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Abstract: Recently, Zika virus (ZIKV) has attracted much attention in consideration of its association
with severe neurological complications including fetal microcephaly. However, there are currently
no prophylactic vaccines or therapeutic drugs approved for clinical treatments of ZIKV infection.
To determine the potential anti-ZIKV inhibitors, we screened a library of clinical drugs with good
safety profiles. Erythromycin estolate (Ery-Est), one of the macrolide antibiotics, was found to
effectively inhibit ZIKV infection in different cell types and significantly protect A129 mice from
ZIKV-associated neurological signs and mortality. Through further investigation, Ery-Est was verified
to inhibit ZIKV entry by disrupting the integrity of the viral membrane which resulted in the loss of
ZIKV infectivity. Furthermore, Ery-Est also showed inhibitory activity against dengue virus (DENV)
and yellow fever virus (YFV). Thus, Ery-Est may be a promising drug for patients with ZIKV infection,
particularly pregnant women.
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1. Introduction

Zika virus (ZIKV), a mosquito-borne enveloped RNA virus, is a member of the genus of Flavivirus
in the Flaviviridae family. The Flaviviridae family also contains other enveloped viruses, such as dengue
virus (DENV), yellow fever virus (YFV), West Nile virus, and Japanese encephalitis virus, which have
resulted in epidemics and threatened public health around the world. ZIKV was initially isolated from
a sentinel rhesus monkey in Zika forest, Uganda in 1947 [1,2], and had been perceived as a less harmful
virus with sporadically infected human cases, which showed mild symptoms, including fever, malaise,
rash, and conjunctivitis. However, since 2007, the threat to public health from ZIKV has steadily
increased due to outbreaks in varying places, such as Yap Island, French Polynesia, and Micronesia [3,4].
Thus, ZIKV has been recognized as an emerging arbovirus and received attention globally. More
recently, unexpected outbreaks of ZIKV infection have occurred in Brazil and rapidly spread from South
America to Central-American and Asian countries, involving millions of residents [5]. Meanwhile, the
neurological disorders caused by ZIKV have been declared a global public health emergency by the
World Health Organization (WHO) [6].

ZIKV was found to be associated with Guillain–Barré syndrome in the epidemics of French
Polynesia, and further damage caused by ZIKV, including severe congenital malformation, optic nerve
abnormality, and reproductive system injury, have been discovered in recent ZIKV outbreaks [7–10].
Microcephaly, the most worrying abnormality caused by ZIKV, is a fetal neurodevelopmental defect
with resulting physical and learning disabilities, greatly impacting the quality of life of affected
children [11]. As the increasing cases of ZIKV sexual transmission and multiple harmful outcomes to
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fetuses have been reported, women who are pregnant or trying to conceive are now regarded as at
especially high risk for ZIKV infection, and thus the need for effective treatments has become ever
more pressing [12]. With the increasing recognition of the epidemiology and pathogenicity of ZIKV
infection, it is urgent to develop potent therapies. Currently, there are no vaccines or therapeutic drugs
approved to treat ZIKV infection, although great progress has been achieved. Many potent inhibitors,
which play roles in suppressing the virus–host interaction and membrane fusion, restraining viral
replication and translation, or disturbing autophagy, have been explored and identified in vitro and
in vivo [13–15]. However, the de novo development of a novel inhibitor requires drug design and
validation, which takes an extended amount of time. Therefore, repurposing FDA-approved medical
and pharmaceutical products may become an alternative choice to provide immediately available
drugs for patients. Many already-approved drugs have been discovered to significantly inhibit ZIKV
infection, but few can be safely used by pregnant women because most are highly toxic [16]. Thus, the
safety profile for pregnant women in the development of ZIKV inhibitors must be considered a priority.

To determine the ready-to-use inhibitors for ZIKV infection, we screened a drug library consisting
of FDA-approved medical drugs with good safety, and erythromycin estolate (Ery-Est), which could
be safely used by pregnant women, was found to inhibit ZIKV infection efficiently. Ery-Est, one of the
macrolide antibiotics, is the lauryl sulfate ester of propionyl erythromycin (Ery) (Figure 1A), and it
has commonly been used for clinical bacterial infections. Besides, some macrolide antibiotics have
been studied to treat a wide spectrum of viruses. For example, clarithromycin and the macrolide
therapy have been utilized to treat respiratory syncytial virus and Middle East respiratory syndrome
coronavirus (MERS-CoV) infection respectively, and ivermectin and azithromycin (Azi) were identified
to effectively inhibit ZIKV infection [17–23]. To the best of our knowledge, this is the first time the
anti-ZIKV activity of Ery-Est has been reported. Its antiviral effects in vitro and in vivo were also
investigated in the present study. Furthermore, we explored the inhibitory mechanism of Ery-Est
against ZIKV.

2. Materials and Methods

2.1. Cells and Viruses

BHK21, Vero, 293T, Huh7, and U-251 MG cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Biological Industries, Israel) with 10% fetal bovine serum (FBS, Biological Industries,
Beit HaEmek, Israel) and maintained at 37 ◦C with 5% CO2. The C6/36 cell was grown in DMEM
containing 10% FBS at 28 ◦C with 5% CO2.

Three ZIKV strains, SZ01 (GenBank: KU866423), FLR (GenBank: KU820897.5), and MR766
(GenBank: LC002520), were used in this study. SZ01 was originally isolated from a patient who
returned from Samoa [24]. Both FLR, isolated from the blood of a human in Colombia [25], and MR766,
isolated from a sentinel monkey in Uganda in 1947 [1], were obtained from ATCC. YFV strain 17D was
obtained from Beijing Tiantan Biological products, Ltd. and prepared as previously described [26].
DENV II strain New Guinea C was kindly provided by Zhigang Song at Shanghai Public Health
Clinical Center. The ZIKV strains SZ01 (passage 6–8), MR766 (passage 4–6) and FLR (passage 4–6),
DENV II strain New Guinea C (passage 5–7), and YFV strain 17D (passage 5–7) were used in the
experiments. Besides the ZIKV strain SZ01 prepared in Vero cells (V-ZIKV), all flaviviruses used in this
study were propagated in C6/36 cells.

