleotide poly-
morphism was represented by three inferred haplotypes in
all three populations (referred to as derived GIP21920AAAA,
ancestral GIP21920GAGG, and ancestral GIP21920GGGG

haplotypes in the following text; Table 2). The derived
GIP21920AAAA haplotype, which was found in 18.3% of YRI
chromosomes, has become the dominant haplotype and
has a frequency exceeding 50 and 75% in CEU and ASN,
respectively (Table 2). By contrast, the dominant ancestral

FIG. 1. Differential distribution of polymorphic alleles at the GIP locus in human populations. A: Visual depiction of genotypes within a 250-kb
region around GIP in YRI, CEU, and ASN populations. Polymorphic sites are color coded according to their allelic state. Individuals with a ho-
mozygous genotype with ancestral allele (AA) and a homozygous genotype with derived allele (aa) are represented by blue and yellow dots,
respectively. The red dots indicate individuals with a heterozygous genotype (Aa). The location of SNPs in the GIP gene region is indicated by
a green rectangle. The position of SNPs within the genomic region is indicated by blue vertical lines in the bottom panel. The position of rs3895874 at
GIP21920

is indicated by a red vertical line. B: Average FST for genic SNPs at the GIP locus between 11 populations of the HapMap phase III dataset.
The diameter of circles is proportional to the average FST. Population descriptors: ASW, African ancestry in southwest U.S.; CEU, Utah residents with
northern and western European ancestry from the Centre de’Etude du Polymorphism Humain (CEPH) collection; CHB, Han-Chinese in Beijing,
China; CHD, Chinese in metropolitan Denver, CO; GIH, Gujarati Indians in Houston, TX; JPT, Japanese in Tokyo, Japan; LWK, Luhya in Webuye,
Kenya; MEX, Mexican ancestry in Los Angeles, CA; MKK, Maasai in Kinyawa, Kenya; TSI, Toscans in Italy; YRI, Yoruba in Ibadan, Nigeria. The highest
population differentiation was found between Asian (Han-Chinese and Japanese) and African (Luhya, Maasai, or Yoruba) populations. (A high-
quality color representation of this figure is available in the online issue.)
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haplotype in YRI chromosomes (GIP21920GAGG, 50.8%)
was only found in 1.1% of ASN chromosomes. Therefore,
these 59 gene region variants and the nonsynonymous
variant rs2291725 could be selected differentially in the
overall HapMap populations and represent causal muta-
tions independent of the nonsynonymous variant
rs2291725.
The GIP promoter reporter activity is haplotype-
dependent. Because only functional investigations can
convincingly demonstrate causal mutations, we sought to
obtain direct evidence that these 59 gene region SNPs rep-
resent causal mutations for the population genetics obser-
vation. We constructed and tested GIP promoter reporters
with each of the three major haplotypes in transfected
human embryonic kidney (HEK) 293T cells (Fig. 3A).
Measurement of promoter reporter activities showed that
constructs with an ancestral haplotype (GIP21920GAGG or
GIP21920GGGG) exhibited luciferase reporter activity 25–
45% higher than that of a derived haplotype (GIP21920AAAA,

P , 0.01; Fig. 3B). Because the GIP promoter region
contains elements that are important for regulation by
transcriptional factors, including PAX6 and GATA4 (23),
we also determined whether the GIP promoter reporter
activity was haplotype-dependent in the presence of these
transcription factors. As expected, coexpression of PAX6
or GATA4 increased the basal reporter activities by 1.5–
2.5-fold and 0.7–0.8-fold, respectively (Fig. 3B). Impor-
tantly, we found that reporters with an ancestral haplotype
consistently exhibited significantly higher activities than
those containing the derived haplotype in the presence
of PAX6 or GATA4 (P , 0.01). Together, these results
suggested that derived alleles at rs3895874, rs3848460,
and rs937301—but not rs3809770—represent functional
mutations.
The GIP haplotype is associated with serum GIP and
glucose levels after an oral glucose challenge test in
pregnant women. Given that earlier genome studies have
not reported an association between GIP variants and any
trait, we speculated that the partial selection of GIP var-
iants in Eurasian populations could be associated with
adaptation at a life stage that is vulnerable to environ-
mental changes and that has not been specifically studied.
Because pregnancy represents a critical life stage that
subjects individuals to excessive metabolic load, and be-
cause its success has a major impact on reproductive fit-
ness, we hypothesized that studies of phenotypic variation
during pregnancy may provide a sensitive model to in-
vestigate the role of GIP haplotypes.

