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Subchondral tibial bone texture 
of conventional X‑rays predicts 
total knee arthroplasty
Ahmad Almhdie‑Imjabbar1,2, Hechmi Toumi1,2,3, Khaled Harrar4, Antonio Pinti1,5 & 
Eric Lespessailles1,2,3*

Lacking disease-modifying osteoarthritis drugs (DMOADs) for knee osteoarthritis (KOA), Total 
Knee Arthroplasty (TKA) is often considered an important clinical outcome. Thus, it is important 
to determine the most relevant factors that are associated with the risk of TKA. The present study 
aims to develop a model based on a combination of X-ray trabecular bone texture (TBT) analysis, 
and clinical and radiological information to predict TKA risk in patients with or at risk of developing 
KOA. This study involved 4382 radiographs, obtained from the OsteoArthritis Initiative (OAI) cohort. 
Cases were defined as patients with TKA on at least one knee prior to the 108-month follow-up time 
point and controls were defined as patients who had never undergone TKA. The proposed TKA-risk 
prediction model, combining TBT parameters and Kellgren–Lawrence (KL) grades, was performed 
using logistic regression. The proposed model achieved an AUC of 0.92 (95% Confidence Interval [CI] 
0.90, 0.93), while the KL model achieved an AUC of 0.86 (95% CI 0.84, 0.86; p < 0.001). This study 
presents a new TKA prediction model with a good performance permitting the identification of at risk 
patient with a good sensitivy and specificity, with a 60% increase in TKA case prediction as reflected by 
the recall values.

Osteoarthritis (OA), the most common form of arthritis, affects a substantial and increasing proportion of 
the population due to the combined effect of ageing and increasing overweight and obesity in the population. 
It is estimated that 250 million people are already affected by this leading cause of disability in older adults1,2. 
Although both non weight-bearing (hand) and weight-bearing joints such as the spine, hip, and knee are com-
monly affected, knee OA constitutes 85% of the global burden of OA in general3, and is the most frequently 
studied location in OA imaging research4. Bone metabolism and particularly subchondral bone plays a crucial 
role in the pathophysiology of knee osteoarthritis (KOA)5. Although several promising therapies have recently 
emerged that could reshape the overview of OA management in the near future6, there are still no approved agents 
that can be considered as validated disease-modifying osteoarthritis drugs (DMOADs)7,8, and consequently joint 
replacement surgery is often considered to be the sole effective treatment option for KOA when non-surgical 
management of KOA has failed. Knee replacement is considered an important clinical outcome of KOA9,10 and 
thus it is of the utmost importance to determine the most relevant factors that are associated with the risk of 
total knee arthroplasty (TKA)11.

Bone metabolism and particularly subchondral bone plays a key role in the pathophysiology of KOA5,12. 
Recently, trabecular bone texture (TBT) analysis of subchondral bone on conventional radiographs of the knee 
was shown to be a promising method for identifying patients at-risk of KOA progression13–18. An overview of the 
interest of TBT analysis in the assessment of KOA was recently published19. Applying a combined approach of 
new machine learning techniques and trabecular texture analysis has already been successfully used to improve 
the prediction of KOA progression in the Multicenter Osteoarthritis Study (MOST) and the OsteoArthritis 
Initiative (OAI) cohorts20.

The most important unresolved hurdle is identifying and classifying patients who are at risk for TKA based on 
bone texture analysis. In the present work, we aim to demonstrate that applying trabecular bone texture analysis 
to baseline knee radiographs can predict the risk of TKA in the OAI cohort. To our knowledge, no prior study 

OPEN

1EA 4708‑ I3MTO Laboratory, University of Orleans, Orleans, France. 2Translational Medicine Research Platform, 
PRIMMO, Regional Hospital of Orleans, Orleans, France. 3Department of Rheumatology, Regional Hospital of 
Orleans, 14 Avenue de l’Hôpital, 45067 Orleans Cedex 2, France. 4LIST Laboratory, University M’Hamed Bougara 
of Boumerdes, Boumerdes, Algeria. 5DeVisu-Design, Visuel, Urbain, EA 2445, UPHF, Valenciennes, France. *email: 
eric.lespessailles@chr-orleans.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12083-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8327  | https://doi.org/10.1038/s41598-022-12083-x

www.nature.com/scientificreports/

has evaluated the utility of radiographic TBT analysis for predicting which individuals from a cohort of knee 
OA patients will undergo TKA.

