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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal type of cancer. In this 

study, we undertook a pairwise comparison of gene expression pattern between tumor 
tissue and its matching adjacent normal tissue for 45 PDAC patients and identified 22 
upregulated and 32 downregulated genes. PPI network revealed that fibronectin 1 
and serpin peptidase inhibitor B5 were the most interconnected upregulated-nodes. 
Virtual screening identified bleomycin exhibited reasonably strong binding to both 
proteins. Effect of bleomycin on cell viability was examined against two PDAC cell 
lines, AsPC-1 and MIA PaCa-2. AsPC-1 did not respond to bleomycin, however, MIA 
PaCa-2 responded to bleomycin with an IC50 of 2.6 μM. This implicates that bleomycin 
could be repurposed for the treatment of PDAC, especially in combination with other 
chemotherapy agents. In vivo mouse xenograft studies and patient clinical trials are 
warranted to understand the functional mechanism of bleomycin towards PDAC and 
optimize its therapeutic efficacy. Furthermore, we will evaluate the antitumor activity 
of the other identified drugs in our future studies.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC), which 
is highly lethal and makes up to more than 80% of all 
pancreatic cancer cases, is a type of exocrine pancreatic 
cancer often found in the head of the pancreas. Based on 
study results from the GLOBOCAN project conducted 
by the World Health Organization (WHO), pancreatic 
cancer ranks as the 12th most common cancer in the 
world with the age-standardized rate (ASR) for incidence 
and mortality at 4.2% and 4.1%, respectively [1]. Since 
surgical resection is still the only hope for a cure up to 
now, PDAC is usually treated with pancreatectomy, 
followed by adjuvant chemotherapy using gemcitabine 
or a combination of 5-flurouracil and leucovorin [2]. 
Pancreaticoduodenectomy (Whipple procedure) is 
commonly adopted to treat tumors from the head of the 
pancreas; whereas laparoscopic surgery is ideal to treat 

tumors from the tail of the pancreas [3, 4]. Although 
advances in surgical instruments and techniques have 
significantly brought down the mortality rate for the 
pancreaticoduodenectomy procedure, the ASR for 5-year 
net survival remains less than 5% for PDAC patients [5-7].

Poor prognosis for PDAC is normally associated 
with the following factors. First, pancreas is an organ 
positioned behind the stomach and deep in the abdomen. 
PDAC is almost non-palpable until being diagnosed 
at a late stage, which, in turn, significantly reduces the 
possibility of cure by pancreatectomy [8, 9]. The deep 
position of the pancreas also makes PDAC relatively 
insensitive to radiation therapy [10]. Secondly, PDAC 
is highly malignant, and invades and metastasizes 
rapidly [11, 12]. For example, Yu et al. showed that the 
progression of PDAC from stage IA to stage III with 
tumor size > 4 cm took only about 1 year [12]. Thirdly, 
PDAC patients commonly experience malnutrition 
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Genes & Cancer13www.genesandcancer.com

and deteriorated health conditions not only because 
of tumor metabolism (Warburg effect) but also due to 
pancreatic exocrine insufficiency (i.e. reduced secretion 
of bicarbonate and digestive enzymes), making them less 
tolerable to chemotherapy treatment [13, 14]. Finally, 
PDAC is capable of generating highly dense fibrotic 
tissues (altered extracellular matrix constituting as high as 
90% of the tumor volume) and developing hypovascularity 
(deficiency of blood vessels), which, in turn, would 
significantly hinder the delivery of chemotherapeutic 
agents [15, 16]. Therefore, developing more effective 
screening tests for early detection, identifying novel drug-
design targets that are capable of decreasing the generation 
of fibrotic tissues and inhibit metastasis, and improving 
the pancreatic enzyme replacement therapy (PERT) would 
be highly beneficial for the survival of PDAC patients.

