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Abstract: A series of perylene diimide (PDI) derivatives have been investigated at the
CAM-B3LYP/6-31G(d) and the TD-B3LYP/6-31+G(d,p) levels to design solar cell acceptors with
high performance in areas such as suitable frontier molecular orbital (FMO) energies to match
oligo(thienylenevinylene) derivatives and improved charge transfer properties. The calculated results
reveal that the substituents slightly affect the distribution patterns of FMOs for PDI-BI. The electron
withdrawing group substituents decrease the FMO energies of PDI-BI, and the electron donating
group substituents slightly affect the FMO energies of PDI-BI. The di-electron withdrawing group
substituents can tune the FMOs of PDI-BI to be more suitable for the oligo(thienylenevinylene)
derivatives. The electron withdrawing group substituents result in red shifts of absorption spectra
and electron donating group substituents result in blue shifts for PDI-BI. The –CN substituent can
improve the electron transport properties of PDI-BI. The –CH3 group in different positions slightly
affects the electron transport properties of PDI-BI.

Keywords: perylene diimide derivatives; frontier molecular orbitals; optical properties; charge
transport property; organic solar cells

1. Introduction

Organic solar cells (OSCs) with high power conversion efficiencies (PCEs) exceeding 10%
have been fabricated [1]. Among them, organic small molecules as solar cell materials based
on π-conjugate polymers are attractive because of their rapid energy payback time [2], low cost,
flexibility, light weight, solution-based processing, and the capability to fabricate flexible large-area
devices [3]. The PCEs of the OSCs have exceeded 11% when the conventional fullerene as the
acceptors [4,5]. However, the fullerene and its derivative acceptors have several limitations, such as
costly production, fixed band alignment, and limited optical absorption, which significantly prevent the
development of new donor materials. Thus, developing and investigating novel acceptors has become
a focus around the world. Up to now, many small molecule acceptors have been reported, such as
9,91-bifluorenylidene [6,7], dicyan substituted quinacridone [8], diketopyrrolopyrrole derivatives [9,10],
vinazene [11,12], fluoranthene-fused imide [13,14], naphthalene diimides [15,16], electron-deficient
pentacenes [17], and perylene diimides (PDIs) [18–21]. Among the small molecule acceptors, PDI
and its derivatives have attracted much attention in the past decade due to their superior optical
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and electric properties—for example, excellent chemical, photochemical, and thermal stabilities [22],
high absorption (450 and 650 nm) [23], promising electron mobility [24–26], and excellent electron
affinity [27]. Yao et al. obtained solar cells with 4.34% efficiency on the basis of PDI [21]. Nguyen et al.
prepared the PDI bulk heterojunction solar cell [1]. Shin et al. obtained OSCs with a power conversion
efficiency of 0.18% under AM 1.5 using PDI derivatives as acceptors [28]. Zhang et al. [29,30] and
Tang et al. [31] deigned a series of PDI derivatives and calculated their properties.

Won Suk Shin et al. prepared some PDI derivatives, and molecule PDI-BI had suitable properties
as a solar cell acceptor [28]. In this manuscript, in order to improve the performance of PDI-BI, we have
designed various PDI-BI derivatives (Table 1), which have different functional groups, to find the most
promising acceptors with suitable frontier molecular orbital energies (FMOs) to match the OSC donor
oligo(thienylenevinylene) derivatives (X1 and X2, Figure 1) with favourable properties designated by
Yong et al. [32]. Generally, the higher the lowest unoccupied molecular orbital (LUMO) of the acceptor,
the larger the open circuit voltage (Voc), because the difference in energy between the highest occupied
molecular orbital (HOMO) energy of the donor and LUMO of the acceptor is in direct proportion to
the Voc. In addition, to ensure separation of charge, the differences between the LUMO energies of the
donor and the acceptor should be greater than 0.30 eV [33]. Considering the fact that the substituent
groups affect the molecular properties significantly, we designed two kinds of molecules (PDI-BI-1-26)
to study the push (–CH3) and pull (–CN and –NO2) substituent groups effects. The density function
theory (DFT) [34] has been used for evaluating a variety of ground state properties of these molecules,
such as FMO, including HOMO and LUMO energies, and the HOMO–LUMO gaps (Eg). The optical
properties (absorption spectra) of the designed molecules have been predicted by the time dependent
DFT [35–37] approach (TD-DFT). The reorganization energy (λ) was also calculated. Additionally,
we discussed the correlation between structures and properties of these molecules.

