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Abstract

Electroencephalographic (EEG) source reconstruction is a powerful approach that allows 

anatomical localization of electrophysiological brain activity. Algorithms used to estimate cortical 

sources require an anatomical model of the head and the brain, generally reconstructed using 

magnetic resonance imaging (MRI). When such scans are unavailable, a population average can be 

used for adults, but no average surface template is available for cortical source imaging in infants. 

To address this issue, we introduce a new series of 13 anatomical models for subjects between zero 

and 24 months of age. These templates are built from MRI averages and boundary element method 

(BEM) segmentation of head tissues available as part of the Neurodevelopmental MRI Database. 

Surfaces separating the pia mater, the gray matter, and the white matter were estimated using the 

Infant FreeSurfer pipeline. The surface of the skin as well as the outer and inner skull surfaces 

were extracted using a cube marching algorithm followed by Laplacian smoothing and mesh 

decimation. We post-processed these meshes to correct topological errors and ensure watertight 

meshes. Source reconstruction with these templates is demonstrated and validated using 100 high-

density EEG recordings from 7-month-old infants. Hopefully, these templates will support future 

studies on EEG-based neuroimaging and functional connectivity in healthy infants as well as in 

clinical pediatric populations.
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1. Introduction

Our ability to study the functional connectivity of the brain during its early years is crucial in 

understanding neurotypical development as well as abnormal developmental trajectories 

associated with conditions like attention deficit hyperactivity disorder (Konrad and Eickhoff, 

2010) and autism (O’Reilly et al., 2017). However, most EEG studies in infants are 

performed at the scalp level, and therefore cannot localize the cortical or subcortical origin 

of the activity (Nunez and Srinivasan, 2006; Van de Steen et al., 2019) and are easily 

confounded by the effect of the recording reference (Bringas Vega et al., 2019; Guevara et 

al., 2005) and volume conduction (Nunez et al., 1997; O’Reilly and Elsabbagh, 2020; Van 

de Steen et al., 2019).

Different approaches have been developed to address these limitations, including algorithms 

to estimate the neuronal sources that give rise to EEG scalp activity. Such algorithms can 

estimate sources within volumes or over surfaces, depending on how dipolar sources are 

placed in the model of the head. For example, all dipolar contributions can be postulated to 

sum linearly and be represented with equivalent current dipoles (ECD) whose position and 

orientation are estimated from scalp EEG activity. Such an approach presents some analytic 

advantages (e.g., mathematical tractability when used with spherical head models) and can 

be motivated when one or a few specific sources of activity clearly dominates like in the 

context of epileptic activity (Ebersole, 1994) or for localized independent components (Acar 

et al., 2016). By generalizing the ECD approach to a large number of dipoles and using 

sophisticated finite element models (FEM) of the head, we can also perform current density 

reconstruction (CDR). In general, these volumetric approaches (i.e., CDR, ECD) localize 

dipoles using fewer a priori constraints than source localization methods based on cortical 

surfaces. For example, dipoles obtained from volumetric approaches may be positioned 

outside of gray matter regions and their orientation may not consider known structural 

information such as cytoarchitectural properties.

Alternatively, sources can be estimated over surfaces in order to constrain the position and 

the orientation of dipolar sources based on our understanding of EEG generative 

mechanisms. Scalp EEG is generally modeled as being a volume-conducted open field 

generated when a large number of postsynaptic currents impinges simultaneously on the 

apical dendrites of many pyramidal cells comprised within a small cortical patch (Baillet et 

al., 2001). This assumption is motivated by 1) the proximity of the cortex to the scalp, 2) the 

creation of a dipolar source between the apical tree and the soma of pyramidal cells 

following postsynaptic depolarization of apical dendrites, and 3) the creation of an open 

field due to the parallel alignment of the apical dendrites. Given this understanding of EEG 

generative mechanisms, it is a common practice to estimate EEG cortical sources by fitting 

the amplitude of dipoles positioned and orientated following the cortical surface. Further, 
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aside from this physiological motivation, there are good reasons for wanting to use surface-

based source estimation. For example, from a structural point of view, using surfaces has 

been shown to result in more precise co-registration (Ghosh et al., 2010). Also, it is worth 

noting that functionally relevant cortical parcellations follow the topology of the cortical 

sheet and that the distances along this surface are consequently generally more functionally 

relevant than 3D Euclidean distances. For example, the properties of inter-hemispheric 

connectivity have been shown to be impacted by whether two neuronal populations are in 

homotopic regions (i.e., depending on the cortical topology) rather than by whether they are 

separated by short homotopic distances (i.e., depending on 3D Euclidean distances) 

(O’Reilly and Elsabbagh, 2020). Due to the folding of the cortical sheet, regions that are 

very close in space (e.g., on the opposite sides of a sulcus or a fissure) may be relatively far 

apart with respect to the cortical sheet and, hence, may be functionally very different. A 

small localization error on volumes can therefore result in attributing sources to substantially 

different functional regions.