Pancreatic carcinogenesis is a complex and 
complicated process. However, the rapid expansion 
of microarray and RNA-seq databases provides the 
possibility to systematically analyze the change of gene 
expression pattern during this process and identify key 

drug-targeting genes for pancreatic cancer. In the current 
study, we undertook a pairwise comparison of the gene 
expression pattern between PDAC tumor and its adjacent 
normal pancreatic tissue from 45 patients and identified 
FN1 and SERPINB5, which encode fibronectin 1 (FN1) 
and serpin peptidase inhibitor B5 (Serpin B5, Maspin), 
respectively, as the key drug-targeting genes in developing 
novel therapeutic agents for PDAC. Our virtual screening 
showed that bleomycin and octreotide exhibit reasonably 
strong binding to FN1 and bleomycin, desmopressin, 
phosphonoacetic acid, cobicistat and oxytocin exhibit 
reasonably strong binding to Serpin B5, respectively. We 
evaluated the effect of bleomycin on cell viability of two 
PDAC cell lines, AsPC-1 and MIA PaCa-2, and bleomycin 
gave an IC50 of 2.6 μM towards the MIA PaCa-2 cells at 
72h of treatment. However, further preclinical studies are 
warranted to confirm whether bleomycin, as well the other 
identified FDA-approved drugs, would indeed elicit its 
antitumor activity via FN1 and/or Serpin B5 under both in 
vitro and in vivo conditions and could be repositioned as a 
therapeutic agent for PDAC.

Figure 1: Volcano plot for the differentially expressed genes (DEGs) identified from matching pairs of tumor tissue 
and adjacent non-tumor tissue from 45 pancreatic ductal adenocarcinoma (PDAC) patients. The up- and down-regulated 
genes, significantly upregulated DEGs (log2(fold change) > 2) and significantly downregulated DEGs (log2(fold change) < -2) were 
shown in cadet blue, green and red dots, respectively. The top 15 up- and down-regulated genes were also listed in Table 1
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RESULTS

Differentially expressed genes (DEGs)

To identify novel drug-design targets for PDAC, 
we downloaded the microarray dataset GDS4336, which 
contains the gene expression data for matched tumor 
tissue and adjacent non-tumor tissue from 45 PDAC 
patients [17]. After normalization and standardization 
of the microarray data using the R and Affy package, 
we identified 54 differentially expressed genes (DEGs) 
using a threshold of false discovery rate (FDR) at 0.05 
and log2-fold change higher than 2 (Figure 1). Out of 
the 54 DEGs, 22 genes are upregulated and 32 genes are 
downregulated. The 15 most significantly upregulated 
genes are CEACAM5, SLC6A14, LAMC2, GALNT5, 
TSPAN1, CTSE, POSTN, CEACAM6, ANXA10, LAMB3, 
ITGA2, TMPRSS4, FN1, COL11A1 and SERPINB5; 
whereas the 15 most significantly downregulated genes 
are PNLIPRP1, PNLIPRP2, IAPP, CTRC, GP2, CEL, 
CPA2, ALB, FAM24B-CUZD1, ERP27, CLPS, SERPINI2, 
PLA2G1B, CELA2A and CELA2B (Table 1).

Gene ontology (GO) based functional and 
pathway enrichment analysis

Gene names of the 54 DEGs were subjected to a 
gene ontology (GO) evaluation using FunRich [18]. GO 
enrichment analysis revealed large lists of enriched genes, 
which correspond to significant GO terms (P < 0.05), in 
the categories of biological process, molecular function 
and cellular component. As shown in Figure 2A, the 
top 5 GO terms in the three categories are proteolysis, 
extracellular matrix organization, cell adhesion, 
extracellular matrix disassembly and digestion; protein 
binding, serine-type endopeptidase activity, identical 
protein binding, calcium ion binding and heparin binding; 
and extracellular space, extracellular region, extracellular 
vesicular exosome, endoplasmic reticulum lumen and 
platelet alpha granule lumen, respectively. The DEGs 
associated with each biological process, molecular 
function or cellular component are listed in Table 2. 
Furthermore, we undertook the super pathway analysis 
of the 54 DEGs using GeneALaCart. The top 10 super 
pathways were identified to be pancreatic secretion, 
collagen chain trimerization, metabolism, degradation 

