
Approximate Subgraph Matching-Based Literature
Mining for Biomedical Events and Relations
Haibin Liu1*, Lawrence Hunter2, Vlado Kešelj3, Karin Verspoor4
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Abstract

The biomedical text mining community has focused on developing techniques to automatically extract important relations
between biological components and semantic events involving genes or proteins from literature. In this paper, we propose
a novel approach for mining relations and events in the biomedical literature using approximate subgraph matching.
Extraction of such knowledge is performed by searching for an approximate subgraph isomorphism between key
contextual dependencies and input sentence graphs. Our approach significantly increases the chance of retrieving relations
or events encoded within complex dependency contexts by introducing error tolerance into the graph matching process,
while maintaining the extraction precision at a high level. When evaluated on practical tasks, it achieves a 51.12% F-score in
extracting nine types of biological events on the GE task of the BioNLP-ST 2011 and an 84.22% F-score in detecting protein-
residue associations. The performance is comparable to the reported systems across these tasks, and thus demonstrates the
generalizability of our proposed approach.
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Introduction

Systems biology investigates the complex interactions between

various components of biological systems, and the consequential

impacts of these interactions on the function and behavior of the

systems. Text mining of the biomedical literature has been shown

to be an effective way of automatically extracting important

relations between biological components such as protein-protein

interactions (PPI) [1–3] and protein-disease associations [4,5], and

semantic events involving genes or proteins including gene

expression, binding, or regulatory events [6,7].

While a relation generally involves a pair of entities with

different participating roles, linked by a semantic relation type, an

event typically captures the association of multiple participants of

varying numbers and with diverse semantic roles [8]. Automatic

extraction of such knowledge from literature serves as the basis for

a broad variety of applications in systems biology, ranging from

the identification of molecular pathways to the automatic

enrichment of biological process databases (i.e. biocuration).

Relations and events can serve as participants in other events;

the extraction of such nested event structures also facilitates the

construction of complex conceptual networks.

Graphs provide a flexible structure to represent a network and

naturally describe the interactions between its components.

Therefore, they are a powerful primitive for modeling relations

and events. In this work, we take advantage of dependency graphs

that capture syntactic relations in sentences of natural language

text, based on state-of-the-art natural language parsers that can

achieve accuracies in the 80–90% range [9–11] on parsing

biomedical text. Using nodes to represent words in the sentence

and edges to decribe governor-dependent relations between words

(e.g. Figure 1), dependency graphs can capture long-range

dependencies among sentential constituents by considerably

narrowing the linear order distance between target entities [12].

Also, the syntactic dependencies closely approximate the under-

lying semantic relationships [13]. Therefore, they have been

effectively used by biomedical knowledge extraction systems

[1,3,10,11,14]. There have been two primary approaches used

to integrate dependency graphs with supervised machine learning

methods for extracting relational knowledge: feature-based

approach and kernel-based.

The feature-based approach encodes node tokens, edge labels

and path structures of variable depths of a dependency graph as

syntactic features, together with lexical features such as morpho-

logical characteristics and bag-of-word frequencies of token texts,

to feed learning algorithms [12,15]. A prominent system adopting

this approach is the Turku Event Extraction System (TEES),

which has been successfully applied to various relation and event

extraction tasks in the biomedical domain [12,16–18]. However, it

is often difficult for the feature-based approach to fully capture the

rich, structured information represented by a graph without the

burden of feature engineering [19,20]. The kernel-based approach

used in conjunction with Support Vector Machines (SVM) is able

to use that structure directly. The approach employs a graph

kernel that directly calculates the similarity between two depen-

dency graphs. Various graph kernels have been proposed to

compare two graphs according to different characteristics of their
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substructures. The shortest path kernel focuses on the shared

information on the shortest dependency path between the

constituent entities of a relation [21], the walk-based kernel looks

more closely into the shared information inside the shortest path

by exploring all possible contiguous subpaths [20], and the all-

paths graph kernel considers weighted shared dependency paths of

all possible lengths between words [2]. These graph similarity

metrics have been applied to extracting protein-protein and drug-

drug interactions [2,3,22], and biological events [15].

On the other hand, graph matching-based techniques that

directly operate on dependency graphs have also proven effective

for information extraction tasks in both general English and

biomedical domains. A dependency graph matching module was

introduced to compute the text relatedness between student

answers and correct answers in assisting the automatic grading of

student answers [23]. A graph matching approach was also

performed on the dependency graphs of two texts to automatically

find whether one text is entailed by the other [24]. In addition,

given dependency graphs of question and answer sentences, a

method was proposed to learn graph-based question answering

rules by extracting the maximum common subgraph of two

graphs, which determines the common information between a

question and an answer sentence [25]. These approaches achieved

accuracy figures comparable to state-of-the-art supervised meth-

ods.

More recently, we proposed an approach based on exact

subgraph matching (ESM) for mining various relations and events

from literature in the biomedical domain [26–30] (A Java

implementation of the ESM algorithm is available at http://

esmalgorithm.sourceforge.net). The key contextual structures are

learned from each labeled positive instance and maintained as

event rules in the form of subgraphs. Event extraction is modeled

as a subgraph matching problem by searching for a subgraph

isomorphism between rules and input texts. When applied to the

GENIA Event (GE) task of the BioNLP-ST 2011 [7], our

approach achieves an overall 66.41% precision through the

official online evaluation [28]. This precision is superior to all prior

published results on the GE task; only three individual systems

have achieved a precision in the 60% range. This indicates that

the method is effective at precisely identifying events based on the

dependency graphs.

However, the overall performance of our ESM-based approach

is limited by lower coverage, with an 11% recall deficit

contributing to the 7.3% F-score difference with the best

individual system. Careful error analysis suggests that the syntactic

dependencies encoded in the rules are not sufficient to capture the

variety of textual surface forms used to express biological

processes. We attribute this problem to the inherent, restrictive

property of the exact subgraph matching algorithm that strictly

requires that all nodes and connections between nodes in one

graph find their injective matches in the other. Although ensuring

a high precision, this requirement does not allow partial matching,

and therefore limits the generalization potential of the graph

representation of rules, leading to the lower recall. In this work, we

introduce a novel approach for relation and event extraction based

on approximate subgraph matching (ASM). By including a certain

degree of error tolerance into the graph matching process, the

approach increases the chance of retrieving relational knowledge

encoded within complex dependency contexts, while maintaining

the extraction precision at a high level. We have successfully

applied it in two biological relation/event extraction tasks,

achieving results competitive with the state-of-the-art methods,

demonstrating the generalizability of our proposed approach.

The rest of the paper is organized as follows: In Section 2, we

review recent research advances in mining biological relations and

events. Section 3 describes our ASM-based event extraction

approach. Section 4 demonstrates two applications in which our

approach has been successfully applied. Finally, Section 6

summarizes the paper and introduces future work.

Related Work
With state-of-the-art protein annotation methods achieving a

reasonable 88% F-score [31], the biomedical text mining

community has focused on developing techniques to automatically

extract from literature important relations between biological

components and semantic events involving genes or proteins.

Recently, a diversity of extraction methods have been proposed.

Airola et al. proposed an all-paths graph (APG) kernel for

extracting protein-protein interactions (PPI), in which the kernel

function captures weighted shared dependency paths of all possible

lengths between words [2]. Thomas et al. adopted this kernel as

one of the three models used in the ensemble learning for

extracting drug-drug interactions [22] and won the recent

DDIExtraction 2011 challenge [32]. Qian et al. proposed an

interesting dependency-motivated constituent tree kernel to

extract PPIs. The tree representation generated from a constituent

parser is refined using the dependency path information derived

from a dependency parser to simplify the tree while retaining its

rich, structured information. Their approach achieves the best

reported results on the five benchmark PPI corpora.