Surface and volume source estimation can eventually be combined, for example by aligning 

dipoles according to the cortical mesh or to the estimated orientation of the cortical columns 

(Bonaiuto et al., 2020) while placing volumetric grids of dipoles with free orientation in 

subcortical nuclei (Attal and Schwartz, 2013). Additional information from other modalities 

(e.g., tractography or functional MRI) can also be used to further constrain the source 

models (Lei et al., 2015), although such functionalities are generally not readily available in 

the main source estimation toolboxes and therefore require custom implementation.

Source estimation has not been frequently reported in the infant EEG literature, with the 

notable exception of a few research groups that used volumetric approaches such as CDR 

with realistic head models built from MRIs of head-size-matched individuals (Xie and 

Richards, 2017) or from age-matched MRI averages (Lunghi et al., 2019), or using ECD 

with a four-shell ellipsoidal head model (Ortiz-Mantilla et al., 2019). Source imaging is 

more frequently used in magnetoencephalography (MEG) (Kao and Zhang, 2019), but it 

generally relies on over simplistic spherical models to overcome the absence of realistic 

head models (Imada et al., 2006; Kuhl et al., 2014) or it uses custom-built subject-specific 

head models that are not reusable by the research community (Ramírez et al., 2017; Travis et 

al., 2011).

The Neurodevelopmental MRI Database (NMD; Richards et al., 2016) contains average 

volume segmentations of head tissues based on BEM and FEM. These segmentations can be 

used directly by some toolboxes, such as FieldTrip (Oostenveld et al., 2011), to build head 

models for volume-based source estimation. This functionality is, however, by no means 

available in all popular toolboxes. FieldTrip also supports surface-based source estimation 

directly from volumetric data by interfacing with external surface extraction software such 

as iso2mesh (Fang and Boas, 2009), Brain2Mesh (Tran and Fang, 2017), or FreeSurfer 

(Fischl, 2012). However, these procedures have been developed for adult subjects and are 

unlikely to perform well on infant MRIs due to various issues such as poor white matter/

gray matter contrast (Phan et al., 2018; Schumann et al., 2010). Furthermore, other popular 

software packages such as Brainstorm (Tadel et al., 2011) and MNE-Python (Gramfort et al., 
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2013) require the user to provide pre-computed cortical surfaces and provide only a limited 

support for volumetric BEM or FEM segmentations.

In addition to EEG sensor recordings, estimating neuronal sources requires 1) a structural 

model of the head (conductor model); 2) a model of source distributions (source space); 3) 

the position of the EEG sensors on the subjects’ head (electrode placement, coregistered 

with the source and head model); 4) a method for estimating scalp activity generated by 

neuronal sources (forward modeling); and 5) an inversion scheme for estimating the 

probable neuronal sources corresponding to the observed scalp activity (inverse modeling). 

The first component, the structural head model, is generally built by post-processing the 

participants MRI using specialized software designed for that purpose, such as FreeSurfer 

(Fischl, 2012), CIVET (MacDonald et al., 2000), the Computational Anatomy Toolbox 

(Gaser and Dahnke, 2016), BrainVISA (Rivière et al., 2009), SPM (Mattout et al., 2007), 

FSL (Jenkinson et al., 2012), or BrainSuite (Shattuck and Leahy, 2002). However, the time 

and expense associated with MRI scanning may be prohibitive or not possible with certain 

groups of participants because of health issues or ethical concerns. To address the lack of 

structural information in EEG analysis, population averages of head and brain structures 

have been proposed and can be used for computing approximate forward models (Fuchs et 

al., 2002; Valdés-Hernández et al., 2009). The objective of the current study is to extend 

these methods to infants by leveraging the recently published infant version of the 

FreeSurfer pipeline that supports surface extraction from MRI in participants from zero to 

24 months of age (Zöllei et al., 2020). As an outcome of this work, we are releasing 13 new 

surface templates that can be used for standardized surface-based source reconstruction in 

infants within this age range.

2. Method

2.1. Volumetric dataset

To build age-specific head models that can be used for surface-based EEG source 

reconstruction, we used the infant and preschool segments of the NMD version 2 (Richards 

et al., 2016), which contains brain and head MRI averages, boundary element method 

(BEM) and finite element method (FEM) volume segmentation of head tissues, as well as 

corresponding electrode placements. The NMD provides distinct MRI averages for the brain 

and head, obtained from the same sample, but optimizing the alignment of brain structures 

and outer head tissues, respectively. See (Sanchez et al., 2012a) for more details on volume 

averaging. We will refer to the coordinate space for these two kinds of volumes as brain 
space and head space, respectively.