2.2. Compounds

Erythromycin estolate (Ery-Est), Erythromycin (Ery), and azithromycin (Azi) powders were
bought from Santa Cruz Biotechnology, Inc. (Dallas, CA, USA) and MedChemExpress (Shanghai,
China), and the lyophilized powder was dissolved in dimethyl sulphoxide (DMSO) and then stored at
−20 ◦C.
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2.3. Plaque Assay

Viral titers were determined by plaque assay performed on BHK21 cells as previously described [27].
BHK21 cells were seeded in cell plates and incubated to a confluent monolayer at 37 ◦C with 5% CO2

for the experiments. Virus stocks or samples were serially diluted and added to cells, then incubated
for 2 h. After incubation, the media of viruses or sample dilutions were removed from BHK21 cells, and
the infected cells were covered with an overlay of DMEM containing 2% FBS and 1% low melting-point
(LMP) agarose (Promega Co., Madison, WI, USA). The plates with infected cells were further incubated
for approximately 5 days, then fixed by 4% formaldehyde and stained with 1% crystal violet for plaque
visualization. The titer of virus stock was expressed as plaque forming units (PFU)/mL.

2.4. Drug Cytotoxicity Assay

BHK21 and Vero cells were seeded at a density of 2 × 104 cells/well in 96-well plates and incubated
at 37 ◦C overnight. Then, Ery-Est and Ery, serially diluted in DMEM containing 2% FBS, were added to
cells and incubated at 37 ◦C for 3 days. Cell Counting Kit-8 (CCK8, Dojindo, Japan) was used to detect
the cell vitality as previously described [28]. In the detection using CCK8, orange-colored formazan
could be formed by WST-8 through catalyzing with dehydrogenase in living cells, and the amount
of formazan was proportional to the number of living cells. After the absorbance was determined at
450 nm wavelength, the cell proliferation was calculated according to the instruction manual.

2.5. Assays for Antiviral Activity

For the drug screen, equal volume of ZIKV strain SZ01 (100 PFU/mL) and compounds diluted in
serum-free DMEM at the final concentration of 10 µM were incubated at 37 ◦C for 1 h. BHK21 cells
(2 × 104) were infected with compounds-treated ZIKV at 37 ◦C for 12 h, followed by replacing the
viral supernatant with fresh DMEM containing 2% FBS. When the ZIKV-induced cytopathic effect
(CPE) was obvious, CCK8 was used to detect the antiviral activity of compounds according to the
instruction manual.

To evaluate the antiviral efficacy against ZIKV (SZ01, FLR, and MR766) and DENV II New Guinea
C and YFV 17D, Ery-Est and Ery were serially diluted in serum-free DMEM and mixed with 100 PFU
of viruses, and then incubated 1 h at 37 ◦C. For the plaque assay, the mixture was then added to
cells seeded in cell plates. After incubation at 37 ◦C for 2 h, the supernatant was replaced with
DMEM containing 1% LMP agarose and 2% FBS. When the viral plaque became obvious, the plaque
visualization was carried out as described above. Besides the plaque assay, CCK8 was also used to
test the inhibitory activity. The mixture was added to the cells seeded in 96-well plates and incubated
at 37 ◦C for 12 h, followed by replacing the culture supernatant with fresh DMEM containing 2%
FBS. When the ZIKV-induced cytopathic effect (CPE) was obvious, CCK8 was used to detect the
antiviral activity according to the instruction manual. Data were collected by microplate reader (Infinite
M200PRO, Tecan, Morrisville, NC, USA).

To test the inhibitory activity of Ery-Est against ZIKV in neuronal cells, U-251 MG cells were used.
Briefly, Ery-Est and Ery were serially diluted in serum-free DMEM and mixed with 2 × 104 PFU of
viruses and then incubated 1 h at 37 ◦C, and the mixture was then added to U-251 MG cells (2 × 105).
After incubation at 37 ◦C for 48 h, the percentage of infected cells was determined by flow cytometry
and normalized to untreated infected cells.

The inhibition of Ery-Est against ZIKV in multiple rounds of infection was performed as previously
described [29]. BHK21 cells (2 × 105) were infected by 2 × 103 PFU of ZIKV treated with Ery-Est (20
µM), Ery (20 µM), and vehicle (control) and incubated at 37 ◦C. The supernatant was collected at
different timepoints after infection, and the ZIKV titers of collected supernatants were respectively
detected by the plaque assay. Additionally, to test the inhibitory activity of Ery-Est against high viral
doses of ZIKV, the experiment was performed with a multiplicity of infection (MOI) of 0.1 as previously
described [30]. Briefly, BHK21 cells (2 × 105) were infected with 2 × 104 PFU of viruses treated by



Viruses 2019, 11, 1064 4 of 17

Ery-Est (20 µM, 10 µM, 5 µM), Ery (20 µM), and vehicle (control). The supernatant was respectively
collected at 48 h post infection, and the ZIKV titers of collected supernatants were detected by the
plaque assay.

The pseudotyped MERS-CoV and vesicular stomatitis virus (VSV) were chosen as control
enveloped viruses and prepared as previously described [27,31,32]. 293T cells were co-transfected with
plasmid encoding VSV-G protein or MERS-CoV S protein and PNL4-3.luc.RE using VigoFect (Vigorous
Biotechnology, Beijing, China). After 48 h, the supernatants of pseudotyped MERS-CoV and VSV were
collected to infect Huh7 cells. The inhibitory activity of Ery-Est on these viruses was measured after
3 days by the luciferase assay system (Promega Co., Madison, WI, USA).

