
Frontiers in Oncology | www.frontiersin.org

Edited by:
Fan Feng,

The 302th Hospital of PLA, China

Reviewed by:
Yingshi Zhang,

Shenyang Pharmaceutical University,
China

Shuang Cao,
Wuhan Institute of Technology, China

*Correspondence:
Xiu-hua Zhou

cmu4h_zxh@126.com
Jun-feng Hao

ygzhjf85@gmail.com

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 16 October 2021
Accepted: 01 November 2021
Published: 26 November 2021

Citation:
Zou X-z, Hao J-f and Zhou X-h (2021)
Inhibition of SREBP-1 Activation by a

Novel Small-Molecule Inhibitor
Enhances the Sensitivity of

Hepatocellular Carcinoma Tissue to
Radiofrequency Ablation.
Front. Oncol. 11:796152.

doi: 10.3389/fonc.2021.796152

ORIGINAL RESEARCH
published: 26 November 2021

doi: 10.3389/fonc.2021.796152
Inhibition of SREBP-1 Activation
by a Novel Small-Molecule Inhibitor
Enhances the Sensitivity of
Hepatocellular Carcinoma Tissue
to Radiofrequency Ablation
Xiao-zheng Zou1, Jun-feng Hao2* and Xiu-hua Zhou1*

1 Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, China,
2 Department of Nephrology, Affiliated Hospital of Guangdong Medical University/Institute of Nephrology and Zhanjiang Key
Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang City, China

Radiofrequency ablation (RFA) is an important strategy for treatment of advanced
hepatocellular carcinoma (HCC). However, the prognostic indicators of RFA therapy are
not known, and there are few strategies for RFA sensitization. The transcription factor
sterol regulatory element binding protein 1 (SREBP)-1 regulates fatty-acid synthesis but
also promotes the proliferation or metastasis of HCC cells. Here, the clinical importance of
SREBP-1 and potential application of knockdown of SREBP-1 expression in RFA of
advanced HCCwas elucidated. In patients with advanced HCC receiving RFA, a high level
of endogenous SREBP-1 expression correlated to poor survival. Inhibition of SREBP-1
activation using a novel small-molecule inhibitor, SI-1, not only inhibited the aerobic
glycolysis of HCC cells, it also enhanced the antitumor effects of RFA on xenograft tumors.
Overall, our results: (i) revealed the correlation between SREBP-1 and HCC severity; (ii)
indicated that inhibition of SREBP-1 activation could be a promising approach for
treatment of advanced HCC.

Keywords: hepatocellular carcinoma, sterol regulatory element binding protein-1, radiofrequency ablation, aerobic
glycolysis, small-molecule inhibitor, RFA sensitization
INTRODUCTION

Radiofrequency ablation (RFA) is an important local therapeutic strategy for advanced
hepatocellular carcinoma (HCC) (1–3). For patients with advanced HCC who are not suitable
for resection, RFA can damage HCC tissue accurately and minimize damage to healthy liver tissue
(4–6). RFA is considered to have several advantages, but its application can pose two major
problems. First, incomplete RFA can change the characteristics of HCC tissue (e.g., induce
epithelial–mesenchymal transition (EMT) of HCC tissue) and induce the recurrence and
metastasis of HCC (7, 8). Second, the prognosis of HCC patients after RFA is not known (9–11).
Hence, research on RFA against HCC is important.

A very high uptake of glucose mediates the aberrant metabolism of HCC cells (12, 13). This
feature participates in regulation of the physical processes HCC cells, including proliferation,
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metastasis, EMT, or the resistance of HCC cells to antitumor
therapies (14–16). Therefore, aberrant glucose metabolism in
HCC cells could be a useful target to enhance the sensitivity of
HCC to antitumor therapies.