To extract outer head surfaces, we used NMD’s four-compartment BEM segmentation 

“BEM4 ”, which labels every non-null voxel in head space as belonging either to the skin, 

the skull, the cerebrospinal fluid (CSF), or the brain. The identification of the brain, the 

skull, and the scalp on individual MRI was based on FSL Brain Extraction Tool (Bartlett and 

Smith, 1999; Smith, 2002). See (Richards, 2013) for more details about the individual MRI 

segmentation approach adopted for building the NMD.
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Table 1 lists the sample size per gender as well as the age range of the children included in 

every average. All averages are based on 3T scans using a T1 magnetization-prepared rapid 

gradient-echo (MPRAGE) sequence.

2.2. Software

The brain averages were co-registered with the head averages using FLIRT (Jenkinson et al., 

2002) and brain surfaces were extracted using the Infant FreeSurfer pipeline (Zöllei et al., 

2020). Most of the data processing and analyses have been performed using custom code 

relying on various Python packages, the principal ones being connected-components-3d 

1.5.0 (Kemnitz and Silversmith, 2020), Matplotlib 3.1.2 (Hunter, 2007), MNE-Python 0.20.0 

(Gramfort et al., 2014, 2013), NiBabel 3.0.0 (Brett et al., 2019), Numpy 1.18.2 (Oliphant, 

2006; Walt et al., 2011), Pandas 1.0.3 (McKinney, 2010; The pandas development team, 

2020), Pillow 7.0.0 (Clark et al., 2020), PyCortex 1.2.0 (Gao et al., 2015), PyMeshFix 0.13.3 

(Attene, 2010), Scikit-Image 0.16.2 (Walt et al., 2014), Scipy 1.4.1 (Virtanen et al., 2020), 

trimesh 3.5.12 (Dawson-Haggerty et al., 2020), and XArray 0.15.1 (Hoyer and Hamman, 

2017). Further, FieldTrip and the SimBio toolbox (Vorwerk et al., 2018) were also used for 

our comparative analysis between surface and volume source estimation.

2.3. Head-brain co-registration

Because the brain and head surfaces are computed from different MRI averages, we used 

FLIRT to find optimal affine transforms for transforming the average brains to head space. 

For this procedure, we used the skull-stripped MRI and weighted the contribution of the 

voxels in the brain average using a binary mask that excluded from the objective function the 

contribution of voxels outside of the brain volume. Such a weighting was used for the brain 

averages but not the head averages in order to ensure that the brains snugly fit within the 

skull cavity in head space.

2.4. Surface extraction

To extract the brain surfaces, we normalized the intensity of the MRI of brain averages 

(FreeSurfer mri_nu_correct command) and converted them to a standard 256 × 256 × 256 1-

mm isotropic space (FreeSurfer mri_convert -conform command). Then, we used the Infant 

FreeSurfer reconstruction pipeline (infant_recon_all; de Macedo Rodrigues et al., 2015; 

Zöllei et al., 2020) to extract the surfaces separating the pia mater, the gray matter, and the 

white matter. During this process, the Desikan et al. (2006) and the Destrieux et al. (2010) 

cortical parcellations were automatically computed. We skipped the skull stripping step 

included in the Infant FreeSurfer pipeline since the brain averages from the NMD are 

already skull stripped.

For the head surfaces, we used the “BEM4 ” segmentation and ran a cube marching 

algorithm (scikit-image marching_cubes_lewiner function) followed by a Laplacian 

smoothing (trimesh filter_laplacian function) and a mesh decimation (MNE-Python 

decimate_surface function). Surface topological defects such as holes, inverted vertex 

normals, or vertices with fewer than three neighbors were corrected using custom Python 

code relying on external functions (MeshFix.repair from PyMeshFix; repair.fix_normals and 

Trimesh.remove_degenerate_faces from trimesh) and on code snippets adapted from various 
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MNE-Python functions. Final meshes were checked for water tightness using trimesh. 

Further, one BEM volume had artifacts appearing as small line segments over the 

background. We corrected these by zeroing any small separated cluster of non-null voxels 

using the connected_components function from connected-components-3d.

Surface intersections were verified using a ray tracing algorithm from trimesh and outer 

meshes were pushed back along their vertex normal direction where intersections were 

detected. Out of 39 surfaces (i.e., the scalp, outer skull, and inner skull surfaces for the 13 

templates), 17 needed 2.86% (± 3.37%) of their vertices to be corrected by 1.27 mm (+/

−1.82 mm) on average. Examples of the initial volumes and extracted surfaces using these 

two parallel pipelines are illustrated in Fig. 1.