In addition to binary relations, the BioNLP-ST 2009 shared

task included a more ambitious task of detecting complex, nested

event structures. It successfully drew interest from 24 teams and

has since served as the platform for many studies on event

extraction.

The Turku Event Extraction System (TEES) used multi-class

SVM classifiers incorporating a wide array of features capturing

both linear and dependency contexts to extract arguments of

biological events [12]. A linear kernel was adopted with over

430,000 features. The TOKYO system extended the TEES by

replacing its manually crafted rule component for combining

extracted event triggers and arguments with a machine learning

approach, in which rich features collected from classification steps

Figure 1. Dependency Graph of ‘‘Methylation is known to
regulate expression of c-abl.’’
doi:10.1371/journal.pone.0060954.g001

Approximate Subgraph Matching-Based Text Mining
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for triggers and arguments are recombined [33]. The JULIE lab

adapted the APG kernel to event extraction using syntactically

pruned and semantically enriched dependency graphs [15].

BioNLP-ST 2011 extended BioNLP-ST 2009, addressing a

wider range of text types, event types, and subject domains. Riedel

et al. designed the ‘‘UMass’’ system using a discriminatively trained

model that jointly predicts trigger tokens, event arguments and

protein pairs in binding events [34]. McClosky et al. introduced an

event extraction system which extended the function of an existing

reranking dependency parser [35]. The combination of the

underlying models of these two systems achieved the best

performance in BioNLP-ST 2011 [36,37].

As the only rule-based system among the top 5 systems of

BioNLP-ST 2009, the ‘‘ConcordU’’ team carefully analyzed 2,000

automatically derived dependency relation paths involved in

expressing biological events, and manually coded 27 dependency

path patterns which were then applied sequentially to identify

event participants [38]. In BioNLP-ST 2011, they extended their

work into a two-phase methodology in which the first phase

generalizes syntactic dependency relations into a semantic

interpretation while the second phase constrains the interpretation

with domain-specific knowledge, achieving competitive results

[39]. More recently, Bui et al. also proposed a rule-based event

extraction approach [40]. Training data are first mapped into pre-

defined structured representations, from which rules are automat-

ically learned using a list of semantic and linear shallow syntactic

features, and further combined to form decision tables for

determining event arguments. When evaluated against the GE

task of BioNLP-ST 2011, their performance is comparable to the

state-of-the-art systems.

As one of the participating teams in BioNLP-ST 2011, we

proposed an exact subgraph matching (ESM)-based method for

event extraction [27]. The method was then successfully adapted

to extract other types of relational knowledge from literature. It

achieved an 80% F-score in detecting protein-residue associations

[29] in the Nagel corpus [41], and the second best F-score in

extracting protein-protein interactions [42] from the largest PPI

corpus, BioInfer [43].

An index-based approximate subgraph matching tool [44],

SAGA, was previously developed for aligning and querying

biological pathways in order to handle the noisy and incomplete

characteristics of biological graphs. Their graph matching model

considers node gaps, node mismatches and graph structural

differences. Haghighi et al. [24] also explored an approximate

notion of subgraph isomorphism in a textual inference task to

measure the semantic overlap between two general English texts

via various relaxed graph matching conditions. In this paper, we

introduce an approximate subgraph matching (ASM) algorithm

designed specifically for literature-based relational knowledge

extraction. In contrast to the graphs targeted by SAGA, our

algorithm focuses on matching labeled, attributed, directed graphs

derived automatically from natural language parsers. Also, the

algorithm aims to provide a fine-grained classification on semantic

roles of event participants compared to general text entailment

tasks. To the best of our knowledge, this is the first attempt to

apply approximate graph matching techniques into relational

knowledge extraction.

Relation/Event Extraction Method
In this section, we first introduce the framework of our ASM-

based approach. We then describe in detail the core components

of the framework in the context of biological event extraction.

Next, we formally illustrate our ASM algorithm, and investigate its

complexity. Finally, we compare the ASM with existing graph

distance/similarity metrics in terms of the different aspects

considered in the process of graph comparison.

ASM-based Event Extraction Framework
Interactions among biological entities are expressed in various

ways in the biomedical literature. The underlying assumption of

our approach is that the contextual dependencies of each stated

biological relation or event represent a typical context for such

events in the biomedical literature. Our approach falls into the

machine learning category of instance-based reasoning [45].

Specifically, the key contextual structures are learned from each

labeled positive instance in a set of training data and maintained as

event rules in the form of subgraphs. When compared against

unseen text, rules are relaxed in the matching phrase according to

different graph matching criteria to identify instances in accor-

dance with rules. When multiple rules are detected to match with

the same text, all unique instances are retained since it is often the

case that several events are described in a single text.

Figure 2 illustrates the overall architecture of our ASM-based

event approach with three core components highlighted: rule

induction, sentence matching and rule set optimization. In line

with most systems [2,15,16,34,35,39,40], our approach focuses on

extracting events expressed within the boundaries of a single

sentence. Those that require information across sentences or

articles are not considered. It is also assumed that entities involved

in the target event have been manually annotated or automatically

recognized by upstream procedures.

Several standard preprocessing steps are first completed on both

training and testing data. These include sentence segmentation

and tokenization, Part-of-Speech (POS) tagging, and syntactic

parsing that produces dependency graphs for sentences [46,47].

Next, we illustrate in detail the core components in the context of

biological event extraction.

Rule Induction
The two BioNLP shared tasks focused on the recognition of

biological events from the literature, in a setting where protein

mentions are provided in the input [6,7]. Biological events are

characterized in the data by the event type from a predefined set of

event types, the trigger that signals the event, and one or more

event arguments such as theme or cause of the event which can be

a protein or another event.

Figure 2. General Architecture of ASM-based Event Extraction.
doi:10.1371/journal.pone.0060954.g002
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Event rules are learned automatically using the following

method. Starting with the dependency graph of each training

sentence, for each annotated event, the shortest dependency path

connecting the event trigger to each event argument in the

undirected version of the graph is selected. While additional

information such as individual words in each sentence (bag-of-

words), sequences of words (n-grams) and semantic concepts is

typically used in the state-of-the-art supervised learning-based

systems to cover a broader context [2,12,15], the shortest path

between two tokens in the dependency graph is particularly likely

to carry the most valuable information about their mutual

relationship [21,38,42,48]. In case that there exists more than

one shortest path, all of them are considered. For multi-token

event triggers, the shortest path connecting every trigger token to

each event argument is extracted, and the union of the paths is

then computed for each trigger. For regulatory events that take a

sub-event as an argument, the shortest path is extracted so as to

connect the trigger of the main event to that of the sub-event.

While the dependencies of such paths are used as the graph

representation of the event, a detailed description records the

participants of the event, their semantic role labels and the

associated nodes in the graph. All participating biological entities

are replaced with a single tag, e.g. ‘‘BIO_Entity’’, to ensure

generalization of the learned rules. As a result, each annotated

event is generalized and transformed into a generic graph-based

rule. Algorithm 1 shows the details of the rule induction. The

resulting event rules are categorized into different target event

types.