Increasing evidence has revealed that lipid metabolism plays
an important part in the high capability of HCC cells to uptake
glucose (17–19). Almost 60% of the glucose taken up by HCC
cells is used for the synthesis of fatty acids (17–19). Sterol
regulatory element binding protein (SREBP)-1 is the most
important transcription factor in lipid metabolism (20–22). In
HCC cells, SREBP-1 mediates the transcription of genes related
to the syntheses of fatty acids and triglycerides (17–19).
Inhibition of activation of SREBP-1 via small-molecule
inhibitors or small interfering (si)RNAs of SREBP-1 not only
reduces the syntheses of fatty acids and triglycerides, it also
inhibits glucose uptake (23, 24). In the present work, the results
indicated that SREBP-1 is a promising target for RFA treatment.
Inhibiting of SREBP-1 via its small molecular inhibitor SI-1
(SREBP-1 inhibitor) enhanced the sensitivity of HCC cells to
RFA. This study not only expands our understanding of SREBP-
1, but also provides new enlightenment for RFA treatment
of HCC.
MATERIALS AND METHODS

Clinical Samples and Cell Lines
Eighty-one patients with advanced HCC who underwent RFA
were included in the present work. The protein samples extracted
from these clinical specimens were provided by Professor Hui
Xie (Beijing 302nd Hospital, Beijing, China), as described
previously (25). These tissue specimens have been prepared as
samples for SDS-PAGE. The baseline information of patients
were shown as Supplemental Table 1. The actual situation is: the
sample used for western blot detection, the character is the
sample extracted by SDS-PAGE loading buffer (Use PCR tubes
for aliquoting), stored at -80 degrees; it is frozen and mailed by
dry ice preservation and ultra-low temperature.

For cell lines, L-02 (hepatic non-tumor cell line) and HCC
cells lines were gifts from Prof. and Dr. Fan Yin in the
Department of Oncology, The Second Medical Center &
National Clinical Research Center of Geriatric Disease, Chinese
PLA General Hospital, Beijing, China and employed as described
in the previous publication (26). They were cultured in
Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum at 37°C in an atmosphere of 5% CO2.

In the presence work, all studies do not involve clinical trials
and do not directly use patient-sourced materials. Possible
human related may include some biochemical reagents and cell
lines, which have been approved by the Fourth Affiliated
Hospital of China Medical University.

Western Blotting and Survival Analyses
SREBP-1 expression in clinical specimens was measured by
western blotting. The expression level of SREBP-1 was
examined in the total protein samples extracted from the
clinical specimens. The antibodies used against SREBP-1 and
Frontiers in Oncology | www.frontiersin.org 2
methods of western blotting were as described in our previous
publication. SREBP-1 expression was measured by quantitative
analysis of western blots via images J (27, 28). Patients were
divided into a SREBP-1 high-level group or SREBP-1 low-level
group according to the median value of SREBP-1. Various
parameters associated with SREBP-1 expression were assessed:
time to disease progression (TTP) post-RFA; overall survival
(OS); clinical efficacy response (CER)/overall response rate [i.e.,
complete response (CR) + partial response (PR)]; disease-control
rate (DCR) [i.e., CR + PR + stable disease (SD)] (29, 30).

Small-Molecule Inhibitor of SREBP-1
A small-molecule inhibitor of SREBP-1, 1-(4-bromophenyl)-3-
(pyridin-3-yl)urea, was chemically synthesized (1H NMR (400
MHz, DMSO-d6) d(ppm): 8.90 (d, J = 29.0 Hz, 2H), 8.58 (d, J =
2.6 Hz, 1H), 8.17 (dd, J = 4.7, 1.8 Hz, 1H), 7.98–7.87 (m, 1H),
7.43 (d, J = 2.1 Hz, 4H), 7.29 [(dd, J = 8.2, 4.7 Hz, 1H), MS m/z
(M + H)+: 292.41] was also gifts from Prof. and Dr. Fan Yin in
the Department of Oncology, The Second Medical Center &
National Clinical Research Center of Geriatric Disease, Chinese
PLA General Hospital, Beijing, China. The SREBP-1 inhibitors
fatostatin (catalog number: S9785) and betulin (S4754) were
purchased from Selleck Chemicals (Houston, TX, USA). The
powder of SI-1, fatostatin, or betulin was prepared as described
in the previous publications (31–34). HCC cells were cultured
and treated with the indicated concentrations of agents, and
harvested for real-time reverse transcription-quantitative
polymerase chain reaction (RT-qPCR), 3-(4,5-Dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, or
biochemical analyses.