2.6. Immunofluorescence Staining Assay

To confirm the inhibitory activity of Ery-Est on ZIKV infection, BHK21 and Vero cells were seeded
onto coverslips at a density of 2 × 105 cells/well in 24-well plates and incubated for 24 h. The mixture
of 2 × 103 PFU of ZIKV and the equal volume of serially diluted Ery-Est (20, 10, and 5 µM) and Ery
(20 µM) was incubated for 1 h at 37 ◦C and then added to cells. After 24 h, the culture supernatant
was replaced by DMEM with 2% FBS. About 4 days later, cells were fixed by 4% paraformaldehyde
(PFA; Sigma Aldrich, St Louis, MO, USA), perforated by 0.2% Triton X-100, blocked with 3% BSA
(Amresco, LLC, Solon, OH), and incubated with anti-E mAb 4G2 (10 µg/mL) at 4 ◦C overnight. After
5 washes, the cells were incubated with FITC-labeled rabbit anti-mouse IgG (1:1000, Dako, Glostrup,
Denmark) for 1 h at room temperature. After 5 washes, the coverslips were sealed with Prolong
Gold Antifade reagent (Thermo Fisher Scientific, Waltham, MA, USA) and scanned with a Leica SP8
confocal microscope.

2.7. Time-of-Addition Assay

To determine at which stage the drug displayed inhibitory efficiency, a time-of-addition assay
was developed as previously described [27,33]. BHK21 cells were incubated at 37 ◦C overnight to be
infected with 100 PFU of ZIKV. Ery-Est (20 µM) was added to the infected cells at 0, 1, 2, 4, 8, 10 h post
infection. After incubation at 37 ◦C for 12 h, the supernatant was replaced with DMEM containing 1%
LMP agarose and 2% FBS. After incubation for approximately 5 days, infected cells were fixed by 4%
formaldehyde and stained with 1% crystal violet for plaque visualization.

For the entry experiment, BHK21 cells were infected with ZIKV in the presence of Ery-Est at 37 ◦C
for 1 h, followed by the washes to remove unbound viruses and drugs. For the attachment assay, cells
were infected with ZIKV in the presence of Ery-Est at 4 ◦C for 1 h, and then were washed to remove
unbound viruses and drugs. For the fusion assay, BHK21 cells were firstly infected with ZIKV at 4 ◦C
for 1 h to allow viral attachment. After three washes to remove unbound viruses, Ery-Est was added
to cells and incubated at 37 ◦C for 1 h. Then the drug was removed. In the post-entry assay, after
BHK21 cells were infected with ZIKV at 37 ◦C for 1 h to allow viral entry, the drug was added to cells
and incubated at 37 ◦C for 12 h. Finally, the supernatant was replaced with DMEM containing 1%
LMP agarose and 2% FBS. After incubation for approximately 5 days, infected cells were fixed by 4%
formaldehyde and stained with 1% crystal violet for plaque visualization. Azi, Ery, and DMSO were
also included.

2.8. Assay to Detect Inactivated Virions

Inactivated virions were separated and detected as previously described [27,34]. Simply, 100 µL
Ery-Est and Ery were serially diluted and mixed with 100 µL viruses (500 PFU). After incubation
at 37 ◦C for 2 h, 50% PEG-8000 (Amersco) and 5 M NaCl were added to the mixture at the final
concentration of 10% and 0.67 M respectively, and followed by the incubation on ice for 2 h. Then, the
treated viruses were centrifuged for 1 h at 20,200 g at 4 ◦C. The supernatant containing the free drugs
was removed, and the pellet containing viral particles was washed by 3% PEG-8000 in PBS containing
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10 mg/ mL BSA (Amresco, West Chester, PA, USA). After centrifugation, the viruses in the pellet were
resuspended in DMEM and the infectivity of viral particles was detected by plaque assay.

2.9. RNase Digestion Assay and RT-qPCR

To detect the genomic RNA released from the ZIKV particles, the RNase digestion assay and
RT-qPCR were developed as previously described [27,35]. Briefly, Ery-Est and Ery were incubated
with ZIKV (1 × 103 PFU) at 37 ◦C for 2 h. Then, the released RNA from treated ZIKV was digested by
micrococcal nuclease (New England BioLabs, Ipswich, MA, USA) for 1 h at 37 ◦C, followed by the
inactivation of the residual RNase. Then, the undigested genomic RNA inside the unbroken virus
was extracted using the EasyPure Viral DNA/RNA Kit (Transgen Biotech, Beijing, China) and detected
using TransScript II Green One-Step qRT-PCR SuperMix (Transgen Biotech, Beijing, China) and the
Master Cycler Ep Realplex PCR system (Eppendorf, Hamburg, Germany) in accordance with the
manufactures’ instructions. The primers used to detect the RNA sequences coding viral E protein were
as follows: F1 (5′-TGGAGGCTGAGATGGATGG-3′)/R1 (5′-GAACGCTGCGGTACACAAGGA-3′).

2.10. Sucrose Density Gradient Assay

ZIKV (1 × 106 PFU) with 100 µM Ery-Est, Ery, 1% Triton X-100, and 1% DMSO treatments
respectively or without treatment were incubated at 37 ◦C for 2 h. Then, the treated or untreated ZIKV
was gently loaded onto the top of the sucrose step gradient (20, 30, 40, 50, 60, and 70%), followed by
centrifugation in a swinging bucket rotor (SW41Ti, Beckman Coulter, Brea, CA, USA) using an Optima
L-100 XP ultracentrifuge (Beckman Coulter) at 107,170 g for 3 h at 4 ◦C. Fractions were collected from
the top to bottom and detected for E protein by western blot and viral genomic RNA by RT-qPCR.
Anti-E mAb 4G2 (10 µg/mL) was used to detect the E protein [27].

2.11. Ethics Statement

All animal experiments were carried out on the strict basis of ethical guidelines, Animal Welfare
Act, and the references of Accreditation of Laboratory Animal Care and other national regulations
and rules relating to animals. All animal operational protocols were approved by the Institutional
Laboratory Animal Care and Use Committee (IACUC) and the Laboratory Animal Management Ethics
Committee at Shanghai Public Health Clinical Center (2016-A021-01) (Approved on 8 September 2016).

2.12. Antiviral Efficiency of Ery-Est in A129 Mice

A129 mice used in this study were bred at the Department of Laboratory Animal Science of
Shanghai Public Clinical Center under specific-pathogen-free conditions.