Methods
The data used in this study were obtained from the OAI cohort in patients with or at risk of developing sympto-
matic KOA in at least one knee. The OAI study protocol was approved by the National Institute of Arthritis and 
Musculoskeletal and Skin Diseases (NIAMS) and is registered on ClinicalTrials.gov as “Osteoarthritis Initiative 
(OAI): A Knee Health Study”, NCT#00080171. The OAI is a public access research database. The National Insti-
tute of Mental Health (NIMH) Data Archive (NDA) website (https://​nda.​nih.​gov/​oai/​query-​downl​oad) provides 
useful information on how to obtain permission to access to the OAI data. The access to the raw data used in 
our study was granted by the NDA Osteoarthritis Initiative permission group. The OAI study was carried out 
in accordance with all pertinent guidelines and regulations, and written and informed consent was obtained 
from participants prior to each clinical visit in the study. Details about the acquisition and grading protocols are 
available online at (https://​nda.​nih.​gov/​oai/​study-​detai​ls). The OAI is a longitudinal cohort study designed to 
identify biomarkers of the incidence and/or progression of KOA. Both knees of 4796 participants were studied 
using bilateral posteroanterior fixed-flexion knee radiography at baseline, and annually over 8 years of follow-
up. The TKA outcome data were collected during 9 years. OAI participants were 45 to 79 years old at baseline, 
with or at risk of developing symptomatic KOA in at least one knee. At each yearly follow-up time point, OAI 
participants were interviewed and asked about TKA in the preceding 12 months9. The OAI study was approved 
by the institutional review boards at each OAI clinical site and the coordinating center (University of California, 
San Francisco) and informed consent was obtained from the participants. All research was performed in accord-
ance with relevant guidelines/regulations and with the Declaration of Helsinki.

Data selection.  Cases were defined as patients underwent TKA on at least one knee from 12-months to 
108-months follow-up time points from baseline. Controls were defined as patients who had never undergone a 
TKA prior to the 108-month follow-up time point. Exclusion criteria included patients about whom information 
on clinical covariates (CCov), namely age, gender and body mass index (BMI), and radiological Kellgren–Law-
rence (KL) grades, was lacking, at baseline. Previously published studies have shown only moderate performance 
for predicting KOA progression when using pain and/or history of knee injury21,22. However, since data for 
WOMAC pain and history of previous injury were available for the OAI cohort, the CCov also included these 
additional predictors. Patients with any type of knee joint replacement reported on at least one knee at baseline 
were also excluded. At follow-up time points, patients with single-compartment prosthesis or non-confirmed 
TKA were also excluded. KL scoring was performed in the OAI using two expert readers who independently 
assessed each radiograph; differences were adjudicated by a group including a more senior reader23.

In this study, the inclusion/exclusion approach was set at baseline, and then knees were followed over time 
to see which ones underwent TKA. To evaluate the performance of the prediction models with respect to KOA 
severity, we considered two scenarios. In Scenario I, the knees of all patients (KL ≤ 4) at baseline were considered 
except those having previously undergone knee surgery, in accordance with the study of Leung et al.24. At follow-
up time points, for a patient with TKA on one knee, only the knee that had undergone surgery was included. 
Furthermore, if both knees underwent TKA, only the first one was included. For each control patient, the knee 
with the most severe radiographic OA at baseline was excluded. Finally, if both knees of control patients had the 
same KL score, then one of them was randomly selected and the other one was excluded.

In accordance with the study of Podsiadlo et al.25, in Scenario II, knees with KL = 4 at baseline were excluded. 
In this scenario, for a patient who had undergone TKA on one knee, only the knee that had undergone TKA was 
included. If the included knee had a KL = 4 at baseline, both knees were excluded. If both knees underwent TKA, 
only the first one was included, unless the included knee had a KL = 4 at baseline, in which case this knee was 
excluded, and the other one was included. Both knees were excluded if they had a KL = 4 at baseline. For each 
control patient, the knee with the most severe radiographic OA at baseline was excluded. Here also, both knees 
were excluded if they had a KL = 4 at baseline. As a result, all included knees had a KL < 4 at baseline.