Subcutaneous Tumor Model and RFA
For the animal experiments (the usage of nude mice) were
reviewed and approved by the Institutional Animal Care and
Use Committee (IACUC) of China Medical University.
MHCC97-H cells were cultured and injected into nude mice
(4–6 weeks; Si-Bei-Fu Corporation, Beijing, China) to form
subcutaneous tumors (35, 36). The volume of each
subcutaneous tumor was measured as width × width × length/
2. When the volume of the subcutaneous tumor formed by
MHCC97-H cells reached 500 mm3, nude mice underwent
treatment (SI-1, RFA, or RFA + SI-1) (37).

For the RFA group, the subcutaneous tumor underwent RFA
using a thyroid-ablation needle (UniBlate 700-103587 17G; RITA,
Crystal Lake, IL, USA) at the indicated temperature (50°C, 55°C,
60°C, or 65°C) for 2 min. For the SI-1 group, nude mice received
SI-1 (5, 2, 1, 0.5, or 0.2 mg/kg) via the oral route. For the RFA +
SI-1 group, nude mice underwent RFA (50°C for 2 min) followed
by administration of SI-1 (1 mg/kg bodyweight) (37). Tumor
weights were measured using a precision balance.

Real-Time RT-qPCR
MHCC97-H cells were cultured and treated with the indicated
concentration (30, 10, 3, 1, 0.03, 0.01, or 0.003 mmol/L) of SI-1,
botulin, or fatostatin. Tumor tissues were harvested for the
subcutaneous tumor model (35, 36). The total RNA of cells or
tumor tissues was extracted and reverse-transcribed into
November 2021 | Volume 11 | Article 796152
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complimentary (c)DNA according to manufacturer (Thermo
Fisher Scientific, Waltham, MA, USA) instructions and the
methods described in our previous publications. cDNA
samples also underwent real-time RT-qPCR according to a
system from Thermo Fisher Scientific (38–40). The primers
used in the qPCR were: (1) ACC, Forward Sequence, 5’-
TTCACTCCACCT TGTCAGCGGA-3’; Reverse Sequence 5’-
GTCAGAGAAGCAGCCCATCACT-3’; (2) ACLY, Forward
Sequence, 5’-GCTCTGCCTA TGACAGCACCAT-3’; Reverse
Sequence, 5’-GTCCGATGATGGTCACTCCCTT-3’; (3) FASN,
Forward Sequence, 5-TTCTACGGCTCCACGCTCTTCC-3’;
Reverse Sequence, 5’-GAAGAGTCTTC GTCAGCCAGGA-3’;
(4) ACS, Forward Sequence, 5’-ATCAGGCTGCTCATG
GATGACC-3’; Reverse Sequence, 5’-AGTCCAAGAGCCATC
GCTTCAG-3 ’ ; (5) GLUT1, Forward Sequence , 5 ’-
TTGCAGGCTTCTCCAACTGGAC-3’; Reverse Sequence, 5’-
CAGAACCAGGAGCAC AGTGAAG-3’; (6) LDHA, Forward
Sequence, 5’-GGATCTCCAACATGGCAGCCTT-3’; Reverse
Sequence, 5’-AGACGGCTTTCTCCCT CTTGCT-3’; (7)
HIF1a, Forward Sequence, 5’-TATGAGCCAGAAGAACT
TTTAGGC-3’; Reverse Sequence, 5’-CACCTCTTTTGGCAA
GCATCCTG-3 ’ ; (8) EPAS-1, Forward Sequence, 5 ’-
CTGTGTCTGAGAAGAGTAACTTCC-3’; Reverse Sequence,
5’-TTGCCATAGGCTG AGGACTCCT-3’; (9) N-cadherin,
Forward Sequence, 5’-CCTCCAGAGTTTACTGC CATGAC-
3’; Reverse Sequence, 5’-GTAGGATCTCCGCC ACTGATTC-
3’; (10) Vimentin, Forward Sequence, 5’-AGGCAAAGCAG
GAGTCCACTGA-3’; Reverse Sequence, 5’-ATCTGGCG
TTCCAGGGACTCAT-3’.