Algorithm 1 Event Rule Induction Algorithm

Input: Dependency graph of a training sentence s, Gs; a finite

set of annotated biological events that appear in s,

E~fe1,e2, � � � ,ei, � � �g, where ei~(Type, Trigger, Arguments).
Output: A finite set of event rules R~fr1,r2, � � � ,ri, � � �g.
1: R / 1
2: for all ei [E do
3: uGs / unDirected Gsð Þ
4: //unDirected() transforms the directed graph Gs into an

undirected graph uGs

5: Path / 1//the initial Path set is empty

6: for all argument [ ei:Arguments do
7: Path/f shortestPath(uGs,ei:Trigger,argument)g
8: //shortestPath() finds the shortest path(s) between trigger and

argument in uGs

9: for all path [ Path do

10: Grj
/ directed Gs,pathð Þ

11: //directed() retrieves the original dependencies of path to

generate graph representation Gri

12: R / R | frj~(ei,Grj
)g

13: return R

For simple events such as Gene_expression and Protein_catabolism

that only involve a trigger and a theme argument, constructing the

graph representation for each event is straightforward. However,

for complex events such as Binding that take varying numbers of

proteins as themes, and regulation events that have an optional

cause argument in addition to theme, deriving the graph

representation deserves more attention. In our previous work,

we attempted to compute the dependency path union of all

shortest paths from trigger to each event argument, resulting in a

graph in which all event participants are jointly depicted [26,27].

In the event extraction process, this representation is able to

identify the trigger and arguments of a complex event simulta-

neously. On the one hand, since the event participants are

considered together for mutual disambiguation, this representation

leads to a higher precision in detecting complex events. On the

other hand, because the number of complex event arguments

varies according to contexts, such graph representation limits its

generalization potential. For instance, the graph of a Positive_r-

egulation containing both theme and cause arguments cannot be

applied to a theme-only event context because of the missing cause

argument. Likewise, a graph encoding a Binding activity among

three proteins cannot identify an event context where only two

proteins bind to each other.

In this work, for complex events, in addition to computing

dependency path unions, individual dependency paths connecting

triggers to each argument are also considered to determine event

arguments independently. If the resulting arguments share the

same event trigger, they are grouped together to form a potential

event. In fact, similar approaches were attempted in both BioNLP

shared tasks, and have been proven successful by the best-

performing systems [12,34]. In our approach, the individual paths

aim to retrieve more potential events while the path unions retain

the advantage of joint learning.

Figure 3 exemplifies the rule induction process for an annotated

Positive_regulation event of a sentence extracted from an article

(PMC-1134658). Labels for proteins and event triggers have been

attached to the event annotation. As highlighted in the depen-

dency graph derived by the McClosky-Charniak domain-adapted

parser [46], paths that connect triggers of the main event and the

sub-events are learned. Since two paths exist between tokens

‘‘lead-20/VBP’’ and ‘‘ligation-6/NN’’, both are considered in the

graph representation, resulting in 5 different event rules, as listed

in Table 1. As a path union, the graph encoded in ‘‘E1a’’ or

‘‘E1b’’ subsumes the individual paths represented in other rules.

Sentence Matching
Event extraction is achieved by matching the induced rules to

each testing sentence and applying the descriptions of rule tokens

to the corresponding sentence tokens. Since rules and sentences all

possess a graph representation, event recognition becomes a

subgraph matching problem. In this work, we introduce a novel

approximate subgraph matching (ASM) algorithm to identify a subgraph

isomorphic to a rule graph within the graph of a testing sentence.

The approximate subgraph matching problem in our work is

defined as follows.

Definition 1. An event rule graph Gr~(Vr,Er) is approximately

isomorphic to a subgraph of a sentence graph Gs~(Vs,Es), denoted

by Gr%Ss(Gs, if there is an injective mapping f : Vr?Vs such

that, for a given threshold t, t§0, the subgraph distance between

Gr and Gs satisfies 0 ƒ subgraphDist f (Gr, Gs) ƒ t, where

subgraphDistf (Gr, Gs) = ws6structDistf (Gr, Gs)+wl6labelDistf (Gr,

Gs)+ wd6directionalityDistf (Gr,Gs), and where the weights ws,

wl , and wd , and the distance functions structDist, labelDist, and

directionalityDist are defined in the next paragraph.

The subgraph distance computes the cost of transforming a

subgraph of the sentence graph into the rule graph, and is

proposed to be the weighted summation of three penalty-based

measures for a candidate match between the two graphs. The

measure structDist compares the distance between each pair of

matched nodes in one graph to the distance between correspond-

ing nodes in the other graph, and accumulates the structural

differences. The distance is defined as the length of the shortest

dependency path between two nodes. Because dependency graphs

are edge-labeled, oriented graphs, the measures labelDist and

directionalityDist evaluate respectively the overall differences

in edge labels and directionalities on the shortest path between

each pair of matched nodes in the two graphs. The real numbers

ws, wl and wd are non-negative weights associated with the

measures.

Approximate Subgraph Matching-Based Text Mining
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The weights ws, wl and wd are defaulted to be equal but can be

tuned to change the emphasis of the overall distance function. The

distance threshold t controls the isomorphism quality of the

retrieved subgraphs from sentences. A smaller t allows only limited

variations and always looks for a sentence subgraph as closely

isomorphic to the rule graph as possible. It ensures extraction

precision by introducing fewer false positive matches, but it may

not be able to detect events embedded in more complex contexts.

t~0 turns the ASM into the exact subgraph matching (ESM)

scenario. The ASM thus naturally subsumes the ESM. A larger t

enables the extraction of events described in complicated

dependency contexts, thus increasing the chance of retrieving

more events. However, it can incur a bigger search cost due to the

evaluation of more potential solutions. t~z? corresponds to a

search for the co-occurrence of all rule nodes in a sentence without

considering contextual constraints. The formal ASM algorithm

and an analysis of its complexity are presented in the next section.

Compared to binary relation extraction tasks, the challenge of

event extraction lies in the aim of recognizing complex and nested

events. For instance, simple events can serve as arguments of

complex events, and complex events themselves may also act as

participants of other complex events. Therefore, an iterative,

bottom-up matching process is proposed in this work.

Starting with the extraction of simple events, simple event rules

are first matched with a testing sentence. Next, as potential

arguments of higher level events, obtained simple events continue

to participate in the subsequent matching process between

complex event rules and the sentence to initiate the iterative

Figure 3. Event Rule Induction Example.
doi:10.1371/journal.pone.0060954.g003

Approximate Subgraph Matching-Based Text Mining

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e60954



process for detecting complex events with nested structures. The

process terminates when there is no new candidate event

generated for the testing sentence. Figure 4 illustrates a simple

example of the bottom-up process to extract three chained events

from a sentence (PMID-10229815).

In Section ‘‘Rule Induction’’ we showed that the graph

representation of our induced rules, even for complex events, is

‘‘simple’’ in the sense that higher-order constructs are not

explicitly encoded in the representation (see Table 1) and indeed

the rules are not tied to specific event types. As an example, the

theme and the cause of the event rule ‘‘E1a’’ in Table 1 are not

restricted to only the annotated types Phosphorylation and Binding

respectively. Rather, such constructs are implicitly captured

through references to tokens which are in turn sub-event triggers.

We believe that the contextual structures linking annotated sub-

events of a certain type are generalizable to other event types.

Therefore, during the matching phase we relax the event rules that

contain sub-event arguments such that any matched event can

substitute for the sub-event. This relaxation increases the chance of

extracting complex events with nested structures but still takes

advantage of the contextual constraints encoded in the graph

representation of rules.

Finally, post-processing is performed to transform raw sentence

matching results into the required format according to the event

extraction task.