Calculation of TBT parameters.  A total of 16 TBT regions of interest (ROIs) were selected for each knee 
X-ray using an automated method13,26. The 16 ROIs cover the entire tibial subchondral bone structure, imme-
diately under the medial and lateral cortical plates of the tibia. The choice of such ROIs was inspired from the 
work of Janvier et al.13,27.

For each knee X-ray, the ROI selection method consisted in identifying several anatomical points of the tibia, 
using the BoneFinder software (http://​bone-​finder.​com/)28,29. The segmentation provided by BoneFinder is based 
on a machine-learning approach that has been trained on a large set of manually-annotated radiographs. The 
selected radiographs were not preprocessed prior to the segmentation process. Applied on different datasets, 
BoneFinder was able to detect the contour points of skeletal structures from 2D radiographs, in a fully automatic 
manner with high accuracy30,31. In our study, BoneFinder was used to localize the contour points of both femoral 
and tibial parts of the knee. In addition, BoneFinder does not need dedicated personnel or special training. In 
the current study, BoneFinder successfully provided correct contours of the femoral and tibial parts of all con-
sidered knees. Using BoneFinder, the identification process of the ROIs for each knee took only a few seconds.

The tibial subchondral baseline was then defined as the line going between the lateral and medial extremities 
of the proximal tibia. To prevent periarticular osteophytes and fibular head overlay, an offset equal to 10% of 
the tibial subchondral baseline was applied to the horizontal positioning. Both the orientation and size of the 
16-ROIs patchwork were calculated based on this line (Fig. 1). The dimension of the squared-shape ROIs was 
proportional to the knee width defined as the distance between the outer tibial margins.

https://nda.nih.gov/oai/query-download
https://nda.nih.gov/oai/study-details
http://bone-finder.com/
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In the present study, TBT was characterized using fractal analysis25,32 and the fractal parameters (H) were 
computed using the Variogram (VAR)27,33. Each ROI was quantified by means of 4 TBT variograms correspond-
ing to the H values computed along with the two main loading directions: horizontal (h-direction, image lines) 
and vertical (v-direction, image columns), and for the two scales of observation: the µ-scale (under 400 mm) 
and the m-scale (above 600 mm). As a result, TBTp represents a vector of four TBT descriptors {Hµv; Hµh; Hmv; 
Hmh} computed for each of the 16 ROIs, resulting in 64 descriptors for each image, where Hµv; Hµh; Hmv; Hmh 
are the microscopic horizontal, microscopic vertical, macroscopic horizontal and macroscopic vertical fractal 
parameters, respectively.

Statistical analysis.  In this study, logistic regression was used to predict TKA risk. Logistic regression is 
widely used for modelling KOA progression prediction13,16,34 and TKA risk prediction24. Several statistical mod-
els were developed involving not only clinical covariates and radiological scores but also TBT-based parameters 
(Fig. 2):

•	 Model 1: CCov.
•	 Model 2: KL.

Figure 1.   ROIs automatically selected in the tibial subchondral bone. Dots represent the femoral and tibial 
bone edges, delimited by BoneFinder software.

Figure 2.   Descriptors used in the proposed model.
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•	 Model 3: TBTp.
•	 Model 4: TBTp + CCov.
•	 Model 5: TBTp + JSN (JSN: OARSI Joint Space Narrowing in medial and JSNL compartments).
•	 Model 6: TBTp + KL.
•	 Model 7: TBTp + KL + CCov + JSNM (JSNM: medial OARSI Joint Space Narrowing).
•	 Model 8: TBTp + KL + CCov + JSNL(JSNL: lateral OARSI Joint Space Narrowing).

To avoid any bias in the distribution of training and validation (testing) datasets, each model was evaluated 
using a tenfold cross-validation repeated 300 times. The tenfold cross-validation involved randomly partitioning 
the given dataset into 10 equally-sized subdatasets. At each iteration, a single subdataset was used as the valida-
tion data for testing the model, and the remaining 9 subdatasets were used as training data. The whole cross-
validation process was then repeated 300 times. The validation results were averaged to give a single estimate of 
the model’s predictive performance.