Biochemical Analyses
Assays for measurement of glycolytic activity were carried out in
HCC cells and tumor tissues (26, 41–43). We used kits for glucose
uptake (colorimetric; ab136955; Abcam, Cambridge, UK), lactate
(Lactate-Glo™; Promega, Fitchburg, WI, USA), adenosine
triphosphate (colorimetric/fluorometric; ab83355; Abcam), and
lactate dehydrogenase (LDH; MAK066; Sigma–Aldrich, Saint
Louis, MO, USA). The results are shown as heatmaps following
the methods described by Zhou et al., 2020 (44).

Statistical Analyses
SPSS 9.0 (IBM, Armonk, NY, USA) was used for statistical
analyses. Origin 6.0 (OriginLab, Northampton, MA, USA) was
employed to calculate the half-maximal inhibitory concentration
(IC50) of agents (45, 46). The Student’s t-test (single-tail) was
used to compare two categorical variables. P < 0.05 was
considered significant.
RESULTS

A High Level of Endogenous SREBP-1 Is
Associated With a Poor Outcome After RFA
SREBP-1 expression in clinical specimens was measured to
reveal the roles of this transcription factor in HCC and the
effect of SREBP-1 on RFA when treating HCC. The prognosis of
patients with a low SREBP-1 level (SREBP-1 low group, n=37)
Frontiers in Oncology | www.frontiersin.org 3
who received RFA was much better compared with that of
patients with a high SREBP-1 level (SREBP-1 high group,
n=37) who received RFA: the post-RFA TTP or OS of patients
with a low SREBP-1 was much longer compared with that of
patients with a high level of SREBP-1 (Figure 1 and Table 1)
(P<0.05). Moreover, patients with a low SREBP-1 level also had
better CER (CR+PT) and DCR (CR+PR+SD) compared with
those of patients with a high SREBP-1 (Table 1) (P<0.05).
Therefore, a high level of SREBP-1 was associated with a poor
prognosis of patients with advanced HCC who received RFA.

SI-1 Inhibited SREBP-1 Activation in
MHCC97-H Cells
To explore the potential strategies targeting SREBP-1, a small-
molecule inhibitor of SREBP-1, SI-1, was developed (Figure 2).
In MHCC97-H cells (a typical HCC cell line with a high level of
endogenous SREBP-1), SI-1 could inhibit SREBP-1 activation in
a dose-dependent manner: SI-1 inhibited mRNA expression of
the downstream genes of SREBP-1 (ACC, ACLY, FASN and ACS)
(Table 2). Moreover, SI-1 inhibited Warburg effect-related
features (glucose uptake, LDH activity, increased production of
lactate and adenosine triphosphate), and expression of
metabolism and hypoxic stress-related genes (GLUT1, LDHA)
in the dose-dependent manner. EMT is an important regulator of
the resistance of HCC cells to antitumor strategies. Hence,
expression of the EMT-related indicators Twist, Snail, N-
cadherin, and vimentin was examined. SI-1 inhibited EMT of
MHCC97-H cells in a dose-dependent manner (Table 2). IC50

for SI-1 was much lower than that of the SREBP-1 inhibitors
fatostatin or betulin (Table 2), which suggested that SI-1 was a
more potent inhibitor of SREBP-1 activation than fatostatin
or betulin.