2.5. Sensor co-registration

To map the scalp activity to neuronal sources, the EEG sensors must be placed over the scalp 

of the head model. Average electrode placement for the 3-, 4.5-, 6-, 7.5-, 9-, 12-, and 24-

month time points were previously computed from recorded placements for the HydroCel 

GSN 128 channel sensor net and the 10–5, 10–10, and 10–20 systems (Richards et al., 

2015). These average placements are available in the NMD. Since no empirical data were 

available, the electrode placement for the 2-week, 1- and 2-month templates were obtained 

from the 3-month average electrode placement. This was done by registering the 10–10 

positions from the 3-month average template to every participant of those age in the NMD, 

using the coherent point drift method (Myronenko et al., 2006; Myronenko and Song, 2010), 

and translating the 3-month electrode placement into the participant space. Then the 

participant MRIs were registered to their age-appropriate average template and their 

electrode positions were appropriately translated into the average template space and 

averaged across participants. The averaged electrode positions were further scaled to fit the 

head in the head MRI average. The same procedure was used to fit the 12-month electrode 

placement to the 10.5-, 15-, and 18-month time points. Further, the electrode placements 

were compared to the scalp surface of the head models and the electrodes were 

automatically moved to the closest point on this surface. These fitted electrode placement 

are included with the templates presented here to facilitate re-use.

2.6. Validation dataset

For source reconstruction, we used the same set of EEG recordings to validate the different 

templates in order not to confound the effect the recordings with the effect of the templates. 

The exact properties of the scalp signals are not of any particular relevance for these tests 

and, accordingly, simulated signals could have been used. However, to ensure a higher 

ecological validity, we used real recordings from 7-month-old infants (female = 62; male = 

36; unknown = 2) from the London segment of the International Infant EEG Data 

Integration Platform (EEG-IP; van Noordt et al., 2020). These EEGs were recorded at 500 

Hz with HydroCel GSN 128 channel sensor nets during an event-related paradigm with a 

200 ms baseline period followed by the presentation of a visual stimulus and a 800 ms 

response period. Images of faces looking directly at or away from the participant were used 

as target stimuli and randomized noise images were used as a control condition. For our 

analyses, we used the version of the EEG-IP that has been preprocessed using the EEG-IP-L 
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pipeline (Desjardins et al., 2021), which includes an automatic artifact rejection step and a 

thorough manual quality control.

2.7. Comparison of modeling approaches

We used FieldTrip to compare the sources estimated with our new surface templates and the 

volume templates from the NMD. We distinguished the impact of the source model (surface 

versus volume distributions) and the head model (FEM versus BEM) by using a 2 × 2 

factorial approach. We performed these comparisons for the seven ages for which FEM 

segmentations were publicly available in NMD at the time of the analysis (3-, 4.5-, 6-, 7.5-, 

9-, 12-, 24-month).

The BEM head models were computed from our surface templates using FieldTrip’s dipoli 

method (Oostendorp and Oosterom, 1989) and the following standard conductivities: gray 

matter: 0.3300 S/m; skull: 0.0041 S/m; scalp: 0.3300 S/m. The FEM head models were built 

using the SimBio toolbox and the MND 10-compartment FEM segmentation with the 

following conductivities (Gabriel, 1996; IT’IS Foundation): white matter: 0.14 S/m; gray 

matter: 0.33 S/m; CSF: 1.79 S/m; dura mater: 0.368 S/m; skull: 0.01 S/m; skin: 0.43 S/m; 

muscle: 0.355 S/m; eyes: 1.55 S/m (conductivity for the vitreous humor); nasal cavity: 3e-15 

S/m (conductivity for air at 20 °C); non myelinated axons: 0.33 S/m (conductivity for gray 

matter).

Around 8000 (±4 due to discretization errors) dipoles were placed within the cortical gray 

matter for each source model. For the surface source models, we used FieldTrip’s 

meshresample function to down-sample the cortical meshes from our surface templates and 

placed the sources at the position of the remaining vertices. For the volume source models, 

the dipoles were placed at the center of voxels randomly sampled so that their volumetric 

density was constant across the cortical regions. The voxel classification used for this 

process was taken from the FreeSurfer standard aseg+aparc.mgz file (i.e., subcortical 

segmentation plus cortical parcellation according to the Desikan-Killiany scheme) available 

with the surface templates.

The dipole orientation in the leadfield was unconstrained. However, for the source 

estimation from the surface model, the leadfield dipoles were projected along the normals of 

their corresponding cortical mesh vertex. This alignment allows factoring into the surface 

model the biophysical a priori that EEG source dipoles are aligned with the pyramidal apical 

projections, orthogonal to the cortical surface. Sources were estimated using minimum norm 

estimation (MNE) with the regularization parameter λ2 = 1.