Table 1. Chemical structure of PDI-BI derivatives (Rn are –H except for mentioned in the Table).
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Molecules R-Groups Molecules R-Groups 
PDI-BI-1 R1 = –CN PDI-BI-14 R3 = –CN R6 = –CN 
PDI-BI-2 R2 = –CN PDI-BI-15 R3 = –CN R6 = –NO2 
PDI-BI-3 R3 = –CN PDI-BI-16 R4 = –CN R5 = –NO2 
PDI-BI-4 R4 = –CN PDI-BI-17 R4 = –NO2 R5 = –NO2 
PDI-BI-5 R5 = –CN PDI-BI-18 R3 = –NO2 R6 = –NO2 
PDI-BI-6 R6 = –CN PDI-BI-19 R1 = –CH3 
PDI-BI-7 R7 = –CN PDI-BI-20 R2 = –CH3 
PDI-BI-8 R8 = –CN PDI-BI-21 R3 = –CH3 
PDI-BI-9 R1 = –NO2 PDI-BI-22 R4 = –CH3 

PDI-BI-10 R2 = –NO2 PDI-BI-23 R5 = –CH3 
PDI-BI-11 R3 = –NO2 PDI-BI-24 R6 = –CH3 
PDI-BI-12 R4 = –NO2 PDI-BI-25 R7 = –CH3 
PDI-BI-13 R4 = –CN R5 = –CN PDI-BI-26 R8 = –CH3 

Molecules R-Groups Molecules R-Groups

PDI-BI-1 R1 = –CN PDI-BI-14 R3 = –CN R6 = –CN
PDI-BI-2 R2 = –CN PDI-BI-15 R3 = –CN R6 = –NO2
PDI-BI-3 R3 = –CN PDI-BI-16 R4 = –CN R5 = –NO2
PDI-BI-4 R4 = –CN PDI-BI-17 R4 = –NO2 R5 = –NO2
PDI-BI-5 R5 = –CN PDI-BI-18 R3 = –NO2 R6 = –NO2
PDI-BI-6 R6 = –CN PDI-BI-19 R1 = –CH3
PDI-BI-7 R7 = –CN PDI-BI-20 R2 = –CH3
PDI-BI-8 R8 = –CN PDI-BI-21 R3 = –CH3
PDI-BI-9 R1 = –NO2 PDI-BI-22 R4 = –CH3
PDI-BI-10 R2 = –NO2 PDI-BI-23 R5 = –CH3
PDI-BI-11 R3 = –NO2 PDI-BI-24 R6 = –CH3
PDI-BI-12 R4 = –NO2 PDI-BI-25 R7 = –CH3
PDI-BI-13 R4 = –CN R5 = –CN PDI-BI-26 R8 = –CH3
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Figure 1. The structures of donors X1 and X2 from Ref. [32]. 

2. Results and Discussion 

2.1. Frontier Molecular Orbitals 

The electronic and optical properties of molecules are related to the values of FMOs and Eg. 
Thus, in order to gain insight into the influence of the optical and electronic properties, the 
distribution patterns of the FMOs for the designed molecules are studied, and the electronic density 
contours of the designed molecules in ground states are shown in Figure 2. The evaluations of 
HOMO and LUMO energies (EHOMO and ELOMO) for designed molecules are plotted in Figure 3 and 
listed in Table 2. 
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Figure 1. The structures of donors X1 and X2 from Ref. [32].