The Optimal Condition of SI-1 or RFA on
Tumors Formed by MHCC97-H Cells
The results stated above suggested SREBP-1 tobeapromising target
to enhance the effects of RFA against HCC. Therefore, to explore a
therapeutic strategy combining SI-1 and RFA, the optimal
condition of SI-1 or RFA was examined in subcutaneous tumors
formed byMHCC97-H cells in nudemice. RFA carried out at 65°C
for 2 min could lower the volume of HCC tissue significantly
(Figures3A–E).TheRFAconditionsof60°C for 2minor55°C for 2
min also shrank HCC tissues (Figures 3A–E). RFA carried out at
50°C; for 2min reducedHCC tissues only slightly but inducedEMT
of HCC cells in tumor tissues: increased expression of two
mesenchymal markers (N-cadherin and vimentin) suppressed
expression of an epithelial marker (E-cadherin) (Figure 3F).
Therefore, RFA at 50°C for 2 min was chosen as the optimal
condition of RFA for the next experiment.

Oral administration of SI-1 inhibited the subcutaneous
growth of MHCC97-H cells in a dose-dependent manner
(Figures 4A–E). SI-1 (0.5–5 mg/kg) inhibited the subcutaneous
growth of MHCC97-H cell (Figures 4A–E). SI-1 (0.2 mg/kg)
could not exert antitumor activity but could significantly inhibit
SREBP-1 activation (Figure 4F), the Warburg effect in HCC cells
in tumor tissues (Figure 4F), or EMT (Figure 4F). Therefore, SI-
1 (0.2mg/kg) was chosen for the next experiment.
November 2021 | Volume 11 | Article 796152
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SI-1 Enhanced the Antitumor Effect of RFA
Upon HCC
A combination of SI-1 (which represses SREBP-1 activation) and
RFA on HCC was examined further. SI-1 (0.2 mg/kg) enhanced
the antitumor effect of RFA (5°C for 2 min) (Figure 5). Use of SI-
1 alone or RFA alone did not have a significant antitumor effect.
The combination of SI-1 with RFA induced significant shrinkage
of tumor volume (Figures 5A–E). SI-1 treatment also inhibited
EMT of HCC cells in tumor tissues induced by RFA at 50°C for 2
min (Figure 5F). Therefore, SI-1 enhanced the antitumor effect
of RFA upon HCC.
DISCUSSION

Human malignancies (especially HCC) are often characterized
by anaerobic glycolysis/Warburg effect (47–49). These features
aid energy generation for cellular proliferation and participate in
alteration of the tumor microenvironment (49–51). Lipid
Frontiers in Oncology | www.frontiersin.org 4
metabolism is closely related to glucose metabolism (26).
Hence, knockdown of SREBP-1 expression could inhibit
glucose uptake or anaerobic glycolysis. Yin et al. showed that
downregulation of SREBP-1 expression by betulin could enhance
the sensitivity of HCC cells to molecular-targeted agents (26).
Here, we revealed the novel roles of SREBP-1 in HCC regulation:
SREBP-1 was related to the resistance of HCC to RFA, and
knockdown of SREBP-1 expression was a promising approach to
enhance the sensitivity of HCC cells to RFA. To inhibit SREBP-1
activation, a novel small-molecule inhibitor of SREBP-1, SI-1,
was synthesized. We discovered that a high level of SREBP-1 in
clinical specimens was correlated with a poor prognosis of HCC
patients after RFA. SI-1 could inhibit SREBP-1 as well as the
anaerobic glycolysis and EMT of HCC cells. Treatment with SI-1
enhanced the antitumor effect of RFA on HCC cells. Therefore,
targeting SREBP-1 could be valuable for HCC treatment
using RFA.

RFA is the most common therapeutic strategy for advanced-
stage HCC (52–54). RFA is considered to damage tumor tissues/
TABLE 1 | SREBP1 expression and clinical outcome of sorafenib treatment.