Since the dipoles are not placed at the same positions in the different source models, we 

need to average sources within brain regions to make them comparable across models. For 

statistical analyses, we used a k-d tree (Bentley, 1975) and a nearest neighbor rule to 

attribute source dipoles to brain regions by comparing dipole positions with aseg+aparc.mgz 

voxel positions.
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2.8. Source estimation for the functional analysis

For this analysis, EEG event-related source potentials (ERSP) were estimated using MNE-

Python and compared between our 13 infant templates and FreeSurfer’s “fsaverage” adult 

template. This latter template was built using spherical surface averaging (Fischl et al., 1999) 

of the Buckner40 cohort which comprises 40 non-demented subjects (21 women) ranging in 

age from 18 to 30 and 65 to 93 years of age (FreeSurfer team, 2020a). The same parameters 

were used for source estimation across templates. We used the dynamical statistical 

parameter mapping (dSPM; Dale et al., 2000) minimum-norm inverse operator with 

regularization parameter λ2 = 1. The other parameters were left to their default value, as set 

by MNE-Python, including the conductivities (gray matter: 0.3 S/m; skull: 0.006 S/m; scalp: 

0.3 S/m). The covariance matrix was estimated using method = “auto” in the 

mne.compute_covariance function, which uses four different estimators (the Ledoit-Wolf 

estimator (Ledoit and Wolf, 2004) with cross-validation for optimizing alpha, diagonal 

regularization, sample covariance, and factor analysis with low-rank (Barber, 2012)) and 

chooses the optimal solution based on log-likelihood estimation and cross-validation 

(Engemann and Gramfort, 2015).

3. Results

3.1. Templates and source reconstruction

We built surface-based structural templates at 13 time points between 2 weeks and 2 years of 

age (Fig. 2). These templates have been verified to be compatible for source reconstruction 

with Brainstorm, FieldTrip, and MNE-Python.

3.2. Comparison with volume source models and FEM head models

The event-related potentials (ERP) for the “noise” (control) and the “face” conditions for an 

occipital channel (E75/Oz) across the recordings of the validation dataset are shown in Fig. 

3.a. These are consistent with the ERP previously reported for this database (Desjardins et 

al., 2021). The noise condition in this experiment produced consistently much larger ERP, 

potentially because these events were presented less frequently than the face stimuli, causing 

a surprise effect similar to what is found in an oddball paradigm. Given the higher amplitude 

of its response, the analysis in this section is performed for the noise condition only.

We averaged the ERSP1 within brain regions and compared them across combinations of 

head and source models using Pearson’s coefficient of correlation (Fig. 3.b). The median 

values of these distributions are shown separately for each different template in Fig. 3.c. 

ERSP for the regions with the highest (ρ=0.837; left hemisphere lateraloccipital region) and 

the lowest (ρ=0.294; left hemisphere medialorbitofrontal region) correlations between the 

FEM-surface and the BEM-volume models are shown in Fig. 3.d. Similarly, Fig. 3.e shows 

the ERSP for the left hemisphere lateraloccipital region, but overlays the ERSP estimated for 

all the seven different templates in order to visualize how much these sources vary across 

templates. We averaged the activity within a window covering the 150–200 ms peak of 

1More accurately, the output of the FieldTrip scripts used for this comparative analysis are power values rather than potentials. This 
contrasts with the functional validation performed using MNE-Python, which used potentials rather than power values.
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activity (shown as a grayed region in Fig. 3.d) and plotted the topomap for the ERP (Fig. 3.f) 

and the source distribution over the cortex for the ERSP (Fig. 4). The scale of the FEM 

source estimates we obtained from the FieldTrip-SimBio software were found to depend on 

the template (Fig. 3.g). To make source profiles more comparable, we normalized the ERSP 

and ERP by dividing them by their standard deviation in Fig. 3.a,d,e. Also, to make it easier 

to compare source distributions across models and templates, the source amplitudes shown 

in Fig. 4 have been mapped to their corresponding percentile, and values from the 75th 

percentile upward were linearly mapped to a color gradient ranging from transparent (< 75th 

percentile) to dark red (100th percentile). With this mapping, every reconstruction shown in 

Fig. 4 has the same proportion of red coloration, only the spatial distribution varies across 

models and templates.