2. Results and Discussion

2.1. Frontier Molecular Orbitals

The electronic and optical properties of molecules are related to the values of FMOs and Eg. Thus,
in order to gain insight into the influence of the optical and electronic properties, the distribution
patterns of the FMOs for the designed molecules are studied, and the electronic density contours of
the designed molecules in ground states are shown in Figure 2. The evaluations of HOMO and LUMO
energies (EHOMO and ELOMO) for designed molecules are plotted in Figure 3 and listed in Table 2.
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PDI-BI-4 −7.15 −2.72 4.43 569.68 278.77 290.91 
PDI-BI-5 −7.13 −2.74 4.39 588.55 278.64 309.91 
PDI-BI-6 −7.12 −2.76 4.36 595.24 280.40 314.84 
PDI-BI-7 −7.14 −2.76 4.38 590.79 281.67 309.12 
PDI-BI-8 −7.14 −2.75 4.39 592.00 280.06 311.94 
PDI-BI-9 −7.17 −2.74 4.43 574.08 297.82 276.26 

Figure 2. The distribution patterns of FMO for PDI-BI and its derivatives at the
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Table 2. The predicted EHOMO, ELOMO, Eg, λabs-max, λabs-min, and R values of PDI-BI and its derivatives
at the TD-B3LYP/6-31+G(d,p)//CAM-B3LYP/6-31G(d) Level.

EHOMO ELOMO Eg λabs-max λabs-min R

PDI-BI ´6.88 ´2.44 4.44 570.40 269.50 300.90
PDI-BI-1 ´7.14 ´2.74 4.40 581.24 282.68 298.56
PDI-BI-2 ´7.14 ´2.75 4.39 580.46 281.54 298.92
PDI-BI-3 ´7.16 ´2.75 4.41 572.27 281.43 290.84
PDI-BI-4 ´7.15 ´2.72 4.43 569.68 278.77 290.91
PDI-BI-5 ´7.13 ´2.74 4.39 588.55 278.64 309.91
PDI-BI-6 ´7.12 ´2.76 4.36 595.24 280.40 314.84
PDI-BI-7 ´7.14 ´2.76 4.38 590.79 281.67 309.12
PDI-BI-8 ´7.14 ´2.75 4.39 592.00 280.06 311.94
PDI-BI-9 ´7.17 ´2.74 4.43 574.08 297.82 276.26

PDI-BI-10 ´7.12 ´2.71 4.41 584.98 300.92 284.06
PDI-BI-11 ´7.19 ´2.70 4.49 557.27 298.59 258.68
PDI-BI-12 ´7.18 ´2.72 4.46 564.87 298.98 265.89
PDI-BI-13 ´7.40 ´3.00 4.40 584.00 289.49 294.51
PDI-BI-14 ´7.39 ´3.05 4.34 596.19 291.72 304.47
PDI-BI-15 ´7.40 ´3.00 4.40 585.19 305.80 279.39
PDI-BI-16 ´7.43 ´3.01 4.42 581.03 307.99 273.04
PDI-BI-17 ´7.45 ´3.02 4.43 582.91 311.98 270.93
PDI-BI-18 ´7.43 ´2.95 4.48 567.95 343.18 224.77
PDI-BI-19 ´6.86 ´2.39 4.47 564.68 270.26 294.42
PDI-BI-20 ´6.83 ´2.37 4.46 559.84 271.85 287.99
PDI-BI-21 ´6.84 ´2.37 4.47 557.89 271.51 286.38
PDI-BI-22 ´6.85 ´2.39 4.46 564.76 269.00 295.76
PDI-BI-23 ´6.85 ´2.39 4.46 567.34 270.18 297.16
PDI-BI-24 ´6.82 ´2.37 4.45 564.37 272.33 292.04
PDI-BI-25 ´6.82 ´2.37 4.45 562.73 272.19 290.54
PDI-BI-26 ´6.84 ´2.39 4.45 571.83 270.17 301.66
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From Figure 2, one can see that the FMOs are spread over the entire molecule for the designed
molecules. This indicates that there is great spatial overlap between the HOMO and LUMO, and
the transition from HOMO to LUMO may lead to strong optical adsorption. As shown in Figure 3
and Table 2, the –CN and –NO2 groups in different substituent positions can decrease the EHOMO,
ELOMO, and Eg values of PDI-BI, except that –NO2 in 3 or 4-position increases the Eg value of
PDI-BI (PDI-BI-11 and PDI-BI-12), and the deviations of EHOMO, ELOMO, and Eg values for molecules
PDI-BI-1-12 are similar, respectivety. For molecules PDI-BI-1-8, the decrease of the EHOMO value is
the largest when the –CN group is in the 3-position of PDI-BI. The decrease of the ELOMO value is the
largest when the –CN group is in the 6 or 7-position of PDI-BI. The Eg value is the smallest when the
–CN group is in the 6-position of PDI-BI. For molecules PDI-BI-9-12, the decrease of the EHOMO value
is the largest when the –NO2 group is in the 3-position of PDI-BI. The decrease of the ELOMO value is
the largest when the –NO2 group is in the 1-position of PDI-BI. The Eg value is the smallest when the
–NO2 group is in the 2-position of PDI-BI. The di-CN, di-NO2, or –CN and –NO2 groups in different
substituent positions can decrease the EHOMO, ELOMO, and Eg values of PDI-BI, except that the –NO2