Table 1: Most significantly up- and down-regulated genes in human pancreatic ductal 
adenocarcinoma (PDAC)

Top 15 up-regulated genes Top 15 down-regulated genes

Gene name Log2FC P. Value Adj. P. Val. Gene name Log2FC P. Value Adj. P. Val.

CEACAM5 3.18 2.16E-13 1.07E-10 PNLIPRP1 -3.03 2.37E-06 3.86E-05

SLC6A14 3.08 2.65E-15 3.82E-12 PNLIPRP2 -2.82 5.36E-06 7.56E-05

LAMC2 2.90 7.03E-19 1.59E-14 IAPP -2.81 2.36E-09 1.53E-07

GALNT5 2.79 3.62E-16 8.70E-13 CTRC -2.80 3.47E-06 5.30E-05

TSPAN1 2.73 2.49E-18 1.63E-14 GP2 -2.79 8.79E-06 1.12E-04

CTSE 2.68 6.00E-15 6.93E-12 CEL -2.72 1.14E-05 1.39E-04

POSTN 2.63 6.76E-13 2.53E-10 CPA2 -2.65 2.38E-05 2.47E-04

CEACAM6 2.63 1.06E-12 3.78E-10 ALB -2.63 1.43E-07 4.12E-06

ANXA10 2.36 5.23E-11 7.58E-09 FAM24B-CUZD1 -2.63 1.84E-05 2.01E-04

LAMB3 2.34 1.19E-18 1.59E-14 ERP27 -2.59 1.64E-06 2.88E-05

ITGA2 2.27 5.63E-14 4.28E-11 CLPS -2.54 1.29E-05 1.53E-04

TMPRSS4 2.26 2.85E-16 7.48E-13 SERPINI2 -2.48 1.28E-06 2.38E-05

FN1 2.21 3.25E-12 8.61E-10 PLA2G1B -2.31 2.51E-05 2.58E-04

COL11A1 2.19 3.05E-13 1.42E-10 CELA2A -2.28 1.43E-05 1.66E-04

SERPINB5 2.18 1.26E-14 1.21E-11 CELA2B -2.28 1.02E-05 1.26E-04
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Figure 2: The top 5 most significantly enriched GO terms of DEGs in the categories of biological process (shown 
in blue), molecular function (shown in red) and cellular component (shown in green) (A) and the super pathways 
identified for the DEGs using GeneALaCart (B).
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of the extracellular matrix, phospholipase-C pathway, 
integrin pathway, signaling by GPCR, focal adhesion, 
ERK signaling, and response to elevated platelet cytosolic 
Ca2+ (Figure 2B).

Protein-protein interaction (PPI) network

To get a better understanding on the biological 
functions of the 54 DEGs in PDAC, we extracted the 
partner proteins that interact with the proteins encoded 
by these DEGs from the BioGrid database. For the 
upregulated DEGs, the top 10 most connected genes 

are FN1 (747), SERPINB5 (79), KRT19 (52), CST1 
(34), ITGA2 (28), LAMB3 (22), AGR2 (21), CEACAM6 
(9), CTSE (8) and ITGB6 (7), with number in brackets 
representing the number of interacting protein partners for 
each encoded DEG protein. In the case of downregulated 
DEGs, the top 10 most connected genes are ALB (187), 
COL1A2 (23), NR5A2 (23), PDIA2 (21), EGF (18), 
CELA2B (15), CELA3A (12), PNLIP (10), PNLIPRP1 (9) 
and CPA2 (8). As shown in Figure 3, FN1 (encoded by 
gene FN1) and Serpin B5 (encoded by gene SERPIN5) are 
the top two most-connected proteins for the upregulated 
DEGs and albumin (encoded by gene ALB) is the most-
connected protein for downregulated DEGs.