To evaluate the protective efficiency of Ery-Est in vivo, A129 mice were used as previously
described [27,36]. Forty-eight 4-week-old A129 mice were randomly assigned into six groups and three
groups were infected with ZIKV strain SZ01 intraperitoneally (i.p.) at a dose of 1 × 105 PFU/ mouse.
At 1 h post ZIKV challenge, infected mice were i.p. administrated with Ery-Est and Ery at 50 mg/kg of
body weight or vehicle control (n = 8) once a day for 7 consecutive days, followed by observations of
body weight, clinical syndrome, and mortality of mice, and it was deemed to be protected if a mouse
survived to 21 days post infection (dpi). The viral RNA loads of sera were measured 2 dpi by RT-qPCR.
The grade clinical signs were scored as previously described [37]: 0, healthy; 1, lethargy and inactivity;
2, wasting; 3, limb weakness; 4, hind-limb or fore-limb paralysis and tremors; and 5, moribund or
death. Mice administrated with heat-inactivated ZIKV (iZIKV) or only administrated with Ery-Est
and Ery at 50 mg/kg of body weight were used as mock controls. The above animal studies were
conducted in Biosafety Level 2 facility at Shanghai Public Health Clinical Center with Institutional
Biosafety Committee approval.

2.13. Antiviral Efficiency of Ery-Est in Pregnant C57BL/6 Mice

Antiviral efficiency of Ery-Est in pregnant mice was performed as previously described [27].
Briefly, twenty pregnant C57BL/6 mice (10–12 weeks old, E12–14) were randomly assigned into four
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groups (n = 5). One group infected with heat-inactivated ZIKV (iZIKV) was used as mock controls,
and other three groups were i.p. infected with ZIKV strain SZ01 at a dose of 2 × 105 PFU/mouse. After
1 h, infected mice were i.p. administrated with Ery-Est and Ery at 50 mg/kg of body weight or vehicle.
At 1 day post infection, pregnant mice were retro-orbitally bled to measure viraemia by RT-qPCR.
Three embryos of each mouse were randomly collected to detect viral RNA loads of placentas and fetal
heads from those collected embryos.

2.14. Statistical Analysis

All statistical analyses were carried out by GraphPad Prism Software 6.0 (GraphPad Prism
Software Inc., CA, USA). The log-rank (Mantel Cox) test was conducted to compare the survival curves.
Data was given as mean ± SD as indicated. * p < 0.05 was considered significant. “n” refers to the
sample size.

3. Results

3.1. Ery-Est Inhibited ZIKV Infection in Different Cell Types

To determine the inhibitory activity of Ery-Est against ZIKV, the plaque assay was used as it
could precisely exhibit the inhibitory effects. Ery-Est and Ery of serially diluted concentrations were
incubated with ZIKV strain SZ01 at 37 ◦C for 1 h, and then the treated viruses were added to BHK21
cells, which were reported to be susceptible to ZIKV and develop obvious cytopathic effects (CPE)
after infection [38], and the ZIKV-forming plaques were presented visually by crystal violet dyeing.
As shown in Figure 1B, numbers of ZIKV plaques were reduced more as the concentration of Ery-Est
increased. There were scarcely any plaques formed with the Ery-Est treatment of 10 µM or more,
while plaques treated by Ery of any concentrations used in the assay were generally unchanged.
This suggests that Ery-Est inhibits ZIKV infection in a dose-dependent manner. The 50% inhibitory
concentration (IC50) value of Ery-Est against ZIKV was 3.22 ± 0.28 µM in the plaque assay (Figure 1C).
To test the inhibitory activity of Ery-Est against ZIKV in neuronal cells whose damage caused by
ZIKV was especially serious, which would reduce fetal brain growth, U-251 MG cells were infected by
ZIKV with serially diluted Ery-Est and Ery treatments. It was found that Ery-Est significantly reduced
infection rates of U-251 MG cells with an IC50 value of 7.14 ± 0.96 µM (Figure 1D).

We also developed the immunofluorescence staining assay to verify the anti-ZIKV activity of
Ery-Est at three different concentrations, and the results were in accordance with the data from the
plaque assay. The expression of ZIKV E protein was almost completely blocked by Ery-Est at the
concentration of 10 µM and nearly 50% inhibited at the concentration of 5 µM both in BHK21 and Vero
cells (Figure 1E). Furthermore, CPE of ZIKV in BHK21 and Vero cells would make cells progress to
necrosis and abscission, and their viabilities, thus, could be detected by CCK8, which could evaluate
ZIKV infection indirectly. As a result, Ery-Est was testified to inhibit ZIKV strain SZ01 infection with
IC50 values of 3.55 ± 0.46 and 3.97 ± 0.09 µM in BHK21 and Vero cells respectively (supplementary
Figure S1A,B). Taken together, these data indicate that Ery-Est notably inhibits ZIKV infection in
different cell types, including neuronal cells.

In addition, to monitor the inhibitory activity of Ery-Est against viral growth, Ery-Est was tested to
inhibit ZIKV infection in a multistep growth curve. It was demonstrated that Ery-Est greatly decreased
ZIKV titers (supplementary Figure S2A) in multiple rounds of infection, suggesting that Ery-Est has a
strong and lasting inhibitory effect on ZIKV infection. Besides, it was also shown that Ery-Est could
exhibit inhibitory activity against ZIKV infection even with relatively higher viral doses (Figure S2B),
and viral titers were reduced by treatment of different concentrations of Ery-Est. Treatment of 5 µM
Ery-Est decreased viral titers by approximately 80% compared with control group, indicating that
Ery-Est remained effective against relatively higher dose infection of ZIKV.
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Figure 1. The molecular formula of erythromycin estolate (Ery-Est) and Ery and their inhibitory
activity against Zika virus (ZIKV) in different cell types. (A) The molecular formula of Ery-Est and Ery.
(B) BHK21 cells (2 × 106) were infected by ZIKV strain SZ01 that were treated with serial concentrations
of Ery-Est and Ery, the infected cells were then covered with an overlay of Dulbecco’s modified
Eagle’s medium (DMEM) containing 2% fetal bovine serum (FBS) and 1% low meliting-point (LMP)
agarose. After incubation for about 5 days, infected cells were stained with 1% crystal violet for plaque
visualization and (C) the inhibitions of infection were calculated. The experiment was tested in triplicate
and data are represented as means ± SD. (D) U-251 MG cells (2 × 105) were infected by ZIKV treated
with different concentrations of Ery-Est and Ery. The percentage of infected cells at 48 h post infection
was determined by flow cytometry and normalized to untreated infected cells and the inhibitory
percentages were calculated. The experiment was tested in triplicate and data are represented as means
± SD. (E) BHK21 and Vero cells (2 × 105) were infected with ZIKV strain SZ01 and treated by Ery-Est
and Ery, then the ZIKV infection was evaluated by immunofluorescence staining after 4 days. ZIKV
E protein were stained by mAb 4G2 (green); nuclei were stained by 4,6-diamidino-2-phenylindole
(blue), scale bar: 50 µm. Each experiment was repeated at least twice and similar results were obtained.
Statistical analysis: Two-way ANOVA with Sidak’s multiple comparisons for (C) and (D). * p < 0.05;
**** p < 0.0001.
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3.2. Ery-Est Inhibited ZIKV Strains FLR and MR766, DENV II, and YFV 17D Infections