Rule Set Optimization
Typical of instance-based reasoners, the accuracy of rules with

which to compare an unseen sentence is crucial to the success of

our approach. As observed in [2], the shortest paths concentrate

on the main structure expressing the mutual relationship between

nodes and sometimes exclude words that are relevant to specific

event contexts. Consequently, although rules are induced from

positively labeled events, when the graph representation of a rule is

detected in previously unseen text, the encoded contextual

dependencies may not always contain a valid event. For instance,

a Transcription rule encoding a noun compound modification

dependency between ‘‘TNF’’ and ‘‘mRNA’’ derived from an event

context ‘‘expression of TNF mRNA’’ should not produce a

Transcription event for the general phrase ‘‘level of TNF mRNA’’

even though they share a matchable dependency. Similarly, ‘‘Sp1

transcription’’ does not express an event but is an adjective to

describe ‘‘factors’’ in the context of ‘‘Sp1 transcription factors’’.

Such matches result in false positive events.

Table 1. Event rule representation.

Rule Rule Description Graph

ID Type Trigger Theme Cause Representation

E1a Pos. lead-20/VBP Phosphorylation: Binding: nsubj(lead-20/VBP, ligation-6/NN)

reg. phosphorylation-23/NN ligation-6/NN prep_to(lead-20/VBP, phosphorylation-23/NN)

E1b Pos. lead-20/VBP Phosphorylation: Binding: rcmod(ligation-6/NN, lead-20/VBP)

reg. phosphorylation-23/NN ligation-6/NN prep_to(lead-20/VBP, phosphorylation-23/NN)

E1c Pos. lead-20/VBP Phosphorylation: prep_to(lead-20/VBP, phosphorylation-23/NN)

reg. phosphorylation-23/NN

E1d Pos. lead-20/VBP Binding: nsubj(lead-20/VBP, ligation-6/NN)

reg. ligation-6/NN

E1e Pos. lead-20/VBP Binding: rcmod(ligation-6/NN, lead-20/VBP)

reg. ligation-6/NN

doi:10.1371/journal.pone.0060954.t001

Figure 4. Iterative Bottom-up Event Extraction Example.
doi:10.1371/journal.pone.0060954.g004

Approximate Subgraph Matching-Based Text Mining
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Therefore, we measured the accuracy of each rule ri in terms of

its prediction result via Eq.(1). Each rule is compared against

training sentences using the subgraph matching approach, leaving

out the sentence from which the rule was learned. For rules that

produce at least one prediction, we ranked them by Acc(ri) and

excluded the ones with a Acc(ri) ratio lower than an empirical

threshold, e.g. 1:4. We assume that these rules will produce false

positive predictions on unseen text if they are retained in the rule

set. Rules that do not make predictions are kept as they may

potentially contribute to the testing data.

Acc(ri)~
#correct predictions by ri

#total predictions by ri

ð1Þ

Because of nested event structures, the removal of some rules

might incur a propagating effect on rules relying on them to

produce arguments for the extraction of higher order events.

Therefore, an iterative rule set optimization process, in which each

iteration performs sentence matching, rule ranking and rule

removal sequentially, is conducted, leading to a converged,

optimized rule set. While the ASM algorithm aims to extract

more potential events, this performance-based evaluation compo-

nent ensures the precision of our event extraction framework.

Approximate Subgraph Matching Algorithm
The subgraph matching problem is NP-complete [49]. Also, it

has been shown that the complexity of the approximate subgraph

matching problem is equivalent in complexity to the largest

common subgraph problem [50]. However, the graphs of rules

and sentences involved in the matching process are small.

Therefore, a simple approximate subgraph matching algorithm

is feasible in this context. Our ASM algorithm is designed to

respect the event rules, since rules are learned from event

annotations in which each participant is curated by a domain

expert. That is, it searches for a subgraph isomorphism between

two graphs by always attempting to transform a subgraph of the

sentence graph into the rule graph. The main and essential

subroutines of the algorithm are formalized in Algorithms 2 and 3.

The algorithm starts with finding the start nodes for matching.

Each rule is allowed to have only one start node while each

sentence can possess a set of start nodes. Two scenarios are

considered. First, if the rule contains at least one ‘‘BIO_Entity’’

token, the ‘‘BIO_Entity’’ token that has the lowest token number

becomes the start node of the rule. This does not reduce the set of

found solutions. In the meantime, every ‘‘BIO_Entity’’ token in

the sentence becomes an alternate start node for the sentence.

Second, if the rule does not have any ‘‘BIO_Entity’’ token, the

token with the lowest token number becomes the start node of the

rule, while every token in the sentence becomes a candidate start

node. The second scenario applies to regulatory event rules that

only use sub-events as arguments.

The for loop of lines 7–25 attempts to match the rule graph to

the sentence graph, starting from matching the rule start node with

each sentence start node. Next, potential matching nodes in the

sentence are retrieved for each of the remaining rule nodes in

order to generate all candidate injective node matches between the

two graphs. Each candidate is then evaluated to compute a

corresponding subgraph distance.

Relaxing node matches. When comparing two graph nodes

in the matchNode method, various node features can be

considered, resulting in different matching criteria. The features

include POS tags (P), event trigger (T), token lemmas (L) and

tokens (A), ranging from the least specific matching criterion, P, to

the much stricter criterion, A. For each sentence, the algorithm

returns all the matched rules together with the injective mappings

from rule nodes to sentence tokens. Events are then extracted by

applying the descriptions of tokens in each matched rule (e.g. role

labels) to the corresponding tokens of the sentence. Figure 5

presents a detailed example of the ASM-based event extraction for

a Positive_regulation event. The matching criteria, ‘‘P*+L’’, require

that the relaxed POS tags (P*) and the lemmatized form (L) of

tokens be identical for each rule node to match with a sentence

node. The relaxed POS allows the plural form of nouns to match

with the singular form, and the conjugations of verbs to match

with each other. The BioLemmatizer [51] is used to generate

lemmas.

Algorithm 2 Approximate Subgraph Matching Algorithm

(Main algorithm)

Input: Dependency graph of a testing sentence s, Gs~(Vs,Es)
where V is the set of nodes and E is the set of edges of the graph; a

finite set of biological event rules R~fr1,r2, � � � ,ri, � � �g, where

ri~(ei,Gri
). Gri

~(Vri
,Eri

) is the dependency graph of ri; a given

subgraph distance threshold t
Output: MR : a set of biological event rules from R matched

with s together with the injective mapping

Main algorithm:
1: MR / 1
2: for all ri [R do
3: stri

/ startNode Gri
ð Þ//startNode() finds the start node stri

of

the rule graph Gri

4: STs/fsts1
,sts2

, � � � ,stsj
, � � �g//STs : the set of start nodes of

the sentence graph Gs

5: for all stsj
[STs do

6: if matchNode(stri
,stsj

) returns FALSE then
7: //matchNode() checks if an injective match exists between

two nodes

8: go to Line 5

9: else
10: IM / (stri

, stsj
)//IM: record injective matches between

nodes in Gri
and Gs

11 for all remaining nodes vr[ Gri
do

12: IMvr
/ 1//IMvr

: record injective matches between vr and

nodes in Gs

13: for all remaining nodes vs[ Gs do
14: if matchNode(vr,vs) returns TRUE then
15: //matchNode() assesses if two nodes can be matched using

node features

16: IMvr
/ IMvr

| fvsg
17: if IMvr

is empty then
18: go to Line 5

19: IM / IM | IMvr

20: CMS / 1 // CMS: record candidate node matching

schemes in Gs

21: cms / 1 // a candidate node matching scheme

22: CMS / combinMatching(IM,CMS,cms)

23: //combinMatching() recursively generates all candidate

node matching schemes in Gs

24: for all candidate matching cmsi[ CMS do
25: if subgraphDistance(cmsi,Gri

,Gs) ƒt then
26: MR/MR|fri with cms_i}

27: return MR
ASM algorithm complexity. Let us assume that the sentence

graph Gs and the rule graph Gri
have m and n vertices, and km

and kn edges respectively. The algorithm complexity is estimated

to be O(DRD:mn: n

2

� �
:km log m). As we could expect, since the

problem of subgraph matching is known to be NP-hard, the

Approximate Subgraph Matching-Based Text Mining
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complexity is exponential. The main source of inefficiency is the

generation of candidate node matching schemes which explores all

potential solutions in a sentence, giving O(mn) possible schemes.