in 3 and 6-positions increase the Eg values of PDI-BI (PDI-BI-18), and the decreased amounts of
EHOMO, ELOMO, and Eg values for molecules PDI-BI-13-18 are similar, respectively. The EHOMO value
decrease is the largest when the –NO2 groups are in the 4 and 5-positions of PDI-BI. The decrease of the
ELOMO value is the largest when the –CN groups are in the 3 and 6-positions of the molecule PDI-BI.
The Eg value is the largest when the –NO2 groups are in the 3 and 6-positions the molecule PDI-BI.
For molecules PDI-BI-19-26, the –CH3 group in different substituent position affects the EHOMO,
ELOMO, and Eg of PDI-BI slightly. These results reveal that the electron withdrawing substituents
can decrease the EHOMO, ELOMO, and Eg values of PDI-BI. The electron donating substituents affect
EHOMO, ELOMO, and Eg values of PDI-BI slightly.

The EHOMO and ELOMO values of FMO for molecules X1, X2, PDI-BI-1, PDI-BI-13, and PDI-BI-19
are plotted in Figure 4. The molecules PDI-BI-1, PDI-BI-13, and PDI-BI-19 are the representatives of
the different kinds of substituent molecules, respectively. As shown in Figure 4, one can see that the
LUMO energies of PDI-BI-13 are lower (0.32 and 0.30 eV) than those of X1 and X2, which indicates
that PDI-BI-13 is suitable for the FMOs of X1 and X2, respectively. That is to say, molecules PDI-BI-14,
PDI-BI-15, PDI-BI-16, and PDI-BI-17 are also suitable for the FMOs of X1 and X2, respectively. This
reveals that the di-CN, di-NO2, or –CN and –NO2 groups substituents can decrease the FMOs of
PDI-BI. Thus, proper substitutions can tune the FMOs of PDI-BI to be more suitable to X1 and X2.
Moreover, we calculated the triplet energies of X1, X2, and PDI-BI-13. The calculated results show
that the triplet energies are higher than the corresponding singlet energies for X1, X2, and PDI-BI-13,
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respectively. This indicates that there may be no triplet loss when X1, X2, and PDI-BI-13 are used as
the candidates for OSCs devices [38–40].
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region (R) of the designed molecules are listed in Table 2. The simulated adsorption spectra, plotted
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As shown in Table 2 and Figure 5, the –CN group in different positions could increase the
λabs-max and λabs-min values of PDI-BI, respectively, except the –CN group in 4-position could decrease
the λabs-max value of PDI-BI slightly. The –CN group in the 5, 6, 7, or 8-position can increase the
R values of PDI-BI, and the R value increase is larger than the other positions when the –CN
group in the 6-position. For –NO2 substituent molecules, the λabs-max values are, in increasing
order, PDI-BI-11 < PDI-BI-12 < PDI-BI < PDI-BI-9 < PDI-BI-10, the λabs-min values are, in decreasing
order, PDI-BI-10 > PDI-BI-11 « PDI-BI-12 > PDI-BI-9 > PDI-BI, and the R values are in the
order PDI-BI-11 < PDI-BI-12 < PDI-BI-9 < PDI-BI-10 < PDI-BI. This shows that the –NO2 group
in 2-position could produce a larger increase of λabs-max and λabs-min values than the other positions for
PDI-BI, and the –NO2 group in 3-position could produce a larger decrease of the R value than the other
positions for PDI-BI. For di-substituent molecules, the substituent groups could increase the λabs-max
and λabs-min values of PDI-BI, respectively, except the di-NO2 groups in 3 and 6-position decrease
the λabs-max value of PDI-BI, obviously. The di-substituents could decrease the R values of PDI-BI,
respectively, except the di-CN groups in 3 and 6-position increase the R value of PDI-BI significantly.
The –CH3 groups in different positions affect the λabs-max, λabs-min, and R values of PDI-BI slightly.
These results reveal that the mono-pull group can increase the λabs-max, λabs-min, and R values of
PDI-BI, and the push group affects the λabs-max, λabs-min, and R values of PDI-BI slightly. Among
these molecules, PDI-BI-14 has the largest λabs-max value and PDI-BI-6 has the largest R value, which
indicates that it could be a good candidate for the solar cell acceptor.