Table 2: Gene ontology (GO) functional and pathway enrichment analysis of the DEGs in human 
pancreatic ductal adenocarcinoma (PDAC)
GO term Genes
Biological process
Proteolysis CTRC, CPA2, CELA2A, CELA2B, CELA3A, CTRL, CTRB2, CTRB1, CPA1, 

CELA3B, TMPRSS4
Extracellular matrix organization COL1A2, ITGB6, SERPINB5, COL11A1, FN1, ITGA2, LAMB3, POSTN, 

LAMC2
Cell adhesion ITGB6, FN1, ITGA2, LAMB3, POSTN, LAMC2
Extracellular matrix disassembly CTRB2, CTRB1, FN1, LAMB3, LAMC2
Digestion CELA3A, CTRL, CTRB2, CTRB1, CTSE
Molecular function
Protein binding IAPP, CTRC, CEL, ALB, ERP27, SERPINI2, COL1A2, PDIA2, CPA1, EGF, 

NR5A2, F11, CST1, KRT19, ITGB6, AGR2, SERPINB5, FN1, TMPRSS4, 
ITGA2, LAMB3, ANXA10, CEACAM6, POSTN, TSPAN1

Serine-type endopeptidase 
activity

CTRC, CELA2A, CELA2B, CELA3A, CTRL, CTRB2, CTRB1, CELA3B, F11, 
TMPRSS4

Identical protein binding IAPP, ALB, COL1A2, AOX1, CLDN18, FN1
Calcium ion binding PNLIPRP1, PNLIPRP2, PLA2G1B, EGF, ANXA10
Heparin binding CEL, F11, FN1, POSTN, LAMC2
Cellular component
Extracellular space PNLIPRP1, PNLIPRP2, IAPP, CEL, CPA2, ALB, SERPINI2, PLA2G1B, CELA2A, 

CELA2B, CELA3A, CTRL, CTRB2, CTRB1, PNLIP, COL1A2, CPA1, EGF, 
CELA3B, F11, CST1, AGR2, SERPINB5, COL11A1, FN1, CEACAM6, POSTN, 
LAMC2

Extracellular region PNLIPRP1, PNLIPRP2, IAPP, CTRC, GP2, CEL, CPA2, ALB, FAM24B, CLPS, 
PLA2G1B, CELA2A, CELA2B, CTRB2, CTRB1, PNLIP, COL1A2, EGF, F11, 
COL11A1, FN1, LAMB3, LAMC2

Extracellular vesicular exosome GP2, CEL, ALB, CLPS, SERPINI2, COL1A2, REG1B, EGF, KIAA1324, AOX1, 
F11, KRT19, ITGB6, SERPINB5, FN1, CTSE, TSPAN1, SLC6A14

Endoplasmic reticulum lumen ALB, ERP27, COL1A2, PDIA2, COL11A1, FN1
Platelet alpha granule lumen ALB, EGF, FN1
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Structural modeling and drug virtual screening

Using the multi-template homology modeling 
technique, we constructed a fragment of FN1 consisting 
of four domains and screened virtually for potential 
drugs in four databases (Selleck, DiscoveryProbe FDA-
approved Drug Library, DrugBank and Binding Database) 
at the binding interface between FN1 and aggrecan core 
protein (Figure 4A). Bleomycin and octreotide exhibit 
reasonably strong binding to FN1. For Serpin B5, we 
screened virtually for drugs from the four databases at the 
N-acetyl-D-glucosamine (NAG) binding site (Site 1) and 
the protease binding site (Site 2) (Figure 4C). Bleomycin, 
desmopressin, phosphonoacetic acid, cobicistat and 
oxytocin exhibit reasonably strong binding to Serpin B5.