To test for an allelic effect of GIP variants, we studied
East Asian patients for proof-of-concept testing because
selection pressures are most likely ongoing in populations
that exhibit the most significant evidence. We genotyped
a panel of 123 unrelated Han-Chinese women who un-
derwent a screening glucose challenge test for gestational
diabetes during the 23rd to the 29th weeks of pregnancy,
and these patients were assigned to three genotype groups
(GIP21920G/G, GIP21920G/A, or GIP21920A/A) based on
alleles at rs3895874, rs3848460, and rs937301. The fre-
quency of rs3895874 in these patients was similar to that of
the ASN population and was in the Hardy–Weinberg
equilibrium; frequencies of GIP21920G/G, GIP21920G/A, and
GIP21920A/A genotypes were 0.089, 0.480, and 0.431, re-
spectively. In addition, alleles at rs3895874 in these
patients were in absolute LD with those at rs3848460 and
rs937301.

Measurements of serum GIP and glucose levels showed
that circulating GIP and glucose at 1 h after the challenge
test were 20.6–219.9 pg/mL, and 72–230 mg/dL, respec-
tively. Consistent with in vitro promoter reporter assays,
GIP levels in patients carrying the ancestral GIP21920G

haplotype (GIP21920G/A heterozygote and GIP21920G/G ho-
mozygote) were significantly higher than those with a ho-
mozygous GIP21920A/A genotype (Fig. 4A, Table 3). By
contrast, serum levels of glucose, insulin, and C-peptide,
as well as age and BMI, were not significantly different
among patients (Table 3).

Because two linked GIP receptor (GIPR) variants
rs10423928 and rs1800437 (referred to as the GIPR1159C/G

mutation in Table 3) have recently been shown to be as-
sociated with glucose and insulin levels after oral glucose
challenge tests as well as the incretin effect in nondiabetic
individuals in GWA studies (35,36), we also genotyped
these variants and sought to isolate the potential con-
founding effect of GIPR variants. We found no association
between GIPR SNPs and serum glucose or hormone

FIG. 2. Haplotype diversity in the GIP locus is population-dependent.
Frequencies of the 58 inferred haplotypes found in the 91-kb LD region
(from rs9904761 to rs3895874) surrounding GIP in YRI, CEU, and ASN.
Most of the CEU and ASN chromosomes contained derived haplotypes
(with AAAA residues at positions 76–79), whereas YRI chromosomes
exhibited significant divergence in the haplotype composition. The 38
ancestral haplotypes all contained GGGG or GGAG residues at posi-
tions 76–79. Population descriptors: ASN, pooled samples of Chinese
from Beijing and Japanese from Tokyo; CEU, Utah residents with
northern and western European ancestry from the Centre de’Etude du
Polymorphism Humain (CEPH) collection; YRI, Yoruba in Ibadan,
Nigeria. (A high-quality color representation of this figure is available
in the online issue.)