As Ery-Est was demonstrated to potently inhibit ZIKV strain SZ01, we then evaluated its
inhibitory activity against other ZIKV strains through plaque assay. As shown in Figure 2A,B, Ery-Est
significantly inhibited the infections of ZIKV strains FLR and MR766 with IC50 values of 7.65 ± 1.77 and
7.15 ± 0.96 µM respectively. Similar to strain SZ01, ZIKV strains MR766 and FLR were approximately
half inhibited by micromole Ery-Est, suggesting that Ery-Est could broadly inhibit ZIKV strains that
were isolated from rhesus monkeys or patients in different areas of the world.
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Figure 2. Inhibition of Ery-Est against flavivirus infection with a broad spectrum and its cytotoxicity.
BHK21 cells (2 × 106) were infected by ZIKV strains (A) FLR, (B) MR766, (C) DENV II, and (D) YFV
17D with the treatment of serial concentrations of Ery-Est and Ery, and then covered with Dulbecco’s
modified Eagle’s medium (DMEM) containing 2% FBS and 1% LMP agarose. After incubation for about
5 days, infected cells were stained with 1% crystal violet for plaque visualization and the inhibitions of
infection were calculated. Huh7 cells (2 × 104) were infected by (E) pseudotyped MERS-CoV and (F)
VSV with the treatment of Ery-Est and Ery, the inhibitory activity was measured by the luciferase assay
systems after incubation for 3 days. (G) BHK21 and (H) Vero cells (2 × 104) were treated with Ery-Est
and Ery for 72 h, and the cell counting kit-8 (CCK8) was used to detect cell viability. The experiments
were tested in triplicate and data are represented as means ± SD. Each experiment was repeated at least
twice and similar results were obtained. Statistical analysis: Two-way ANOVA with Sidak’s multiple
comparisons for (A–F). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Following this, we also researched whether Ery-Est was able to inhibit other mosquito-borne
flaviviruses, such as DENV and YFV. It was demonstrated that Ery-Est potently inhibited infections
of DENV II and YFV 17D with IC50 values of about 1.22 ± 0.63 and 2.70 ± 1.03 µM respectively
(Figure 2C,D). While Ery-Est, on the other hand, showed no inhibitory activity against other enveloped
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viruses of pseudotyped MERS-CoV and VSV at the concentration range tested (Figure 2E,F). To rule out
the possibility that Ery-Est only inhibits ZIKV prepared in mosquito cells, we further tested whether
Ery-Est could effectively inhibit the infection of ZIKV (V-ZIKV) produced in one kind of mammalian
cells, Vero cells. Supplementary Figure S3 showed that Ery-Est significantly inhibited V-ZIKV infection
with IC50 value of about 3.66 ± 0.11 µM, which was similar to the inhibitory activity against ZIKV
propagated in mosquito cells. Meanwhile, both Ery-Est and Ery had low toxicity to BHK21 and Vero
cells (Figure 2G,H). These results indicate that Ery-Est may effectively inhibit flavivirus infections with
a broad spectrum.

3.3. Ery-Est Inhibited ZIKV Infection in the Early Stage

To determine which step of the viral cycle was susceptible to Ery-Est inhibition, we developed
the time-of-addition experiment with different time points for Ery-Est addition post ZIKV infection.
At 12 h post infection, the supernatant was replaced with maintained medium for plaque assay to
evaluate inhibitory effects of Ery-Est at different time points. As shown in Figure 3A, addition of
Ery-Est to BHK21 cells at 0 h post infection significantly decreased the plaque numbers caused by
ZIKV, showing the potent impact on the reproduction of ZIKV. Ery-Est, with addition time from 1 h to
4 h, showed gradually lower inhibitory activity but barely suppressed virus infection from 8 h post
infection. Generally, Ery-Est inhibited ZIKV infection mainly in the early 2 h stage post infection,
indicating that Ery-Est inhibits ZIKV infection in the early stage.Viruses 2019, 11, x FOR PEER REVIEW 11 of 19 
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infected with ZIKV SZ01 and Ery-Est was added at different time points post infection. Plaque assay was
used to detect viral infection. (B) The experimental scheme of viral lifecycle. In the entry experiment,
cells were infected with ZIKV SZ01 in the presence of Ery-Est, Azi, Ery, or DMSO at 37 ◦C for 1 h,
and then the unbound viruses and drugs were washed and removed. In the attachment experiment,
virus infected cells were presented with Ery-Est, Azi, Ery, or DMSO at 4 ◦C for 1 h, allowing viral
attachment but not membrane fusion due to the low temperature, and washed to remove the unbound
viruses and drugs. In the fusion assay, cells were first infected with virus at 4 ◦C for 1 h for viral
attachment and washed to remove the unbound viruses, then incubated in the presence of Ery-Est,
Azi, Ery, or DMSO at 37 ◦C for 1 h to allow virus fusion, and unbound drugs were finally removed. In
the post-entry experiment, cells were first infected with virus at 37 ◦C for 1 h to allow virus entry into
cells and washed to remove unbound viruses, then Ery-Est, Azi, Ery, or DMSO was added to infected
cells for 12 h. Viral infection of those four experiments were evaluated by plaque assay. (C) ZIKV, (D)
DENV II, and (E) YFV 17D were respectively treated by Ery-Est at 37 ◦C for 2 h, after being separated
from Ery-Est by PEG-8000, and the viruses were measured for their infectivity. Degradation of released
genomic RNA of ZIKV treated by (F) Ery-Est or (G) Ery in an RNase digestion assay. The genomic
RNA coding E protein was detected. The separation of E protein and of ZIKV treated by Ery-Est, Ery,
1% DMSO, and Triton X-100 or with media alone through a sucrose density gradient assay. E protein in
each fraction was assessed by (H) Western blot and each percent was analyzed by Image J software
and then calculated. (I) Genomic RNA in each fraction was separated and each percent of total RNA
genome was measured by RT-qPCR. For (A) to (G), the experiments were tested in triplicate and data
are represented as means ± SD. Each experiment was repeated at least twice and similar results were
obtained. Statistical analysis: unpaired Student’s t test for (B); two-way ANOVA with Sidak’s multiple
comparisons for (C–E); one-way ANOVA with Dunnett’s multiple comparisons for (F) and (G). ns =