Effect of bleomycin on cell viability of AsPC-1 and 
MIA PaCa-2 cells

Effect of bleomycin on cell viability of two PDAC 
cell lines, AsPC-1 and MIA PaCa-2, was measured at 
treatment time of 24 h, 48 h and 72 h, respectively. AsPC-
1 cells did not respond to bleomycin sulfate; however, cell 
growth of MIA PaCa-2 was significantly suppressed by 
bleomycin with an IC50 of 5.9 μM at 24 h of treatment, 6.4 
μM at 48 h of treatment, and 2.6 μM at 72 h of treatment, 
respectively (Figure 5).

DISCUSSION

As one of the deadliest types of cancer, PDAC is 
commonly diagnosed in late stages and is associated with 
rapid progression and metastasis, resulting in the ASR for 
5-year net survival less than 5% [5, 6, 19, 20]. Due to 
the lack of effective therapy, cure is seldom considered 
as a treatment outcome while efforts are mainly intended 
to prolong the survival of PDAC patients. Most of the 
research studies on PDAC are aimed at identifying 
methods for accurate early diagnosis, increasing net 
survival, improving quality of life, and implanting more 
effective palliative care for PDAC patients, in addition 
to continued efforts directed at searching for novel 
therapeutic agents. The rapid expansion of microarray 
and RNA-seq data from PDAC patients has provided 
us a treasure of information to be utilized for better 
understanding on the molecular basis for carcinogenesis, 
progression and metastasis of PDAC and develop novel 
therapeutic and/or supportive treatment options to improve 
the clinical outcome for PDAC patients.

In a previous study, Shi et al. screened for DEGs 
and constructed a co-expression network to identify 
dysregulated pathways for PDAC using microarray dataset 
GSE15471, which consists of the gene expression data of 
matched tumor tissue and adjacent non-tumor tissue from 
36 PDAC patients [21]. They identified 766 up-regulated 
DEGs and 170 down-regulated DEGs using a lower cut-

Figure 3: The PPI network of the significantly upregulated DEGs with FN1 (encoded by gene FN1) and Serpin 
B5 (encoded by gene SERPINB5) as the most connected proteins (A); and the PPI network of the significantly 
downregulated DEGs with albumin (encoded by gene ALB) as the most connected protein (B).
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off standard of |log2(fold change)| >1. The dysregulated 
pathways, which might significantly contribute to the 
development and progression of PDAC, were identified to 
be mainly involved in immune response, homeostasis and 
cell adhesion. However, the list of DEGs was not released 
and no detailed analysis on any individual DEG was 
performed. Using the same microarray dataset, Sartor et al. 
screened for master regulators (MRs) of transcription and 
highlighted the potential value of having tubby-like protein 
3 (TULP3) as a clinical prognostic biomarker for PDAC 
[22]. In the current study, we used a different microarray 
dataset, GDS4336, which contains matched tumor tissue 

and adjacent non-tumor tissue from 45 PDAC patients. As 
illustrated in Figure 2 and Table 2, most of the DEGs are 
present outside the cells and involved in the extracellular 
matrix (ECM) organization, disassembly and regulation. 
ECM is an important structural component of human cells 
and exerts its biological functions in gene expression, 
signal transduction, cell adhesion, cell migration, cell 
invasion and angiogenesis [23-27]. Remodeling of 
ECM has been shown to enable the infiltration of tumor 
cells into the pancreas and surrounding tissues such as 
lymphatic organs and peritoneum, which subsequently 
leads to cancer metastasis to the liver and lungs [28, 29]. 