SREBP1 protein expression P values

High (n = 37) Low (n = 37)

TTP 10.0 12.0 0.005
7.2-12.7 (M) 10.9-13.6 (M)

OS 11.0 16.0 0.024
8.7-13.3 (M) 10.7-21.3 (M)

Overall response rate (CR+PR) 4 (10.81%) 17 (45.94%) 0.015
Disease control rate (CR+PR+SD) 16 (43.24%) 28 (75.67%) 0.027
November 2021 | Volume 11 | Artic
TTP, time to progress; OS, overall survival; PR, partial remission; CR, complete remission; SD, stable of disease; M, months.
A B

DC

FIGURE 1 | The correlation between SREBP-1’s expression with the prognosis of HCC patients post RFA. HCC tumor tissue obtained by coaxial puncture, using
WB to detect the expression level of SREBP-1 in the tissue. (A) Representative images of WB results of 5 patients in the high expression group and 5 patients in the
low expression group. (B) The results of WB were quantitatively analyzed by Image J software, and the relative expression level was calculated with the result of one
of the specimens as unit 1. Divide patients into two groups based on the median relative expression level (SREBP-1 high group; SREBP-1 low group). (C, D) For
SREBP-1 high group and SREBP-1 low group patients, combined with clinical data for survival analysis to determine the patient’s OS and TTP. *P < 0.05.
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lesions and elicit little damage to normal liver tissues/adjacent liver
tissue (52–54). Nevertheless, RFA has three main limitations. First,
research has suggested that incomplete RFA may induce cellular
stress and lead to pathologic changes (e.g., EMT) (55, 56). Second,
the temperature used for RFA cannot be increased indefinitely
otherwise liver injury and incomplete RFA will occur (55, 56).
Third, incomplete RFA may also induce EMT of HCC cells in
tissue to promote HCC recurrence (55, 56). We showed that
SREBP-1 expression was closely related to the prognosis of HCC
patients treated by RFA, and that use of small-molecule inhibitors
of SREBP-1 could also inhibit metabolism-related EMT. It has
been demonstrated that metabolic abnormalities (e.g., anaerobic
glycolysis) are closely related to drug resistance (including
resistance to molecular-targeted drugs) and stress/injury
response (e.g., endoplasmic reticulum stress). Our study links
RFA, lipid metabolism, and sugar metabolism in cancer cells.
Incomplete RFA is an important factor in RFA research/
treatment. We simulated incomplete RFA on nude mice. The
RFA condition of 50°C for 2 min did not inhibit the subcutaneous
growth of MHCC97-H cells in nude mice. The tumor volume
shrank if RFA was supplemented with SI-1 treatment. Hence,
Frontiers in Oncology | www.frontiersin.org 5
knockdown of SREBP-1 expression may exert a sensitizing effect
on RFA against HCC. Simultaneously, SI-1 may inhibit EMT in
HCC cells induced by incomplete RFA (50°C for 2 min). Hence,
SI-1 could be employed to avoid the problems caused by
incomplete RFA and to achieve lower RFA intensity in
combination therapy to achieve more robust anti-tumor activity.

The structure of SI-1 that we synthesized was analyzed.
Figure 6 shows the chemical structure core of SI-1. In this
structure, R1 can be C1–C6 alkyl, C3–C10 cycloalkyl, C1–C6
alkoxy, C1–C6 alkylthio, C3–C10 cycloalkoxy, or C1–C6
alkylene groups, alkenynyl heterocycle, heterocycloalkyl,
substituted heterocycloalkyl, aromatic ring, aromatic
heterocycle, or benzo aromatic heterocycle, wherein the C1–C6
alkyl, aromatic ring, aromatic heterocycle, benzene, and aromatic
heterocyclic ring is unsubstituted or substituted by 1, 2, 3, 4 or 5
independently substituents selected from –F, –Cl, –Br, –I, nitro,
hydroxyl, amino, cyano, C1–C6 alkylthio, C1–C6 alkyl, C1–C6
alkenyl, C1–C6 alkynyl, C1–C6 alkoxy, or aromatic groups. The
chemical structure of SI-1 can be modified in future studies.

It has been confirmed that SREBP-1 is an important regulator
of many liver diseases (57, 58). On the one hand, SREBP-1 plays
TABLE 2 | The activation of SI-1 compared with the Betulin or Fatostatin.