TABLE 2
Frequency of inferred GIP haplotypes and rs3895874 genotypes
at the 59 gene region in HapMap II populations

ASN CEU YRI
Inferred haplotype* (n = 174) (n = 120) (n = 114)

GIP21920GAGG 0.011 0.050 0.508
GIP21920GGGG 0.228 0.434 0.283
GIP21920AAAA 0.761 0.500 0.183

Genotype at rs3895874
GIP21920G/G 0.081 0.233 0.386
GIP21920G/A 0.333 0.500 0.614
GIP21920A/A 0.586 0.267 0.000

ASN, pooled samples of Chinese from Beijing and Japanese from
Tokyo; CEU, Utah residents with northern and western European
ancestry from the Centre de’Etude du Polymorphism Humain
(CEPH) collection; YRI, Yoruba in Ibadan, Nigeria. *Frequencies
of GIP haplotypes were significantly different among HapMap II
populations (P , 0.0001).
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levels, but levels of serum glucose, in addition to GIP,
were significantly different between GIP21920A/A homo-
zygotes, and heterozygotes and the GIP21920G/G homo-
zygotes combined within the pool of patients with the
dominant GIPR1159G/G genotype (Fig. 4B). Moreover, we
noticed that after controlling for the variation at GIPR1159,
the derived GIP21920A/A genotype was associated with in-
creased risk of having a glucose level that exceeded the 140
mg/dL threshold (odds ratio 3.53 [95% CI 1.25–9.92]; P =
0.015; Table 3). Among patients with aGIPR1159G/G genotype,
48.3% of patients with GIP21920A/A homozygotes exhibited
glucose levels that exceeded the threshold, whereas only
20.9% of the remaining patients did. Therefore, the homozy-
gous GIP21920A/A genotype could be associated with a re-
duced GIP response and reduced capability of maintaining
glucose homeostasis.

DISCUSSION

On the basis of studies of signatures of selection, in vitro
promoter assays, and glucose challenge tests in humans,
we show that it is possible to identify causal variants re-
lated to energy-balance regulation by focusing on genic
SNPs that were subject to environmental selection in
a subset of candidate genes. Specifically, we demonstrated

that GIP variants at the 59 gene region represent metabolic
modifiers that contribute to phenotypic variation in GIP
response and glucose metabolism. Further characterization
of these causal variants would open a new venue for un-
derstanding the molecular mechanisms that underlie phe-
notypic variations in energy-balance regulation and improve
our ability to stratify and interpret clinical outcomes asso-
ciated with the GIP signaling pathway.

For decades, adaptive selection was assumed to be rare;
however, recent studies have demonstrated that adaptive
substitution is pervasive in human genomes (1,7,37). De-
spite this progress, it is obvious that population differen-
tiation characteristics of human genomes have yet to be
fully explored because physiologic consequences of al-
most all of these past gene–environmental interactions
remain to be verified experimentally (1,2). On the other
hand, because many selection pressures could be hetero-
geneous or reversible in a short time, the signature of se-
lection may have eroded in genes that were responsive to
cultural selection pressures (12,38) compared with those
shielded from heterogeneous selection (e.g., the adapta-
tion to environmental oxygen levels and altitude) (5,39).
We therefore reasoned that important metabolic modi-
fiers could be hidden in the trove of SNPs that showed
limited evidence of positive selection and that this

FIG. 3. The GIP promoter reporter activity is haplotype-dependent. A: Schematic representation of luciferase reporters containing one of the three
inferred haplotypes (derived: GIP21920AAAA

; ancestral: GIP21920GAGG
and GIP21920GGGG

) found in a 2.15-kb fragment of the GIP promoter. The
genomic fragment from position 22073 to +77 bp of GIP contains four SNPs (from rs3895874 to rs937301), and three of them are linked. Genomic
fragments that contained each of the three haplotypes were subcloned in the pGL4.2 luciferase reporter. B: The luciferase reporter activity
is shown in HEK293T cells transfected with combinations of reporter and expression vectors for PAX6 and GATA4. The reporter activity is
haplotype-dependent in the absence or presence of select transcription factors. To compare GIP promoter reporter activities, HEK293T cells in 6-well
culture dishes were transfected with different combinations of transcription factor expression vector and a select GIP promoter reporter using
Lipofectamine 2000 (Life Technology Inc., Carlsbad, CA). In each well, equal amounts of pCMV and pGL4.2 expression vectors and a one-tenth aliquot
of a b-galactosidase expression vector were transfected. At 48 h after transfection, cells were free-thawed once in lysis buffer, and luciferase activity
in supernatant was assayed using the Steady-Glo Luciferase Assay System (Promega Corp.) and a Lumimark microplate reader (Bio-Rad Corp.,
Hercules, CA). The reporter activity has been expressed as the ratio of relative luciferase unit/b-galactosidase activity in transfected cells. Similar
results were obtained in four separate experiments. (A high-quality color representation of this figure is available in the online issue.)
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limitation could be particularly pertinent to modifiers
associated with adaptations in response to shifts of sub-
sistence cultures.