Figure 4: Structural modeling of FN1 (4-domain fragment) and Serpin B5 and docking of bleomycin sulfate, an 
approved anticancer drug, to FN1 and Serpin B5. (A). A cartoon representation of the superimposition of the 4-domain fragment 
of FN1, containing the RGD loop and synergy site, and the complex structure of tenascins and aggrecan lectin domain. (B). Potential 
binding mode of bleomycin sulfate at the mapped interaction site between FN1 and aggrecan core protein after docking simulations. 
(C). A carton representation of the superimposition of the crystal structure of Serpin B5 and the crystal structures of its homologues 
to identify the protease binding sire (Site 2). (D). Potential binding mode of bleomycin sulfate at the N-acetyl-D-glucosamine (NAG) 
binding site (Site 1) of Serpin B5 after docking simulations. (E). Potential binding mode of bleomycin sulfate at the protease binding site 
(Site 2) of Serpin B5 after docking simulations.
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Figure 5: The effect of bleomycin on cell viability of MIA PaCa-2 cells at treatment time of 24 h (●), 48 h (▲) and 
72 h (▼), respectively. The IC50 of bleomycin was measured to be 5.9 μM for 24 h of treatment, 6.4 μM for 48 h of treatment, and 
2.6 μM at 72 h of treatment, respectively.

Figure 6: Boxplots showing the expression of gene FN1 (A) and SERPINB5 (B) in PDAC patients versus normal 
controls in patient dataset PAAD deposited in The Cancer Genome Atlas (TCGA). This figure was generated using online 
software GEPIA (http://gepia.cancer-pku.cn).

http://gepia.cancer-pku.cn
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Since altered ECM can constitute as high as 90% of the 
tumor’s volume, developing novel therapeutic agents or 
repurposing drugs targeting the above-identified DEGs 
to suppress both cancer cell growth and tumor ECM 
formation would be beneficial for PDAC patients.

When we examined the ECM-related proteins 
(Table 2), FN1 and Serpin B5 emerged as the top two 
nodes with a high degree of connectivity in the PPI 
network for upregulated DEGs (Figure 3A). Hence, 
they are highly likely to be biological hubs that regulate 
important physiological and/or pathophysiological 
functions in PDAC development and progression. Our 
current results were consistent with previous studies [30, 
31]. Since biological hubs, such as MDM2 oncoprotein, 
are usually selected as potential drug design targets [32, 
33], we decided to investigate further on FN1 and Serpin 
B5. FN1, which is a multi-domain protein encoded by 
gene FN1 located at the breast cancer susceptible locus 
2q35, is actively engaged in cell adhesion and ECM 
organization and disassembly. It facilitates the crosstalk 
between tumor environment and cancer cells [34]. FN1 
has been shown to be upregulated in different types 
of cancer and promotes cancer growth, progression, 
invasion and metastasis [35-38]; and thus, is proposed as 
a target for cancer imaging and treatment [39]. Serpin B5, 
which is a 42 kDa serine protease inhibitor encoded by 
gene SERPINB5 located at band 18q21.33, is proposed 
as a tumor suppressor and found to be downregulated 

in breast cancer [40-42]. Recently, the expression of 
Serpin B5 was shown to be positively correlated with 
overall and progression-free survival in gastric cancer 
patients [43]. However, the expression of Serpin B5 is 
reported to be upregulated in pancreatic adenocarcinoma, 
endometrial cancer and ovarian carcinoma, suggesting 
that Serpin B5 plays an oncogenic rather than tumor-
suppressing role [44-47]. As shown in Table 2, Serpin 
B5 is involved in ECM organization; and this might 
contribute to oncogenic function of Serpin B5 in PDAC. 
We further reconfirmed the overexpression of genes FN1 
and SERPINB5 in pancreatic adenocarcinoma patients 
using dataset PAAD deposited in The Cancer Genome 
Atlas (Figure 6). Subsequently, we searched the Human 
Protein Atlas (HPA) database to explore whether FN1 or 
Serpin B5 could be used a prognostic indicator for PDAC. 
The predicted survival probability is much higher for 
pancreatic cancer patients with low mRNA expression of 
FN1 or SERPINB5 (Figure 7). This implicated that FN1 
and Serpin B5 are valid drug-design targets for PDAC.