not significant. * p < 0.05; ** p < 0.01; *** p < 0.001. **** p < 0.0001.

Next, to confirm the particular inhibitory periods of Ery-Est against ZIKV, experiments of separate
stages that go through viral entry and post-entry stages were carried out as previously described [33].
Azi, belonging to the macrolide antibiotics as well, was used in the experiment to study inhibitory
mechanism of different macrolide antibiotics. As shown in Figure 3B, Ery-Est exhibited obvious
inhibitory effects on viral entry, but barely inhibited ZIKV infection in the viral post-entry stage.
The result was consistent with above time-of-addition assay that showed the inhibitory activity of
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Ery-Est in the early stage. However, Azi targeted the post-entry stage in the viral life cycle, exhibiting
different inhibitory mechanisms from Ery-Est. As viral entry consists of various processes, including
viral attachment and fusion, we developed separate experiments to further explore the inhibitory
mechanism of Ery-Est. They showed that Ery-Est significantly obstructed the attachment of ZIKV.
Overall, these results suggest that Ery-Est may be an entry inhibitor against ZIKV, mainly suppressing
the process of attachment, and the inhibitory stage of different macrolide antibiotics may vary widely.

3.4. Ery-Est Inactivated ZIKV Virons

The above study of the inhibitory mechanism of Ery-Est demonstrates that it mainly obstructs
ZIKV attachment, implying that Ery-Est may bind to viral particles to reduce its infectivity. We, thus,
further investigated whether Ery-Est could inactivate ZIKV directly. PEG-8000 was used to separate
the treated ZIKV virions from the free Ery-Est after the incubation of ZIKV and Ery-Est or Ery as
previously described [34]. The infectivity of treated ZIKV was then detected by plaque assay. Results
showed that Ery-Est decreased the infectivity of ZIKV in a dose-dependent manner with 50% effective
concentration of 5.21 ± 0.85 µM, while Ery showed no inactivated activity against ZIKV (Figure 3C).
Additionally, other mosquito-borne flaviviruses of DENV II and YFV 17D were also used to verify
the inactivated effect of Ery-Est. As shown in Figure 3D,E, Ery-Est potently inactivated DENV II and
YFV 17D with 50% effective concentrations of 2.56 ± 0.11 and 3.46 ± 0.41 µM respectively. These data
indicate that Ery-Est inhibits virus infections through directly inactivating viral particles.

It was reported that some ZIKV inhibitors, such as Z2 and human breast milk, could inactivate
virus particles by destructing the integrity of ZIKV [27,39]. Using similar approaches, we investigated
whether Ery-Est inactivated ZIKV by inducing the release of genomic RNA from virions. Through the
RNase digestion assay, we found genomic RNA from untreated ZIKV (0 µM Ery-Est) or treated by
Ery were protected from RNase digestion, but the RNA of ZIKV treated by Ery-Est was digested in a
dose-dependence manner (Figure 3F,G), implying the reduction of genomic RNA inside the integrated
viral particles. About 80% genomic RNA was digested by the RNase after the treatment of 25 µM
Ery-Est, illustrating that Ery-Est may cause the release of genomic RNA to inactivate the ZIKV virions.
Next, to further confirm this potential inactivated mechanism, ZIKV with media alone or respectively
treated with Ery-Est and Ery, 1% DMSO, and Triton X-100 was centrifuged through the sucrose density
gradient as previously described [27,35]. Western blot was used to measure the E protein of ZIKV in
each fraction of the above four treated groups, and RT-qPCR was used for genomic RNA detection.
Through the percent analysis of each fraction, ZIKV E protein and genomic RNA of Ery, DMSO,
and ZIKV (media alone) groups were consistently distributed in the fourth to sixth fractions, but
that of Ery-Est and Triton X-100 groups were separated and the E protein was mainly concentrated
in the first fraction, while the genomic RNA was almost distributed in the fourth to sixth fractions
(Figure 3H,I), implying the destruction of viral integrity. These results indicate that Ery-Est may inhibit
ZIKV infection by destructing the viral integrity, resulting in the release of genomic RNA.