The subgraph distance function is called for each candidate

solution, which makes
n

2

� �
invocations of shortest path

calculation for pairwise comparison of dependency contexts of

matched nodes in two graphs. Dijkstra’s algorithm [52] requires

Figure 5. ASM-based Event Extraction.
doi:10.1371/journal.pone.0060954.g005
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O(km log m) time to compute the shortest path between any two

nodes in Gs.

However, we have observed that the algorithm is relatively

efficient in practice and we have successfully run it on several event

and relation extraction tasks. We show that this efficient

performance in practice can be expected. First, on average there

are about 24 words in a sentence in the biomedical text [53], and

therefore m and n are generally small. Second, since injective

matches are required between graphs, the solution space is

effectively narrowed down from O(mn). As a result, the algorithm

is alleviated by only evaluating a small subset of all possible

matches, e.g., m3 vs. m(m{1)(m{2). Third, by matching from

pairs of start nodes, the number of comparisons is efficiently

reduced. In practice, it takes the ASM less than a second to match

a total of 13,000 rules of different event types with a sentence and

return results.

Algorithm 3 Approximate Subgraph Matching Algorithm

(Subroutines)

Subroutine: combinMatching(IM, CMS, cms)
1: IMcurrent/IM; CMScurrent/CMS; cmscurrent/cms
2: //assign IM, CMS and cms from the parent level to the

current IM, CMS and cms
3: if IMcurrent is empty then
4: CMScurrent / CMScurrent | cmscurrent

5: return CMScurrent

6: pop IMvr
from IMcurrent

7: for all vs [ IMvr
do

8: cmscurrent / cmscurrent | (vr,vs)
9: if cmscurrent is an injective matching scheme then
10: CMScurrent/ combinMatching(IMcurrent, CMScurrent,

cmscurrent)

11: return CMScurrent

Subroutine: subgraphDistance(cim,Gri
,Gs)

1: distance / 1
2: distance = ws| structDist(cim,Gri

,Gs)+wl|
labelDist(cim,Gri

,Gs)+wd| directionalityDist(cim,Gri
,Gs)

3: //ws, wl and wd are the weights for each component

4: return distance
Subroutine: structDist(cim,Gri

,Gs)

1: structDist / 1; normalizedStructDist / 1
2: for all injective matching pairs (vri

, vsi
) and (vvj

, vsj
) [ cim do

3: structDist+ = D shortestPathLength(vri
, vrj

, Gri
) { short-

estPathLength(vsi
, vsj

, Gs) D
4: normalizedStructDist = structDist/

P
vsi

,vsj
[Gs

short-

estPathLength(vsi
, vsj

, Gs)

5: return normalizedStructDist
Subroutine: labelDist(cim,Gri

,Gs)

1: labelDist / 1; normalizedLabelDist / 1
2: create two empty stacks ruleLabel and senLabel
3: for all injective matching pairs (vri

, vsi
) and (vvj

, vsj
) [ cim do

4: push Label(vri
, vrj

, Gri
) onto ruleLabel

5: //Label() returns all labels on the shortest path between

nodes

6: push Label(vsi
, vsj

, Gs) onto senLabel
7: labelDist+ = diffLabel(Label(vri

, vrj
, Gri

), Label(vsi
, vsj

, Gs))

8: //diffLabel() returns the number of different labels between

two stacks

9: normalizedLabelDist = labelDist/(DsenLabelD+DruleLabelD)
10: return normalizedLabelDist
Subroutine: directionalityDist(cim,Gri

,Gs)

1: directionalityDist / 1; normalizedDirectionalityDist /
1

2: create two empty stacks ruleDirect and senDirect
3: for all injective matching pairs (vri

, vsi
) and (vvj

, vsj
) [ cim do

4: push Direction(vri
, vrj

, Gri
) onto ruleDirect

5: //Direction() returns all directions on the shortest path

between nodes

6: push Direction(vsi
, vsj

, Gs) onto senDirect

7: directionalityDist+ = diffDirect(ruleDirect,senDirect)

8: //diffDirect() returns the number of different directions

between two stacks

9: normalizedDirectionalityDist = directionalityDist/
(DsenDirectD+DruleDirectD)

10: return normalizedDirectionalityDist

Comparison with Existing Graph Distance/Similarity
Measures

While the cost function of the ASM measures the subgraph

distance between two graphs, graph kernels directly compute the

similarity between the graphs. Since a distance function can be

converted straightforwardly into a similarity measure, we briefly

compare the ASM with some existing graph kernel metrics in

terms of the different aspects considered in the process of graph

comparison.

The edit distance kernel [54] calculates the edit distance

between two event dependency graphs, that is, the minimum

operations (deletion, insertion and substitution) needed to trans-

form one graph entirely into the other. Since the expression of

information about events or relations can be scattered around a

sentence, pursuing a global isomorphism requires various opera-

tions to deal with instance-specific but event-irrelevant linguistic

variation. In the extreme cases, one graph may have to be

completely recreated into the other. This explains in part why the

edit distance kernel yielded a high precision on all five benchmark

PPI corpora (AIMed [55], BioInfer [43], HPRD50 [1], IEPA [56],

and LLL [57]) but a significant lower recall compared to other

kernel-based methods [3]. Instead of transforming the entire

graph, ASM is able to focus only on the event-relevant

substructures, and search for a subgraph isomorphism between

graphs. Also, the edit distance kernel ignores original edge

orientations when transforming graphs into linear path chains to

simulate the edit distance calculation between sequences of strings.

However, directionality is a crucial indicator of the semantic roles,

e.g. agent or patient. The ASM provides a finer classification of

event participants by preserving the direction information.

Further, the graphs considered in the edit distance kernel are

constrained to the shortest dependency path connecting the

constituent entities of a relation. While a rule graph is derived from

shortest paths, the ASM searches for the corresponding subgraph

within a full sentence graph. By exploring a broader context, the

resulting subgraph may not correspond to the shortest path

connecting targeted entities.

The dependency kernel [20] recursively computes the number

of common subgraphs between two dependency graphs. The

kernel function relies on the notion of ‘‘common child pairs’’ of

node n1 in one graph and node n2 in the other, namely the set of

pairs of nodes that have parents n1 and n2 respectively, and that

are connected to the parents via the same type of edge. When

traversing the graphs in search of common subgraphs, these are

the nodes at which the exploration continues. In Figure 6, for

instance, Com(processinga,processingb)~f(Bio Entitya,Bio Entityb)g
because Bio_Entitya and Bio_Entityb are connected to the parents

via the same dependency label ‘‘prep_of’’. However, due to this

restrictive edge match requirement, Com(processinga, processingc)

~msbm10 at 12 pt 63. Even though ‘‘processing of Bio_Entity’’ is

equivalent in meaning to ‘‘Bio_Entity processing’’, the dependency

kernel returns no common structures between graphs 5a and 5c.