Surprisingly, our drug virtual screening against four 
databases (Selleck, DiscoveryProbe FDA-approved Drug 
Library, DrugBank and Binding Database) identified that 
bleomycin sulfate (Blexane, Blenoxane), a mixture of 
cytotoxic glycopeptide antibiotics approved for squamous 
cell carcinoma, lymphoma, testicular carcinoma and 
malignant pleural effusion, exhibited reasonably strong 
binding to both FN1 and Serpin B5 (Figure 4 and 

Figure 7: Kaplan-Meier plots of the patient survival probability versus the mRNA expression level of FN1 (A) and 
SERPINB5 (B) based on the patients’ data deposited at the Human Protein Atlas (HPA) database (http://www.
proteinatlas.org). Both FN1 (p = 0.014) and SERPINB5 (p < 0.001) were identified to be unfavorable prognostic factors for PDAC.

http://www.proteinatlas.org
http://www.proteinatlas.org
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Supplementary Table S1 and Figure S1). This implies that 
bleomycin sulfate could be repurposed for the treatment 
of PDAC. Cell viability assay showed that MIA PaCa-
2, instead of AsPC-1, responded to bleomycin treatment 
with an IC50 of 2.6 μM at 72 h of treatment (Figure 5). 
This is consistent with previous studies by Girelli et al. 
[48], showing that bleomycin exhibited an IC50 of 3.5 
μM towards MIA PaCa-2 cells and electroporation could 
further bring the IC50 down to 0.2 μM. In addition, Ichor 
Medical Systems Incorporated (San Diego, CA, USA) 
initiated a phase I clinical trial on Electroporation therapy 
with bleomycin in treating patients with pancreatic cancer 
in December 2000, but later withdrew the clinical trial in 
September 2012 without any actual enrollment (https://
clinicaltrials.gov/ct2/show/study/NCT00027521). At the 
present time, it is unclear why AsPC-1 was not responding 
to bleomycin treatment, and we are also unable to confirm 
whether bleomycin indeed inhibited the growth of MIA 
PaCa-2 cells via FN1 and/or Serpin B5. Further studies 
are warranted on whether bleomycin would suppress 
the growth of other PDAC cell lines (both in vitro and 
in vivo), whether it indeed binds to FN1 and/or Serpin 
B5, how it regulates the biological functions of these two 
proteins in both PDAC cells and tumor ECM, and whether 
it can inhibit DNA synthesis in PDAC.

Finally, the results of PPI network for the 
downregulated DEGs clearly differentiated albumin 
(encoded by gene ALB) as a key component of the network 
(Figure 3B). Albumin is an important plasma protein 
carrier for hormones, fatty acids, metabolites and drugs. 
Along with hypovascularity, decreased expression of 
albumin would worsen pancreatic exocrine insufficiency 
and chemotherapeutic drug delivery in PDAC patients. 
The U.S. Food and Drug Administration (FDA) has 
approved an albumin-stabilized nanoparticle formulation 
of paclitaxel (Abraxane) for pancreatic cancer, and a 
very recent study by Zhao et al. showed that an albumin-
binding-5-fluorouracil prodrug exhibited longer half-life 
(t1/2) and enhanced antitumor activity in a rodent model 
of hepatoma [49]. Thus, we propose a novel intravenous 
regimen consisting of albumin and chemotherapeutic 
drugs such as 5-fluorouracil and gemcitabine, interspersed 
with pancreatic enzyme replacement therapy (PERT), to 
treat PDAC.

MATERIALS AND METHODS

Microarray data

The microarray dataset GDS4336 was downloaded 
from Gene Expression Omnibus (GEO), which was based 
on the platform of Affymetrix Human Gene 1.0 ST Array. 
The dataset GDS4336 contains matching pairs of tumor 

tissue and adjacent non-tumor tissue from 45 pancreatic 
ductal adenocarcinoma (PDAC) patients [17].