Consistent with this hypothesis, a survey of earlier
studies of genome-wide or chromosome-wide positive
selection using the so-called outlier approaches—in which
candidate loci are identified in the extreme tails of empiric
distributions (40)—showed that GIP variants have not been
reported as positively selected (1,7). The selection of GIP
variants was inferred after we focused the analysis on lo-
cal genomic regions and assessed the significance of inte-
grated haplotype score using coalescent simulations (22).
Therefore, our investigation provided a proof-of-concept
study for identifying causal mutations that underlie phe-
notypic variation of complex disease-related traits. This
approach could open new venues for improving the
translation of common variant association signals into
biologic mechanisms that underlie physiologic variability
or disease risk.

Neel hypothesized that mismatches between prior adap-
tations and new environments, or a “conflict of adapta-
tions,” could lead to changes in fitness or health risks (11).
Because ancient variants could have been selected for the
organism’s reproductive success but not for its health or
longevity, the ancient alleles could confer disease risks
as selection pressures change. Therefore, studies of posi-
tively selected variants that are associated with adapta-
tions in energy-balance regulation could point not only to
novel genotype–phenotype relationships but also to novel
molecular mechanisms that mediate the potential pheno-
typic variation, thereby providing much-needed insight into
how and which phenotypic variations in energy-balance
regulation can be attributed to the selected variants. In
support of the thrifty genotype hypothesis, human CAPN10
and house-mouse insulin genes have been shown to exhibit
characteristics of adaptive evolution after the emergence
of agricultural societies (41,42). Conceptually, the high GIP
response associated with the ancestral GIP21920G haplotype
could have been a beneficial energy-conserving mechanism

when the food supply was irregular. The ancestral haplo-
type could become deleterious in the last 10 millenniums as
agricultural practice became widespread. One possible
deleterious effect of the ancestral GIP21920G haplotype in
an environment that supplies abundant high-starch food
resources is the hypersecretion of insulin and insulin re-
sistance (43,44).

On the other hand, a reduced GIP response associated
with the derived GIP21920A haplotype could be protective
by decreasing the extent of insulin secretion in the face of
oversupply of energy inputs (45,46). In support of this
speculation, it has been well documented that in the ab-
sence of modern medicine, diabetes-associated complica-
tions and, possibly, obesity posed detrimental effects on
survival when human culture shifted (47), even though
type 2 diabetes is generally considered a chronic disease in
modern society. Alternatively, an elevated glucose level
associated with the derived haplotype may have improved
the survival of fetuses if the population faced serious
famine—an event frequently experienced by agricultural
societies (48)—despite the reality that an impaired glucose-
tolerance response represents a risk to both the mother and
fetus under normal circumstances. Moreover, the derived
haplotype could have been beneficial by reducing the
obesity-promoting effect of GIP (16). In vitro and in vivo
studies have shown that GIP promotes fatty liver and
other obesity-associated metabolic disorders, whereas
GIP antagonists suppress lipid accumulation induced by
a high-fat diet (23). Therefore, the derived GIP21920A

haplotype could be selected for its effects on the enter-
oadipocyte or the enteroinsular axis, or both.