In order to compare the impact of the age templates, the head models, and the source 

models, we linearly regressed the values of the median ERSP correlations between pairs of 

head-source models (as computed for Fig. 3.c) against a linear model including as factors the 

template, the head model pair (FF: FEM-FEM; BB: BEM-BEM; FB: FEM-BEM), and the 

source model pair (SS: surface-surface, VV: volume-volume; SV: surface-volume). The 

regression results are summarized in Table 2. As can be seen from p-values and regression 

coefficients, with our specific modeling choice, the head model is the factor that has the 

largest effect, followed by the source model. The difference between age templates is either 

marginally (0.5 < p -value < 0.1) or not statistically significant in these comparisons. Since 

Fig. 3.e suggest that the effect of the age template may be different for BEM and FEM head 

models, we computed one-way ANOVAs of the median correlation (across brain regions) 

separately for the BEM and the FEM, treating the template as a factor. As could be expected 

from Fig. 3.e, there was a significant effect of template for the FEM ANOVA (F6, 480 = 7.35, 

p = 1.5e-7) but not for the BEM ANOVA (F6, 480 = 1.04, p = 0.40).

3.3. Structural validation

The structural validity of the proposed templates is directly dependent on the validity of 

MND’s MRI averages used as input data and the infant freesurfer pipeline used to extract the 

surfaces, which have both been validated in previous studies (de Macedo Rodrigues et al., 

2015; Fillmore et al., 2015b, 2015a; Sanchez et al., 2012a, 2012b; Xie et al., 2015; Zöllei et 

al., 2020). Nevertheless, to validate the final result, we calculated the relative volume of 

brain regions (vr) as the number of voxels per subcortical and cortical brain region, as 

defined in the FreeSurfer aseg + aparc.mgz files, divided by the total number of voxels in all 

segmented brain regions. These relative volumes appear to be very consistent across the 

templates, as demonstrated by very high correlations across models from the different ages 

(Fig. 5.a,b). We also computed how much the relative size of each region is different from 

the average relative size across the templates (i.e., (νr − νr)/νr) (Fig. 5.c,d).

We do not observe large inconsistencies across the templates, except for the 

parahippocampal and the frontalpole regions which average volume is less consistent than 

the other regions. We should note that some variations are expected due to the development 

of the brain. Although we do not have normative data for a systematic comparison, the 

pattern of variations can distinguish potential modeling issues from normal developmental 
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effects. For example, the smooth and constant patterns of decreasing relative volume of the 

thalamus across the ages and its similarity across hemispheres (Fig. 5.d) suggest that this 

effect is probably associated with normal development, which is compatible with what is 

reported in the literature (Sussman et al., 2016). This contrasts for example with the 

comparatively erratic pattern of variation for the parahippocampal region (Fig. 5.c), which is 

more likely due to difficulties in accurately parcellating this region during the first years of 

life. We can also see that the correlations of the relative volume of brain regions across the 

templates are larger for subcortical segmentations than for cortical parcellations. This 

observation may be partly due to the fact that the Desikan-Killiany parcellation scheme is 

based on the topology of sulci and gyri which are not fully formed in infants.

3.4. Functional validation

We further validated the templates by testing the hypothesis that EEG sources should be 

more correlated when estimated from templates of similar age than from templates with 

greater age differences. Thus, we computed correlations between the ERSP for pairs of 

templates and averaged these correlation coefficients across stimulus conditions, subjects, 

and Desikan-Killiany brain regions. Heat maps in Fig. 6.a,b show high average correlations 

between infant templates within the 0–2 year age range. However, there is a general 

tendency for correlations close to the diagonal to be larger than those far from the diagonal, 

confirming that differences in estimated sources increase with template age differences. 

Further, the correlation with the sources computed using fsaverage is substantially lower 

than any correlation infant templates, confirming inaccurate source estimation when using 

an adult template for analyzing infant EEG.

The anti-correlation between the similarity of estimated sources and differences in template 

age (i.e., the smaller the difference in template age, the larger the similarity between 

estimated sources) is clearly demonstrated by linearly regressing the correlations plotted in 

Fig. 6.a,b by the absolute differences between the logarithm of the template ages (ρ= −0.67; 

R2=0.479, p-value =1.1e-12, N = 78; Fig. 6.c). Similar observations can be made by 

correlating ERSP across brain regions rather than across time (ρ= −0.64; R2= 0.408, p-value 

= 1.6e-10, N = 78; Fig. 6, d–f). We further computed the average correlations between any 

given templates and all other templates, for each region separately, and observed that the 

correlation of the ERSP between templates is very high for most regions but is lower and 

more variable in some cases (Fig. 6.g), particularly around the motor and somatosensory 

areas (Fig. 6.h).