2.3. Reorganization Energy

The charge transport property of material is important to design the acceptor for a solar cell device,
and the reorganization energy plays a role in charge transport and charge separation. It is well-known
that the lower the λ values, the better the charge transport property. Thus, we calculated the λe and λh
values of PDI-BI and its derivatives. The calculated results are listed in Table 3.

Table 3. Calculated λe and λh (eV) values of PDI-BI and its derivatives.

λe λh

PDI-BI 0.298 0.210
PDI-BI-1 0.278 0.222
PDI-BI-2 0.277 0.215
PDI-BI-3 0.278 0.221
PDI-BI-4 0.272 0.222
PDI-BI-5 0.282 0.226
PDI-BI-6 0.285 0.224
PDI-BI-7 0.286 0.230
PDI-BI-8 0.278 0.232
PDI-BI-9 0.296 0.225

PDI-BI-10 0.360 0.236
PDI-BI-11 0.290 0.222
PDI-BI-12 0.320 0.234
PDI-BI-13 0.265 0.240
PDI-BI-14 0.266 0.240
PDI-BI-15 0.343 0.249
PDI-BI-16 0.279 0.245
PDI-BI-17 0.312 0.264
PDI-BI-18 0.476 0.250
PDI-BI-19 0.297 0.201
PDI-BI-20 0.296 0.201
PDI-BI-21 0.296 0.195
PDI-BI-22 0.298 0.200
PDI-BI-23 0.299 0.205
PDI-BI-24 0.298 0.206
PDI-BI-25 0.298 0.200
PDI-BI-26 0.300 0.213
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As shown in Table 3, the –CN group in different positions can decrease the λe values and
increase the λh values of PDI-BI. This implies that the –CN substituent can improve the electron
transport property of PDI-BI. The –CN substituent in the 4-position (PDI-BI-4) owns the largest
electron transfer rate. For the –NO2 substituent molecules, the substituent groups can increase
the λe and λh values of PDI-BI, except the –NO2 group in 1 or 3 position, which can decrease
the λe values of PDI-BI slightly. For the di-substituent molecules, the substituent groups can
increase the λe and λh values of PDI-BI, except the di-CN groups (PDI-BI-13 and PDI-BI-14)
and –CN in 4-position and –NO2 in 5-position (PDI-BI-16) substituents, which can decrease
the λe values of PDI-BI. This indicates that the electron transfer rates of PDI-BI-13, PDI-BI-14,
and PDI-BI-16 are higher than that of PDI-BI. For –CH3 substituent molecules, the –CH3 group
in different positions affects the λe values of PDI-BI slightly and decreases the λh values of PDI-BI,
except the –CH3 group in 8-position, which can increase the the λh values of PDI-BI. This shows
that the –CH3 substituent can improve the hole transport property of PDI-BI. The λe values of
PDI-BI-4, PDI-BI-13, and PDI-BI-14 are smaller than that of the typical electron transport material
tris(8-hydroxyquinolinato) aluminium(III) (Alq3) (λe = 0.276 eV) [42], indicating that their electron
transfer rates are higher than that of Alq3. The λh values of molecules PDI-BI-1-26 are smaller than
that of N,N1-diphenyl-N,N1-bis(3-methlphenyl)-(1,10-biphenyl)-4,40-diamine (TPD) (λh = 0.290 eV),
which is a typical hole transport material [43]. This implies that their hole transfer rates are higher
than that of TPD. Among these molecules, PDI-BI-13 has the best electron transport property, and
PDI-BI-21 has the best hole transport property.