In contrast, because the ASM models node and edge comparisons

Approximate Subgraph Matching-Based Text Mining
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independently, it can capture the two common node pairs

(processinga, processingc) and (Bio_Entitya, Bio_Entityc), allowing

an underlying subgraph isomorphism between 5a and 5c to

happen.

The all-paths graph (APG) kernel [2] counts weighted shared

paths of all possible lengths between two pairs of candidate entities.

The graph representation of the kernel consists of two sub-

representations: the full dependency parse and the surface word

sequence of the sentence where a pair of interacting entities

occurs. At the expense of computational complexity, this

representation enables the kernel to explore broader contexts of

an interaction, thus taking advantage of the entire dependency

graph of the sentence. When comparing two interaction instances,

instead of using only the shortest path that might not always

provide sufficient syntactic information about relations, the kernel

considers paths of all possible lengths between entities. In contrast,

the graph representation that the ASM searches in a sentence is

inherently restricted to the shortest path between the target

entities, as described in Section 3.2. However, although paths of

other lengths e.g., the second shortest path can be also obtained to

enrich our rule set, one could argue that the performance of the

APG may benefit from its word sequence sub-representation

because linear, flat feature-based methods have also achieved

state-of-the-art results in information extraction (IE) tasks

[12,16,18]. To the best of our knowledge, while the APG kernel

was successfully applied to extract protein-protein and drug-drug

interactions [2,22], no experiments have been conducted to assess

the individual contributions of the internal sub-representations of

the APG kernel.

In fact, all existing graph kernels are developed to facilitate the

extraction of binary relationships, i.e., to help SVM make a

decision on whether a co-occurrence of two entities bears a pre-

defined relation type. The ASM targets a broader problem

definition and is able to identify various components of a relation

or event, such as predicate of a relation, and trigger or various

themes of an event. However, in order to perform a direct, fair

comparison between the ASM and existing graph kernel metrics,

the ASM has to also be kernelized. This will allow the ASM to not

only take advantage of the capability of SVM that implicitly

explores a high dimensional feature space, but also be compared

with existing kernels on the same IE tasks. We plan to explore the

use of ASM in a graph kernel in future work.

Applications of ASM-Based Approach

In this section, we evaluate the proposed ASM-based approach

on two biomedical applications: BioNLP shared tasks, and

Protein-Residue association detection.

BioNLP Shared Tasks
Datasets. We use the dataset of the GENIA Event (GE) task

of BioNLP-ST 2011, including training, development and testing

sets. This dataset subsumes the BioNLP-ST 2009 dataset of

biomedical journal abstracts, but adds full-text articles. Genes and

gene products are pre-annotated as ‘‘Proteins’’ and provided in the

dataset. The event annotation is only available for training and

development sets. Table 2 presents some statistics of the GE

dataset. The McClosky-Charniak domain-adapted parser [46],

which is among the best performing parsers trained on the GENIA

Treebank corpus, is used to parse the sentences. The resulting

native constituency output is then transformed to the ‘‘collapsed’’

form of the Stanford dependency scheme [47] to produce

dependency graphs using the Stanford parser tools [58]. The

parsing results were provided by the shared task organizers [7].

ASM parameter setting. The GE task includes 9 different

event types. Since each type possesses its own event contexts, an

individual threshold te is assigned to each type. Together with the

3 distance function weights ws, wl and wd , the ASM requires 12

parameters for the event extraction task. Because of the nested

event structures, these parameters are correlated and must be

tuned simultaneously. Therefore, a genetic algorithm (GA) [52] is

used to determine the values automatically using the training data.

Our GA works with a population of potential parameter

settings. The values of parameters are encoded by integer values

within a predefined range: [0, 50]. For each potential setting, the

fitness function of GA performs sentence matching between rules

learned from the training set and sentences of the development set,

evaluates the corresponding event extraction performance on the

development set using the provided gold event annotation, and

returns the resulting F-score. GA iterates the fitness function with a

goal of maximizing the F-score on the development data.

Our GA is set up to evolve for 50 generations, each of which

consists of a population of 100 potential parameter settings. GA

starts with a randomly generated population of 100 potential

solutions and proceeds until 50 generations are reached. The

number of generations and the population size are decided with

consideration of the runtime cost of evaluating the fitness function.

A large number of generations or population size would incur an

expensive runtime cost of evaluation. Table 3 shows the resulting

optimized parameter setting with the equal weights ws~wl~wd

constraint.

Event extraction results. Following the proposed frame-

work, rules are first induced from both training and development

sets. The resulting rule set is then optimized and matched with the

testing sentences using the ASM with the above parameter setting

and node matching criteria ‘‘P*+L’’. The graph-based rules are

distributed over the nine event types shown in Table 4. Our

performance on the testing set of the GE task is reported in

Figure 6. Dependency Kernel Example.
doi:10.1371/journal.pone.0060954.g006

Table 2. Statistics of BioNLP-ST 2011 GE dataset (values in
parentheses are the numbers of full articles).

Attributes Counted Training Development Testing

Abstracts+Full articles 908 (5) 259 (5) 347 (4)

Sentences 8,759 2,954 3,437

Proteins 11,625 4,690 5,301

Total events 10,287 3,243 4,457

Sentence-based events 9,583 3,058 hidden

doi:10.1371/journal.pone.0060954.t002
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Table 5, evaluated by the primary metric of the task via the official

online evaluation (http://bionlp-st.dbcls.jp/GE/eval-test/).

Table 6 presents the performance comparison results between

the ASM and the top individual systems in the BioNLP-ST 2011

that achieved an F-score higher than 50%. Even though the

shared task organizers provided participants with uniform

supporting analyses [7] on the datasets such as tokenization,

POS tagging and syntactic parsing, participating systems may have

undergone different preprocessing steps. Also, individual systems

are always parameterized and optimized differently. Thus, the

performance differences among systems may not fully reflect their

underlying methodologies. Rather than a method-level compar-

ison, we intend to show a system-level comparison in which

complete systems take the same dataset and produce a solution

evaluated against the annotations of the held-out data through a

public platform. A run of the ASM with t~0 is also listed to show

the performance when it corresponds to exact subgraph matching

(ESM). The impact of the ASM method itself is reflected through

comparison of the optimized ASM with the ASM (t~0), where the

same preprocessing was used. In addition to the overall recall, a

detailed comparison is also provided for simple events (‘‘SVT’’)

that only involve a trigger and a theme, Binding events (‘‘BIND’’)

that can take multiple participants of varying numbers, and

regulatory events (‘‘REG’’) containing diverse semantic roles.

Moreover, since the GE task dataset of the BioNLP-ST 2011

subsumes the dataset of BioNLP-ST 2009, we present separately in

Table 7 the performance comparison on the BioNLP-ST 2009

data.

Our approximate subgraph matching-based method achieves

an overall 51.12% F-score on the GE task testing data, including

both abstracts and full-text papers. Considering that ‘‘MSR-NLP’’

[59] based their work on ‘‘UTurku’’’s system [16], our perfor-

mance is comparable to the top systems, and is within a reasonable

margin from the best-performing system ‘‘UMass’’. Our method

shows an overall superior precision over most participating teams,

of which only three individual systems obtained a precision in the

60% range. Particularly, in the exact subgraph matching scenario

(ASM with t~0), the best precision can be achieved with a

constrained recall. The precision of simple events is approaching

89% (88.98%), nearly 8% higher than that of ‘‘UMass’’ (81.40%).

This indicates that event rules automatically learned and

optimized over training data generalize well to the unseen text.

Whenever the graph representation of a rule is detected in testing

data, the rule has the ability to identify precisely a corresponding

event. Considering that the precision outperforms the ‘‘Con-

cordU’’ system relying on manually developed patterns [60], it

indicates that learned rules can be even more accurate than

human-coded rules.