3.5. Ery-Est Protected A129 Mice from Lethal ZIKV Challenge

As the results in vitro demonstrated that Ery-Est displayed significant anti-ZIKV activity, the
protective efficiency of Ery-Est in vivo was estimated in an established transgenic (type I interferon
receptor-deficient) A129 mouse model for ZIKV lethal challenge [40]. Ery-Est and Ery were tested
at a concentration of 50 mg/kg once a day for consecutive 7 days. The viral RNA loads of sera were
measured 2 dpi by RT-qPCR. As shown in Figure 4A, viremia detected 2 dpi was considerably reduced
in the mice with Ery-Est treatment, implying they may present better clinical status. By continuous
21-days observation, we found ZIKV-infected mice treated with Ery and vehicle died within 16 dpi with
severe clinical neurological symptoms, including limb weakness, paralysis and tremors. Fortunately,
the mice treated with Ery-Est were protected with statistical significance in comparison to vehicle
group (Figure 4B), and the surviving mice developed no obvious neurological symptoms. Besides,
mice treated with Ery-Est generally kept good weight maintenance and growth (Figure 4C), and they
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showed lighter clinical signs (Figure 4D) compared to mice with Ery or vehicle treatment. Mice in
mock control groups were in good condition. These results suggest that Ery-Est efficiently protects
mice from ZIKV-associated neurological signs and mortality. In general, consecutive treatments of
Ery-Est showed considerable anti-ZIKV activity, although it played an inhibitory role in the early stage,
possibly by inactivating ZIKV virions newly produced from the body and suppressing them to infect
more target cells.
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Figure 4. Protective activity of Ery-Est against ZIKV infection in lethal mouse models. Three groups
of A129 mice were infected with 1 × 105 plaque forming units (PFU) ZIKV, followed by treatment of
Ery-Est, Ery, and vehicle at 50 mg/kg respectively (n = 8). Mice administrated with heat-inactivated
ZIKV (iZIKV) or only administrated with Ery-Est and Ery were used as mock controls. (A) Viral RNA
load in sera of A129 mice 2 dpi, mice were retro-orbitally bled to measure the RNA load by RT-qPCR.
(B) Survival status, (C) body weight, and (D) clinical score were recorded every day until 21 dpi. Data
are presented as means ± SD for (A) and (C). Statistical analysis: Mann–Whitney test for (A); Log-rank
(Mantel Cox) for (B). ns = not significant. ** p < 0.01.

3.6. Ery-Est Protected Against Vertical Transmission of ZIKV in Pregnant C57BL/6 Mice

To determine whether Ery-Est could block the vertical transmission of ZIKV, pregnant C57BL/6
mice were infected by iZIKV (mock infected controls) or 2 × 105 PFU ZIKV as described previously [27],
followed by treatments of Ery-Est (50 mg/kg), Ery (50 mg/kg), and vehicle respectively. It was
demonstrated that the viraemia of mice treated with Ery-Est was reduced with statistical significance
in comparison to groups of Ery or vehicle treatments (Figure 5A). Meanwhile, the viral load of ZIKV
in placentas and fetal heads from pregnant mice with Ery-Est treatment was significantly lower than
that from mice with Ery or vehicle treatments (Figure 5B,C). Besides, the infection rates of placentas
and fetal heads were decreased by Ery-Est treatment. These results suggest that Ery-Est may directly
inactivate some ZIKV virions before they have penetrated to the placenta and then the fetus, thus
reducing infection rates of placentas and fetuses, as well as blocking vertical transmission of ZIKV in
pregnant mice.



Viruses 2019, 11, 1064 13 of 17

Viruses 2019, 11, x FOR PEER REVIEW 14 of 19 

 

RNA load in sera of A129 mice 2 dpi, mice were retro-orbitally bled to measure the RNA load by 
RT-qPCR. (B) Survival status, (C) body weight, and (D) clinical score were recorded every day until 
21 dpi. Data are presented as means ± SD for (A) and (C). Statistical analysis: Mann–Whitney test for 
(A); Log-rank (Mantel Cox) for (B). ns = not significant. ** p < 0.01. 

3.6. Ery-Est Protected Against Vertical Transmission of ZIKV in Pregnant C57BL/6 Mice 

To determine whether Ery-Est could block the vertical transmission of ZIKV, pregnant 
C57BL/6 mice were infected by iZIKV (mock infected controls) or 2 × 105 PFU ZIKV as described 
previously [27], followed by treatments of Ery-Est (50 mg/kg), Ery (50 mg/kg), and vehicle 
respectively. It was demonstrated that the viraemia of mice treated with Ery-Est was reduced with 
statistical significance in comparison to groups of Ery or vehicle treatments (Figure 5A). Meanwhile, 
the viral load of ZIKV in placentas and fetal heads from pregnant mice with Ery-Est treatment was 
significantly lower than that from mice with Ery or vehicle treatments (Figure 5B,C). Besides, the 
infection rates of placentas and fetal heads were decreased by Ery-Est treatment. These results 
suggest that Ery-Est may directly inactivate some ZIKV virions before they have penetrated to the 
placenta and then the fetus, thus reducing infection rates of placentas and fetuses, as well as 
blocking vertical transmission of ZIKV in pregnant mice. 

 

Figure 5. Protective activity of Ery-Est against vertical transmission of ZIKV in pregnant C57BL/6 
mice. C57BL/6 pregnant mice were infected by 2 × 105 PFU ZIKV, followed by treatments of Ery-Est 
(50 mg/kg), Ery (50 mg/kg) and vehicle respectively. Viral RNA loads (A) in sera of pregnant mice, 
(B) in placentas, and (C) in fetal heads at 1 day post infection were measured by RT-qPCR. Three 
embryos of each pregnant mouse were randomly collected for placentas and fetal heads. Statistical 
analysis: Mann–Whitney test for (A), (B), and (C). Data are presented as means ± SD. ns = not 
significant. * p < 0.05; *** p < 0.001. 

4. Discussion 

Figure 5. Protective activity of Ery-Est against vertical transmission of ZIKV in pregnant C57BL/6
mice. C57BL/6 pregnant mice were infected by 2 × 105 PFU ZIKV, followed by treatments of Ery-Est
(50 mg/kg), Ery (50 mg/kg) and vehicle respectively. Viral RNA loads (A) in sera of pregnant mice, (B)
in placentas, and (C) in fetal heads at 1 day post infection were measured by RT-qPCR. Three embryos
of each pregnant mouse were randomly collected for placentas and fetal heads. Statistical analysis:
Mann–Whitney test for (A–C). Data are presented as means ± SD. ns = not significant. * p < 0.05;
*** p < 0.001.