Differentially expressed genes (DEGs)

The original CEL data were imported into the 
R (version 3.4.4) and Affy packages for background 
correction and normalization. After normalization and 
standardization, differentially expressed genes (DEGs) 
were identified between matching pairs of tumor tissue 
and adjacent non-tumor tissue from 45 PDAC patients 
using Limma from R. The P value of 0.05 and |log2(fold 
change)| > 2 was chosen as the cut-off standard (Figure 1).

Gene ontology and pathway enrichment analysis

The identified DEGs were subjected to gene 
ontology (GO) evaluation using FunRich under P < 0.05. 
GO enrichment analysis revealed large lists of enriched 
genes in the categories of biological process, molecular 
function and cellular component. The top five GO terms 
in each of the three categories were summarized in Figure 
2A. The DEGs were then sent to GeneALaCart (https://
genealacart.genecards.org) for super pathway analysis, 
and the identified super pathways were shown in Figure 
2B.

Protein-protein interactions (PPI)

PPI networks were constructed for both 
upregulated- and downregulated-DEGs using BioGRID 
(Version 3.4.155) and then visualized using Cytoscape 
(The Cytoscape Consortium, https://www.cytoscape.org). 
In the PPI networks (Figure 3), the proteins are regarded 
as “notes”, and the number of interactions of a protein is 
defined as the degree of that note. The notes with high 
degree of connectivity are defined as “hubs”, which are 
usually considered as potential drug design targets.

Virtual screening for potential drugs targeting 
FN1 and Serpin B5

Structural model of FN1 bound with the aggrecan 
core protein was generated using protein homology/
comparative modeling using a fragment of FN1 
encompassing Type-III repeats 7-10 (PDB code: 1FNF) 
[50]. The virtual screening was undertaken at the interface 
between FN1 and aggrecan core protein. For Serpin B5, 
two potential binding sites, the N-acetyl-D-Glucosamine 
binding site (site1) and the protease binding site (site 2), 
were identified upon superimposing the structure of Serpin 
B5 (PDB code: 1WZ9) [51] with various homologous 
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proteins. The virtual screening was undertaken at both 
sites of Serpin B5. The ligand library was prepared by 
downloading molecules from four free chemical databases 
(Selleck, DiscoveryProbe FDA-approved Drug Library, 
DrugBank and Binding Database). Molecular docking of 
the ligand library was performed within a grid box of 20 Å 
in each dimension at the three binding sites using software 
Schrödinger (Schrödinger, LLC, New York, NY, USA).

Cell viability assay

Effect of bleomycin on cell viability of PDAC cell 
lines AsPC-1 and MIA PaCa-2 was determined with the 
MTT assay using our published protocol [52]. Briefly, 
either AsPC-1 or MIA PaCa-2 cells were plated in 96-
well plates at 10,000 cells per well with final cell culture 
volume of 100 μL. The cells were allowed to grow to 
70-80% confluence before being treated with bleomycin 
(concentration range: 0.1 – 100 μM) for 24 h, 48 and 72 
h, respectively.

CONCLUSION

In the current study, we identified 54 DEGs, 22 
upregulated genes and 32 downregulated genes, from 
a pairwise gene expression comparison for 45 PDAC 
patients. FN1 and Serpin B5 were identified as the most 
interconnected nodes in the PPI network for upregulated 
DEGs and likely to be important targets for novel drug 
development and drug repurposing. Our drug virtual 
screening identified that bleomycin exhibited reasonably 
strong binding to both FN1 and Serpin B5, and the 
subsequent cell viability assay showed that PDAC cell line 
MIA PaCa-2 responded to bleomycin with an IC50 of 2.6 
μM. Further studies are warranted to confirm whether the 
inhibitory activity of bleomycin is indeed via FN1 and/or 
Serpin B5.
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