Compared with the exact subgraph matching scenario, the

ASM results in a nearly 6% recall gain but still maintains precision

at the high level, leading to an important 3.2% increase for F-

score. However, a recall deficit of about 5% between the ASM and

the top two systems is still observed. Careful error analysis reveals

that the difference comes primarily from the extraction of complex

events. Specifically, only 23% of the cause arguments for

regulatory events that contain both theme and cause (as in

Figure 5) are retrieved.

We attributed the missed event arguments to two main reasons.

First, information on the shortest dependency path represented in

rules is accurate to infer mutual relationship between tokens but

sometimes not sufficient to cover all possible linguistic contexts of

multi-participant events. Due to missing the relevant event

components, even though the ASM attempts to maximize the

generalization potential of rules, the corresponding events cannot

be identified. As a result, the compound effect of one missing

theme of a three-theme Binding event will leave the entire event

undiscovered, and one missing cause of a regulatory event may

incur a chain of unidentified regulation events with nested

structures. In contrast, the ‘‘UTurku’’ system employed over

Table 3. ASM parameter setting for the GE task.

Parameter Value Parameter Value

tGene_expression 7 tRegulation 3

tTranscription 5 tPositive_regulation 3

tProtein_catabolism 7 tNegative_regulation 3

tPhosphorylation 10 ws 10

tLocalization 10 wl 10

tBinding 7 wd 10

doi:10.1371/journal.pone.0060954.t003

Table 4. Distribution of event rules.

Event type No. of event rules

Gene_expression 2,438

Transcription 479

Protein_catabolism 130

Phosphorylation 282

Localization 281

Binding 1,651

Regulation 1,487

Positive_regulation 4,626

Negative_regulation 1,619

TOTAL 12,993

doi:10.1371/journal.pone.0060954.t004

Table 5. GE results on testing set evaluated by ‘‘Approximate
Span/Approximate Recursive Matching.’’

Event type
(No. of events) Recall(%) Precision(%) F-score(%)

Gene_expression (1002) 68.66 85.36 76.11

Transcription (174) 47.13 76.64 58.36

Protein_catabolism (15) 53.33 100.00 69.57

Phosphorylation (185) 80.00 71.15 75.32

Localization (191) 45.55 75.65 56.86

[SVT-TOTAL] (1567) 64.65 81.43 72.07

Binding (491) 35.44 54.55 42.96

[EVT-TOTAL] (2058) 57.68 75.94 65.56

Regulation (385) 22.34 42.16 29.20

Positive_regulation (1443) 33.75 54.66 41.73

Negative_regulation (571) 28.55 39.95 33.30

[REG-TOTAL] (2399) 30.68 48.97 37.72

[ALL-TOTAL] (4457) 43.15 62.72 51.12

doi:10.1371/journal.pone.0060954.t005
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430,000 features including linear surface information, and shallow

and deep syntactic structures to capture comprehensive event

contexts. ‘‘UMass’’ also attempted to artificially increase the

training data size in the shared task in order to obtain more

distinguishing features. Our approach simply uses more limited

features and hence is not as robust to this linguistic variation.

Second, the current implementation of the injective mapping

requirement of the ASM algorithm constrains further generaliza-

tion of rules. Currently, ‘‘P*+L’’ is used as the matching criteria

requiring that the relaxed POS tags and the lemmatized form of

tokens be identical when comparing non-‘‘BIO_Entity’’ nodes in

the two graphs. ‘‘P*’’ provides shallow syntactic information but

would be too general if used as a standalone criterion. ‘‘L’’ is

added to provide specificity. However, although somewhat

abstracted from original surface tokens, lemmas are constrained

to match at the word level. For further relaxation of node

matching, ontology-based, concept-level generalization is neces-

sary. For instance, when ‘‘lysine’’ appears as a rule node, the ASM

could allow all amino acids to match with it instead of only looking

for this specific residue.

One way to improve the recall of ASM is to provide it with

more training data. This can potentially be accomplished through

the use of the distant supervision paradigm, which automatically

creates training instances by heuristically matching existing

knowledge to some corresponding text [63]. Next, we demonstrate

via an application that combining our ASM-based relation

extraction approach with the distant supervision paradigm leads

to a state-of-the-art performance.

Statistical significance test. While Table 6 demonstrates

the important performance differences between the optimized

ASM and the ASM (t~0) (ESM), in order to claim the

contribution of the ASM method itself over ESM we further

investigated whether these differences are statistically significant.

Since the ASM and the ASM (t~0) underwent the same

preprocessing steps, and were trained and tested on the same

datasets, both methods are expected to produce some positively

correlated results [64]. Instead of tests that assume independent

results from compared methods e.g., the Chi-square test, or a

normal distribution on tested samples e.g., paired student’s t test,

we used the Wilcoxon signed rank test [65], a nonparametric test

assuming that there is information in the magnitudes and signs of

the differences between paired observations.

Since the gold event annotation of the GE task testing data is

hidden to the public, our statistical test is performed on the

development data. The 259 documents are randomly divided into

10 groups with 26 documents in 9 groups and 25 documents in the

last. Each group is evaluated independently by both optimized

ASM and ASM (t~0), and the score distributions for the two

resulting samples are confirmed to be non-Gaussian distributions

via the Shapiro-Wilk normality test [65]. The paired samples are

then tested by the Wilcoxon signed rank test with the null

hypothesis that there is no performance difference between the

two methods. Table 8 presents the test results for Precision, Recall

and F-score respectively when the level of significance is a~0:05.

The test confirms that the recall and F-score increases from the

ASM method itself are statistically significant, as evidenced by the

0.002 P value. While according to the test the precision drop of the

ASM is also significant (P value = 0.037), considering that the

change of the balanced F-score is significant, the recall gain

provides a more important influence to the overall performance.

In spite of the compromise of lower precision for this recall gain,

the ASM still achieves a precision higher than most of the reported

systems as shown in Table 6 and Table 7. Therefore, we conclude

that the ASM significantly increases the chance of retrieving events

encoded within complex dependency contexts by introducing

error tolerance into the graph matching process, while maintain-

ing the extraction precision at a high level.

Protein-residue Association
In three-dimensional protein structures, the appearance of

certain amino acid residues at key structural positions plays a

central role in protein function, for instance enabling ligand or

substrate binding. For proteins of therapeutic importance,

identifying these protein residues as potential targets is a key early

step in drug design. Text mining has been shown to play an

important role in such protein function prediction [66]. In this

Table 6. Performance comparison with other systems on the
GE task of BioNLP-ST 2011.

System SVT BIND REG TOTAL

F-score F-score F-score Recall Precision F-score

UMass [34] 73.50 48.79 43.82 48.49 64.08 55.20

UTurku [16] 72.11 43.28 42.72 49.56 57.65 53.30

MSR-NLP [59] 71.54 41.39 40.02 48.64 54.71 51.50

ASM 72.07 42.96 37.72 43.15 62.72 51.12

ConcordU [60] 70.52 36.88 40.16 43.55 59.58 50.32

UWMadison [61] 68.70 36.88 40.37 42.56 61.21 50.21

Stanford [62] 70.88 44.34 35.21 42.36 61.08 50.03

ASM (t~0) 68.47 36.21 36.01 37.45 66.41 47.89

doi:10.1371/journal.pone.0060954.t006

Table 7. Performance comparison with other systems on the
dataset of BioNLP-ST 2009.