3. Materials and Methods

Computational Methods

All the calculations were performed with the Gaussian 09 software [44]. Our previous work [31]
suggested that the DFT method CAM-B3LYP with the 6-31G(d,p) basis set was reliable for optimization
of PDI and its derivatives, and the TD-B3LYP/6-31+G(d,p) was reasonable for optical property
simulation. Hence, the CAM-B3LYP/6-31G(d,p) method was employed to optimize all the geometry
including neutral, cation, and anion PDI-BI-1-26 molecules. The absorption spectra of PDI-BI-1-26
molecules were predicted by the B3LYP/6-31+G(d,p) method. The PBE1PBE/6-31G(d) method was
used to optimize the geometry of molecules X1 and X2 [32], and the HOMO and LUMO energies
of molecules X1 and X2 were calculated at the CAM-B3LYP/6-31G(d,p) level on the basis of the
single point energy. The B3LYP/6-31G(d,p) functional was successful in calculating the charge
transport parameters [45]. Thus, we calculated the single point energy at the B3LYP/6-31G(d,p)
level. The necessary parameters, such as single point energies of neutral, cation, and anion
molecules in the ground state (S0), were recomputed for calculating the electronic properties of the
molecules. The reorganization energy (λ) was predicted on the basis of the single point energy at the
B3LYP/6-31G(d,p) level optimised neutral, cationic, and anionic geometries. Herein, the environmental
relaxation and changes were ignored, and the reorganization energy of the isolated active organic π

conjugated systems was the internal reorganization energy. As a result, Equations (1) and (2) can be
used for calculating the values of electron reorganization energy (λe) and hole reorganisation energy
(λh) [46]:

λe “ rE0
-´E-s ` rE-

0´E0s (1)

λh “ rE0
+´E+s ` rE+

0´E0s (2)

E0
+ and E0

´ are the cation and anion single point energies obtained by the optimized structure of
the neutral molecule. E+ and E´ are the cation and anion single point energies calculated on the basis
of the optimized structures of cation and anion molecules. E+

0 and E´0 are the neutral single point
energies obtained via the optimized structures of cation and anion molecules. E0 is the neutral single
point energy calculated by the optimized structure of the neutral molecule at S0.
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4. Conclusions

In the present work, we report a theoretical investigation predicting the substitution effects on
optical and electronic properties for PDI-BI. The calculated results show that the substituents slightly
affect the distribution patterns of FMOs for PDI-BI. The –CN and –NO2 groups in different substituent
positions can decrease the EHOMO, ELOMO, and Eg of PDI-BI. The –CH3 group in different substituent
positions affects the EHOMO, ELOMO, and Eg of PDI-BI slightly. The –CN group in different positions
could increase the λabs-max and λabs-min values of PDI-BI, respectively, and the –CN group in the 5,
6, 7, or 8-position can increase the R values of PDI-BI. The –NO2 group in 2-position could produce
a larger increase in λabs-max and λabs-min values, and the –NO2 group in 3-position could produce a
larger decrease of the R value of PDI-BI. The –CH3 groups in different positions slightly affect the
λabs-max, λabs-min, and R values of PDI-BI. Among these molecules, PDI-BI-14 has the largest λabs-max
value and PDI-BI-6 has the largest R value. The –CN group in different positions can decrease the λe

values and increase the λh values of PDI-BI. In the –NO2 substituent molecules, the substituent groups
can increase the λe and λh values of PDI-BI. The –CH3 group in different positions slightly affects
the λe values, and decreases the λh values of PDI-BI. PDI-BI-13 and PDI-BI-21 have the best electron
and hole transport properties, respectively. On the basis of these results, we suggest that PDI-BI-13,
PDI-BI-14, PDI-BI-15, PDI-BI-16, and PDI-BI-17 are suitable acceptors for X1 and X2. This study
should be helpful in further theoretical investigations on such systems and also in the experimental
study of solar cell acceptor materials.
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