4. Discussion

A reliable estimation of EEG cortical sources requires the use of individualized or, when not 

available, population-averaged structural model of the head. Standard automated approaches 

developed for building such head models from adult MRI scans do not provide satisfactory 

results in the pediatric population due to a lower contrast between white and gray matter 

(Phan et al., 2018; Schumann et al., 2010). Further, most automated pipelines rely on co-

registering individual MRI against a population average, which may cause significant errors 

when using an adult average for co-registering younger populations. With some manual 
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intervention to guide or correct white matter and gray matter classification, FreeSurfer can 

provide satisfactory results in children who are at least five years old (Schumann et al., 

2010) but not younger (FreeSurfer team, 2020b). For that reason, an infant version of the 

FreeSurfer pipeline has recently been developed that covers the 0–2 year age range (Zöllei et 

al., 2020). To our knowledge, no similar approach currently exists that covers the 2–5 year 

range, which is a topic that should definitely be addressed by future studies. To further 

support the use of source reconstruction in EEG and MEG neurodevelopmental studies in 

infants, we used this pipeline to develop 13 new surface templates for infants in this age 

range. These templates can be used with any software relying on surfaces of the brain and 

the head for their forward models.

For approaches relying on volume source models (e.g., CDR) instead of surface source 

models, BEM and FEM segmentations are available in the NMD. We demonstrated how 

sources estimated with models built using these different volumes and surfaces can be 

compared using a factorial design distinguishing the impact of the head model (FEM or 

BEM) and the source model (surface or volume). In doing so, we observed that the FEM 

models seem more sensitive (or the BEM models are more stable) across templates, but the 

data currently available do not allow establishing with certainty if the FEM approach is more 

sensitive to signal or noise (i.e., whether increased between-template differences for FEM in 

Fig. 3.e indicate a finer capacity to capture age-specific differences, or if it reflects some 

unreliability or instability of this modeling approach).

BEM head models are designed as successive layers of tissues with different conductivities, 

and algorithms using these models generally rely on the fact that the inner compartments fit 

within the outer compartments. Some of these algorithms, for example, cannot work 

correctly with meshes that are not watertight. Therefore, as opposed to FEM, this modeling 

approach cannot accommodate local layer discontinuities such as ventricular CSF or 

fontanels. This can be considered a limitation of the BEM approach for infant studies since 

these local features have been shown to have a significant effect on source reconstruction in 

FEM studies (Azizollahi et al., 2016; Lew et al., 2013; Pursiainen et al., 2016). When 

available, infant-compatible MEG systems can also be used to complement EEG in order to 

obtain source estimates that are more robust to the effects of fontanels (Lew et al., 2013). As 

MEG and EEG systems are recording related but complementary signals, EEG should not be 

simply supplanted by MEG. Source accuracy should rather be improved by combining both 

modality whenever possible (Sharon et al., 2007).

The use of head models for different ages within the 0–2 year range resulted in relatively 

mild differences in estimated EEG sources as opposed to the use of an adult template, which 

resulted in much more dissimilar sources. These results suggest that our templates are fairly 

consistent across age. They might nevertheless be improvable in some regions that showed 

lower and more variable correlations between templates (Fig. 6.g). In the absence of 

quantitative resources reporting maturity indices per age and brain regions, it is difficult to 

establish whether these lower correlations are due to larger maturational changes in these 

regions during the developmental period covered by our analyses. We nevertheless note that 

most of these regions are around the motor and somatosensory areas, which are known to 

develop at a fast rate in the first few months following birth (Ganzetti et al., 2014), whereas 
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the correlations are reliably high in frontal associative regions (Fig. 6.h), which are known to 

develop later in life (Sowell et al., 1999).

We validated the structure of the templates by comparing the relative volume of their cortical 

and subcortical regions. We further validated these templates functionally by assessing how 

the age impacts the source estimation. We also verified that this modeling approach was 

producing sensible results by comparing the estimated sources from these surface models 

against sources obtained using alternative FEM head models and volume source models. A 

more complete validation could be performed in the future by comparing these measures 

against a “gold standard”. For example, with respect to structural validation, the differences 

in the relative size of brain regions between the templates could be compared against 

normative curves extracted from a sample of individual infant MRIs. Further functional 

validation could rely on source reconstruction using individual subject head models or using 

experimental paradigms for which the activated brain regions are well known (e.g., medial 

nerve stimulation).

In the future, increased surface template accuracy may be achievable by using a surface-

based registration directly rather than extracting surfaces from a volume-based average 

(Ghosh et al., 2010). It is unclear, however, if such improvements would translate into a 

significant improvement regarding EEG source estimation since the gain obtained by 

increasing the template accuracy may be insignificant compared to the difference between 

the population average template and the brain of each individual participant. It would also be 

interesting to investigate the extent to which the use of different templates would affect 

source imaging in studies using MEG instead of EEG, given that these two modalities 

measure fundamentally related but complementary components of the electromagnetic fields 

produced by cerebral activity (Hämäläinen et al., 1993; Sharon et al., 2007).