Although we speculated that the derived GIP21920A

haplotype may have provided protective effects in famine-
plagued agricultural societies, the observation that the
derived haplotype has not been fixed in any population
suggests that the selection of the derived GIP haplotype(s)
(e.g., cycles of famine) could be opposed (balance selec-
tion) as populations experienced temporal changes in se-
lection pressure (e.g., resumption of population growth

FIG. 4. GIP haplotypes impart a difference in GIP response and glucose metabolism after glucose challenge tests. A: Measurements of serum GIP
and glucose levels in 123 patients during the 23rd to the 29th weeks of pregnancy at 1 h after the 50-g glucose challenge test. The GIP level was
significantly higher in patients carrying a GIP21920G

haplotype compared with those homozygous for theGIP21920A
haplotype. B: In 72 patients with

the dominant GIPR1159G/G
genotype, both serum GIP and glucose levels were both significantly different between GIP21920A/A

homozygotes and
those carrying a GIP21920G

haplotype.
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with stable food supply). Alternatively, the derived GIP
haplotype could simply be too young to become fixed, or
the spread could be limited by the transgenerational effects
associated with abnormal gestational glucose metabolism,
which raise the risk of macrosomia and diabetes in the
offspring (11).

Although an association between GIP variants and
glucose-metabolism regulation has not been reported,
GIPR variants were associated with glucose and insulin
levels after challenge tests as well as with BMI in GWA
studies that evaluated .29,000 individuals (35,36). The
finding that patients with a homozygous GIP21920A/A ge-
notype have significantly higher glucose levels compared
with those carrying an ancestral GIP21920G haplotype
within the pool of GIPR1159G/G homozygotes suggested that
there is a confounding effect stemming from interactions of
GIP and GIPR variants, and that GIP and GIPR variants
represent novel markers for the stratification of the capa-
bility to maintain glucose homeostasis during pregnancy.

We also speculate that the significant results observed
in pregnant women could be related to the fact that the
success of pregnancy has a significant impact on reproduc-
tive fitness and that a major fraction of gene–environmental
selections probably occurred before birth (49). Recent
studies have corroborated this idea by showing that asso-
ciations between many risk alleles and type 2 diabetes can
be replicated with smaller sample sizes in patients with
gestational diabetes mellitus (50,51).

Furthermore, given the evolutionary signatures at the
GIP locus, the plausible molecular mechanism, and the
significant results in East Asian women, we speculate that
the GIP variant–mediated phenotypic divergence could
also exist in most human populations. It is also important
to note that the selection of GIP variants represents a
unique example in which the selection process involves
regulatory variants that alter the glucose-induced GIP re-
sponse as well as a nonsynonymous variant that affects
peptide bioactivity (22). Thus, the GIP signaling pathway
could represent a hotspot for selection in recent human
history and play an important role in the manifestation of
phenotypic variation in energy-balance regulation among
individuals.

In addition to GIP variants, our study identified several
CDKAL1, CYB5R4, GAD2, and PPARG variants as poten-
tial metabolic modifiers. Recent studies have shown that
variants in CDKAL1, PPARG, and more than two dozen
genes are associated with glycemic traits in diabetic pa-
tients (10). Surprisingly, none of the CDKAL1, CYB5R4,
GAD2, and PPARG variants identified here have been im-
plicated in earlier GWA studies, which suggests that these
variants could be related to novel energy-balance regu-
latory mechanisms that operate at certain life stages or
under specific physiologic conditions that have not been
specifically investigated. Future investigations of these
variants could reveal additional metabolic modifiers that
have arisen recently and their contributions to pheno-
typic variation in normal human physiology and metabolic
syndrome–related traits.

In conclusion, our data demonstrated a strong associa-
tion between regulatory GIP variants, and GIP response
and glucose metabolism, reinforcing the indication of an
important role of GIP signaling in diabetes-related traits
from earlier GWA studies of GIPR. Importantly, our study
also provided a novel approach to reveal metabolic modi-
fiers by studying consequences of previous mismatches of
physiologic capabilities and environments. T
A
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