Factors SI-1 Betulin Fatostatin

The IC50 values (mmol/L)

ACC 0.50 ± 0.01 1.48 ± 0.29 0.98 ± 0.15
ACLY 0.65 ± 0.08 1.27 ± 0.44 1.63 ± 0.53
FASN 0.34 ± 0.03 1.56 ± 0.46 1.03 ± 0.40
ACS 0.54 ± 0.13 1.08 ± 0.20 0.91 ± 0.15
GLUT1 0.72 ± 0.05 1.82 ± 0.24 1.53 ± 0.78
LDHA 0.61 ± 0.10 1.64 ± 0.62 1.15 ± 0.60
HIF-1a 0.88 ± 0.25 2.04 ± 0.65 1.17 ± 0.55
EPAS-1 0.78 ± 0.41 1.99 ± 0.11 1.33 ± 0.27
LDHA 0.79 ± 0.30 1.64 ± 0.33 1.20 ± 0.72
EPAS-1 0.86 ± 0.53 2.13 ± 0.25 1.59 ± 0.84
LDHA 0.26 ± 0.04 1.97 ± 0.78 1.35 ± 0.78
ATP 0.31 ± 0.02 1.82 ± 0.67 0.63 ± 0.11
Lactate 0.28 ± 0.08 1.71 ± 0.81 0.87 ± 0.05
Glucose uptake 0.47 ± 0.07 1.28 ± 0.37 0.45 ± 0.18
N-cadherin 0.79 ± 0.26 1.63 ± 0.25 0.91 ± 0.36
Vimentin 0.75 ± 0.32 2.06 ± 0.90 0.74 ± 0.09
November 2021 | Volume 11 | Ar
FIGURE 2 | The structure of SI-1, a novel inhibitor of SREBP-1.
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an important role in metabolic diseases such as NAFLD (57, 59).
On the other hand, SREBP-1 is also clearly regarded as a positive
regulator of the occurrence and progression of HCC. In HCC
cells, SREBP-1 can promote the proliferation, metastasis and
invasion of HCC by promoting lipid metabolism and sugar
Frontiers in Oncology | www.frontiersin.org 8
metabolism (60–63). There are many reports on the molecular
mechanism of SREBP-1 (19, 64–70). The activity of SREBP-1 is
closely related to mTOR, c-MYC, AMPK and P38, and is also
regulated by CAV1 (19, 64–70). These related studies have
shown that SREBP-1 plays an important role in the occurrence
A B

D

E F

C

FIGURE 5 | The in vivo antitumor activation of SI-1 with RFA on MHCC97-H cells. The MHCC97-H cells were cultured and injected into the subcutaneous position
to form the subcutaneous tumor tissues. Then, the mice were received the RFA (50°C for 2min) or SI-1 (0.2 mg/kg) or RFA + SI-1. The results were shown as
images of tumors (A), the tumor volumes (B), the inhibitory rates according to the tumor volumes (C), the tumor weights (D), the inhibitory rates according to the
tumor weights (E), and the heat-map (F). *P < 0.05.
FIGURE 6 | The core structure of SI-1. R1 and R2 refers to the position of the two substituents.
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and progression of HCC and is an ideal intervention target for
HCC treatment.

Small molecule inhibitors are an ideal mode of action for
specific targets (71–74). The existing SREBP-1 small molecule
inhibitors are mainly Betulin, Pseudoprotodioscin and Fatostatin
(75–77). In this study, a new SREBP-1 small molecule inhibitor
SI-1 was prepared, and two existing inhibitors: Betulin and
Fatostatin were used. The activity of SI-1 may be better than
the two existing inhibitors. For these inhibitors, the main
research report is to inhibit the activity of SREBP-1 as a tool in
metabolism-related research. Betulin can exert anti-tumor
activity in HCC (78–80). Pseudoprotodioscin and Fatostatin
have been less studied in HCC, but it has also been clearly
reported in other tumor types (81–84).
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