Up to recently, no open-access population average surface models were available to estimate 

cortical sources in infants. By releasing these 13 new templates, we are making source 

reconstruction based on cortical surfaces accessible for situations where individual MRI are 

not available and population averages are required, addressing a clear need in the EEG and 

MEG community. Although these templates can be used by any software package 

performing source reconstruction using surface templates, to allow researchers to easily 

benefit from them, we are currently working on integrating these templates directly within 

MNE-Python and Brainstorm. This resource will undoubtedly come particularly handy for 

cross-sectional and longitudinal studies of typical and atypical neurodevelopment.
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Fig. 1. 
Surface extraction. An example of the types of volumes we used from NMD is shown on the 

left side. From this volumetric dataset, two parallel processes were run to extract the brain 

surfaces and cortical parcellations (top right; using FLIRT and Infant FreeSurfer) as well as 

the head surfaces (bottom right; using custom Python code).
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Fig. 2. 
Thirteen templates from 2 weeks to 2 years of age including head surfaces for the scalp and 

the outer and inner faces of the skull, as well as cortical surfaces separating the meninges, 

the gray matter, and the white matter. Showing non-decimated meshes rendered with 

Blender. Spheres with a 5 mm diameter show the placement of electrodes for the HydroCel 

GSN 128 channel sensor net (blue) and standard fiducial points (red).
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Fig. 3. 
a) ERP for the “noise” and the “face” conditions, averaged across epochs and subjects, for 

the E75/Oz channel. b) Distribution of the correlation of brain region ERSP between pairs of 

models. Model comparisons are labeled as H1 H2 -S1 S2, where H1 and H2 represent the two 

head models and S1 and S2 represent the two source models, with the models being 

identified with the following shorthand notations: F: FEM, B: BEM, S: surface, V: volume. 

c) Median (across brain regions) correlation between pairs of models, for each template 

separately. d) ERSP for the regions which show the highest and the lowest correlation for the 

FB-SV model comparison. The ERP (channel E75/Oz) is also overlaid on this plot. The 

average of the activity within the grayed window (150–200 ms) is used for the subsequent 

panels and for source distributions in Fig. 4. e) Similar to the right part of panel d, this panel 
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shows ERSP for the regions with the highest correlation for the FB-SV model comparison, 

but illustrate the ERSP separately for the different templates. g) Topomap of the scalp ERP. 

h) Distribution of time-averaged ERSP for the four models. Light-colored lines show the 

distribution for the different templates, whereas the darker colors show the distribution after 

averaging across templates.
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Fig. 4. 
Spatial source distributions for the different models (columns) and templates (rows) shown 

from different views (panels a-d). The models are coded as H-S, where H represents the 

head model and S represents the source model, with models identified with the following 

shorthand notations: F: FEM, B: BEM, S: surface, and V: volume. The values at the right of 

each row indicate the template age, in months. Identical data are shown in different views 

from top-left-back (a), top (b), back (c), and front (d). Sources with larger amplitude than the 

75th percentile are color-coded linearly according to the percentile, from transparent (75th 

percentile) to dark red (100th percentile).
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Fig. 5. 
Structural validation of the surface templates. a,b) Correlation of the relative volume νr of 

cortical (a) and subcortical (b) regions between templates. Note that the lower end of the 

correlation colorbar is greater than 0.998. c,d) Relative differences between a template νr 

and the across-template averages (νr) for cortical (c) and subcortical (d) regions.
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Fig. 6. 
a) Average correlations between the ERSP time-series computed from different templates. b) 

As in a, but excluding the fsaverage template and adjusting the scale to emphasize the 

pattern of variation between the infant templates. c) Average correlations (as computed for 

panels a and b) as a function of the log-transformed age difference between templates. d-f) 

Similar as for panels a-c, but reporting Pearson correlation coefficients across brain regions 

instead of time. g) Average ERSP time-series correlation computed separately for every 

region and averaged for each template separately. h) Cortical representation showing average 

time-series correlation (mean values per column of panel g) lower than 0.6 colored in red or 
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green, depending on whether they show (red) or not (green) the typical decrease in 

correlations with increasing age differences.
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Table 1

Sample size and age range for the different MRI averages.

Template Female Male N/A Age (months)

2 week 26 17 0 <= 0.5

1 month 42 60 0 0.5–1.5

2 month 40 29 0 2–2.5

3 month 21 17 0 2.5–4

4.5 month 29 25 0 4–5.5

6 month 55 56 0 5.5–7

7.5 month 33 62 0 7–8.5

9 month 36 25 0 8.5–10

10.5 month 21 21 0 10–11.5

12 month 68 101 0 11.5–13

15 month 41 37 0 14.5–17

18 month 31 45 0 17.5–20

2 year 57 76 2 23–26
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