System SVT BIND REG TOTAL

F-score F-score F-score Recall Precision F-score

UMass [34] 71.54 50.76 45.51 48.74 65.94 56.05

UTurku [16] 70.36 47.50 44.30 50.06 59.48 54.37

MSR-NLP [59] 70.08 43.86 40.85 48.52 56.47 52.20

ASM 70.07 43.21 38.78 42.80 64.73 51.53

Stanford [62] 69.29 47.57 36.09 42.55 62.69 50.69

UWMadison [61] 65.13 43.21 41.08 42.17 62.30 50.30

ConcordU [60] 67.75 37.41 40.96 43.09 60.37 50.28

ASM (t~0) 64.78 41.55 36.68 36.77 68.86 47.94

doi:10.1371/journal.pone.0060954.t007

Table 8. Wilcoxon signed rank test results.

Wilcoxon
Test ASM ASM

ASM
(t~0)

ASM
(t~0) P value

mean std. dev. mean std. dev.

Recall 42.26 5.71 36.62 5.52 0.002

Precision 69.39 5.19 72.93 9.14 0.037

F-score 52.40 5.52 48.51 5.70 0.002

doi:10.1371/journal.pone.0060954.t008
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work, we applied our approach to extract protein-residue

associations in the biomedical literature.

Dataset. Instead of manually curated annotations, sentences

that contain high confidence protein-residue relationships are

prepared via distant supervision using Protein Data Bank (PDB) as

the biological knowledge source to drive relation extraction

learning. Sentences in which at least one protein and one amino

acid co-occur are selected from 18,045 abstracts of the primary

references for the PDB entries. These sentences are further filtered

to retain only those that contain physically validated relationships,

i.e., the protein-residue co-occurrence can be substantiated by a

physical match of the particular residue to the mentioned protein

according to its PDB record (see [66] for more details). While a

dictionary lookup is performed to pre-annotate protein names,

Figure 7. Physical Validation of Protein Residue Relation.
doi:10.1371/journal.pone.0060954.g007

Table 9. Statistics of Protein-Residue relation dataset.

Attributes Counted No. of instances

Total abstracts 18,045

Total sentences 138,790

Sentences with co-mentions of protein and residue 5,256

Physically validated protein-residue relations 2,814

doi:10.1371/journal.pone.0060954.t009

Table 10. Performance comparison on Protein-Residue
association extraction.

System Recall(%) Precision(%) F-score(%)

Co-occurrence baseline 100.00 62.42 76.86

ASM (t~0) 78.43 83.60 80.93

ASM 86.62 81.96 84.22

doi:10.1371/journal.pone.0060954.t010
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linguistics-based patterns are used to identify residue mentions and

the particular position where they occur in protein sequences [29].

As exemplified in Figure 7, for the sentence ‘‘CTP binding affects

the conformation of Arg80, and the Arg80 conformation in the

UPRTase-UMP-CTP complex leaves no room for binding of the

substrate PRPP. ’’, the protein-residue pair (UPRTase-Arg80) is

validated via the PDB entry ‘‘1xtv’’, with PMID-15654744 as the

primary citation.

Table 9 shows some statistics of the protein-residue association

dataset we built through distant supervision. More details about

the construction of the dataset can be found in [29].
Relation extraction results. Association rules are induced

from sentences for 2,216 physically validated relationships by

extracting the shortest paths connecting association arguments.

The rule set optimization process involves only one iteration as the

task does not contain relations with nested structures. An empirical

parameter setting for the ASM is used throughout our experiments

in which the three distance function weights are ws~wl~wd~1
and the single distance threshold t protein{residue~0:6.

When evaluated against the remaining 598 physically validated

relationships, the ASM with the above parameter setting achieved

an 84.22% F-score in extracting protein-residue associations, with

an 86.62% recall and an 81.96% precision. The system surpasses a

co-occurrence baseline method that assumes a relation when one

protein and an amino acid are mentioned together in texts, and a

run of the ASM with t~0, which is equivalent in performance to

the exact subgraph matching (ESM) method previously adapted to

the protein-residue association problem [29]. Table 10 shows the

detailed performance comparison on the constructed dataset. With

minor compromise to precision, the ASM brings in a substantial

8% recall increase over ASM (t~0), leading to an overall 3.3% F-

score improvement.

Distant supervision helps to relax the reliance of rule induction

on curated annotations. Taking advantage of a much broader set

of training instances, more rules are reliably learned to cover

diverse relation contexts, thus improving the overall coverage of

our approach. While distant supervision has been shown effective

for system development in relation extraction in the general

English domain [67,68], our work provides additional confirma-

tion of the effectiveness of this strategy in the biomedical domain

when integrated with our ASM-based framework.

Conclusion
In this paper, we proposed a novel approximate subgraph

matching-based approach for extracting relational knowledge

from biomedical literature. By introducing a certain degree of

error tolerance into the graph matching process, our approach

increases the chance of retrieving relations or events encoded

within complex dependency contexts, while maintaining the

extraction precision at a high level. Our approach has been

successfully applied to two relation and event extraction tasks. We

report results of 51.12% F-score in extracting nine types of

biological events of the BioNLP-ST 2011 task and 84.22% F-score

in detecting protein-residue associations, demonstrating the

generalizability of our approach. In addition, we investigated the

complexity of the proposed algorithm, and compared it with

existing related graph distance/similarity metrics.

Our approach has a number of advantageous features. First,

characterized by high precision, our approach is a preferable

choice when accurate information about biological processes is

emphasized. It works particularly well on extracting binary

relations (including events containing only two participants) with

training data where biological entities of the target relation are

pre-annotated. Second, although already possessing a reasonable

recall, the coverage of the approach can be further increased by

integrating distant supervision. Meanwhile, rules learned from co-

mentions of pairs of entities known to interact are not prone to

over-fitting to an annotated training corpus, thus they are more

generalizable across different datasets [42]. This is in contrast with

the observation that most state-of-the-art machine learning

methods for relation extraction show large performance differ-

ences depending on whether or not the evaluation and training

instances are taken from the same corpus [3]. Third, our approach

is easily adapted to different relation extraction tasks. Its

generalizability has been demonstrated via two biomedical

applications with various requirements and diverse contexts. The

task-specific adaptation only involves specifying the type of the

targeted relation, e.g. protein-residue association and retuning the

corresponding ASM parameters, and is therefore trivial. Fourth,

analyzing extraction errors of the approach is more straightfor-

ward compared to SVM-based supervised learning methods as a

wrong match can be pinpointed to the specific rule producing it

and then corrected.

In our future work, we are interested in extending the proposed

subgraph matching algorithm into a graph kernel to be integrated

into SVM so that we can take advantage of the capability of state-

of-the-art supervised learning methods and compare straightfor-

wardly with existing graph kernel metrics on common information

extraction tasks. We would also like to explore some alternative,

linguistically-based, methods to relax the current labelDist

measure. Currently, a simple strategy in the labelDist measure

in the ASM subgraph distance function is used that tracks all

different edge labels on the compared paths in two graphs. For

instance, even though ‘‘prep_of(increase, immunoreactivity) ’’ in

rule possesses the same meaning as ‘‘prep_in(increase, immuno-

reactivity)’’ in sentence, because ‘‘prep_of’’ is different from

‘‘prep_in’’ in form, labelDist will record a difference of two labels,

resulting in a larger labelDist score. Some approaches have been

developed to prune or collapse dependency graphs by unifying

labels that are equivalent in meaning in order to simplify the

graphs [13,15,42,59,69] which should be applicable here. Finally,

we intend to incorporate existing ontologies into the graph

matching process to investigate their impact on event extraction

performance.
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