4. Discussion

In consideration of worldwide attention to recent ZIKV outbreaks, many efforts have been made to
explore potential effective therapies. Currently, there is no approved practicable prophylactic vaccine,
and eliminating Aedes, the main vector of ZIKV, remains the primary preventive measure. The high
throughput screening of already-approved drugs has been carried out to provide anti-ZIKV drug
candidates [41–43]. By using this method, we found a potent inhibitor, Ery-Est, against ZIKV.

In our study, Ery-Est was demonstrated to inhibit ZIKV infection in a dose-dependent manner in
plaque assay (Figure 1B,C and Figure 2A,B). It was also shown that Ery-Est could still suppress viral
growth and exhibit inhibitory activity against ZIKV infection even with relatively higher viral dose
(Figure S2A,B), and treatment of 5 µM Ery-Est decreased viral titers by approximately 80% (Figure S2B).
It was reported that the peak concentration of Ery-Est in plasma was 5.93 ± 2.34 µg/mL (5.61 ± 2.22 µM)
after multiple doses [44], indicating that Ery-Est could exert antiviral activity and relieve the viremia in
the patient infected with ZIKV.

Ery-Est, one of the macrolide antibiotics, can block the protein synthesis of bacteria and is mainly
used for Staphylococcus aureus infection and other diverse bacillosis [45]. To the best of our knowledge,
the anti-ZIKV effects of Ery-Est had not been previously evaluated at the time of our study. Besides,
some macrolide antibiotics, such as azithromycin and ivermectin, have been previously found to
effectively inhibit ZIKV infection. Moreover, azithromycin was reported to not only inhibit ZIKV
in vitro, but also to prevent ZIKV-induced lethality in the suckling mouse model [19–23]. Interestingly,
the inhibitory mechanisms of different macrolide antibiotics varied, such as Ery-Est and Azi in the
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paper (Figure 3B), probably caused by different effects on viral particles and host cells due to their
different structures. Further research about why macrolide antibiotics exhibit different inhibitory
mechanisms against ZIKV is needed. As the effective macrolides with diverse characteristics and
advantages are constantly discovered [19–23,46], more opportunities for research and clinical treatment
can be provided.

The clinical dosage of Ery-Est for adults is 0.75–2 g/day according to the drug instructions, and
it was reported to be safely used by pregnant women at the dosage of 1 g/day to assess whether
antibiotic treatment could benefit pregnant women with heavy vaginal ureaplasma colonization [47].
Since it is considered safe in pregnant women, Ery-Est could provide a choice for ZIKV-infected
gravida who are most likely to suffer serious consequences of abortion, premature birth, or having
a baby with microcephaly [48–51]. Meanwhile, as the sexual transmission of ZIKV was constantly
reported [52,53], Ery-Est also showed great potential to be developed into the microbicide with both
anti-ZIKV and bactericidal effects, which would not only block the sexual transmission of ZIKV but
would be conducive to the healthy vaginal environment. The safety profile of Ery-Est for pregnant
women and vaginal use, thus, increases clinical options of the treatment and prevention for ZIKV
infection. Moreover, Ery-Est was demonstrated to protect against vertical transmission of ZIKV in
pregnant mice, indicating it may have a good effect on decreasing fetal infection risk or reducing fetal
symptoms when used for infected pregnant women.

In our study, besides the inhibitory activity against different ZIKV strains, Ery-Est was also
demonstrated to potently inhibit other mosquito-borne flaviviruses, including DENV and YFV. This
presents an opportunity for clinical applications to patients, who may suffer co-infections by ZIKV and
DENV, in epidemic areas where the viral vector, Aedes aegypti, is prevalent. Moreover, it was reported
that preexisting DENV antibodies may aggravate the ZIKV infection through an antibody-dependent
enhancement (ADE) effect [54,55], the phenomenon in which certain antibodies promote the entry of
some heterogeneous viruses into host cells [56,57]. Modification of therapeutic antibodies may decrease
the risk of ADE, but relatively increase the cost of these antibodies [58]. Ery-Est, with inhibitory activity
against a broad spectrum of flavivirus, may be the affordable choice for patients with simultaneous
infections without the risk of ADE effects.

At present, many micromolecular inhibitors that target viral binding, endocytosis, and replication
against ZIKV have been discovered, but their suppressing activities are only effective when the virus
attaches to, enters into, or replicates inside the target cell [13,14,30]. Through the study of inhibitory
mechanism in the paper, Ery-Est was demonstrated to directly inactivate flavivirus (ZIKV, DENV, and
YFV). We speculate it probably interacts with conserved sequences in envelope proteins of flaviviruses
first and then destabilizes envelope proteins and lipids of the viral membrane. As a consequence,
the integrity of the viral membrane is disrupted which results in the loss of viral infectivity. The
detailed inactivation mechanism of Ery-Est remains to be further studied in the future. Ery-Est, as
a viral inactivator like Z2 that is a synthetic peptide derived from ZIKV envelope proteins, makes it
possible to effectively inhibit ZIKV before viral entry and is, therefore, beneficial to treat infectors with
viremia [27]. The viral inactivator, on the other hand, will promptly work once it contacts the virus,
which may directly reduce the viral load into target cells. Likewise, Ery-Est may prevent the influx of
virions to fetuses. Accordingly, combinational therapies of Ery-Est and other inhibitors with different
inhibitory stages against ZIKV may have synergistic effects of improving protection.

In conclusion, Ery-Est, one of the macrolide antibiotics, exhibits powerful anti-ZIKV effects in vitro
and in vivo, and shows excellent safety, indicating it could be further repurposed as a novel antiviral
drug to treat ZIKV infection in populations with high risk, particularly pregnant women.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/11/1064/s1,
Figure S1: Inhibition of Ery-Est against ZIKV in BHK21 and Vero cells through CCK8 assay. Figure S2: Inhibition
of Ery-Est against ZIKV in multiple rounds of infection; Inhibitory activity of Ery-Est against high dose infection
of ZIKV. Figure S3: Inhibition of Ery-Est against ZIKV (V-ZIKV) prepared in Vero cells.
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