Note that all observations were used for both training and validation, and each observation was used only 
once for validation. Each observation involves the descriptors of one given set of patients. The flowchart of the 
proposed machine learning prediction model is illustrated in Fig. 3.

The AUC was used to evaluate the global performance of the models. The model classification accuracy 
(ACC), i.e. the probability that a random sample is correctly classified, was also computed to investigate the 
relevance of the different models. An ACC is defined as the ratio of the number of correct predictions to the 
total number of predictions. It is expressed by:

and the balanced accuracy (BA), which is a metric that is usually used to evaluate the performance of a binary 
classifier, is expressed by:

where TP, FP, TN, and FN mean True Positive, False Positive, True Negative, and False Negative, respectively. 
Moreover, the F1 score was calculated as another performance measure of the tested models35. The F1 score pro-
vides a combined measure of the precision and recall of the model and defined as the harmonic mean of precision 
and recall. The precision refers to the positive predictive value, the percentage of correctly predicted progressors 
to the number of actual progressors, and the recall provides the ability of a model to predict all progressors and 
refers to the true positive rate or the sensitivity.

All statistical analyses were performed using the R Statistical tool36 (version 4.0.2, 2020-06-22) including 
the MASS package (Modern Applied Statistics with S, version_7.3-51.6, 2020-04-26) for stepwise Akaike Infor-
mation Criterion (AIC)37 optimization, the Caret package (Classification And REgression Training) for the 

(1)ACC =
TP+ TN

TP+ TN+ FP+ FN

(2)BA =
1

2
×

(

TP

TP+ FN
+

TN

TN+ FP

)

(3)Precision =
TP

TP+ FP

(4)Recall =
TP

TP+ FN

(5)F1 = 2×
Precision× Recall

Precision+ Recall

Figure 3.   Schematic diagram of one round of machine learning prediction, repeated 300 × 10 times and then 
averaged.
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cross-validation training and the pROC for Receiver Operating Characteristic (ROC) curve comparisons, in 
particular partial Areas Under the Curve (pAUC). The comparison of the models’ performances was carried 
out with the ROC curves using the Delong method38. To reduce the number of parameters before training the 
prediction models, a backward selection of the parameters was automatically performed using the AIC as an 
iterative criterion. At each iteration, the AIC removes one parameter and preserves the most efficient parameter(s) 
to limit overfitting effects.

Results
The dataset obtained for Scenario I included 4382 knees (58% women, 75% left knee) that met the inclusion 
criteria and were judged as eligible for this study, in which 375 knees underwent TKA on at least one knee from 
12-months to 108-months follow-up time points. The dataset obtained for Scenario II included 4296 knees (58% 
women, 76% left knee) that were judged as eligible for this study, in which 291 knees underwent TKA prior to 
the 108-month follow-up. Figure 4 shows more details about our method of case–control selection, and Table 1 
describes the characteristics of the two datasets.

Figures S1 and S2, presented in supplementary files, illustrate the ROIs which offered the best predictive 
association with TKA based on the TBT parameters selected by the AIC algorithm. In total, 38 and 30 TBT 
parameters were selected in Scenario I and Scenario II, respectively.

Figure 4.   TKR-based data selection with and without imposing severe knees exclusion. n and k denote the 
number of patients and knees, respectively. PKA denotes partial knee arthroplasty. nTKR denotes the number of 
TKA knees prior to mK months’ follow-up (closest contact after TKA).

Table 1.   Characteristics of the datasets included in this study. Values for age and BMI are represented as mean 
(± standard deviation).

Baseline (scenario I) Baseline (scenario II)

Controls Cases Total Controls Cases Total

N° of knees 4007 375 4382 4005 291 4296

Age (years) 62.3(±9.0) 62.4(±8.1) 62.3(±8.8) 61.0(±920) 63.5(±8.0) 61.0(±9.2)

BMI (kg/m2) 29.4(±4.6) 30.6(±4.7) 29.6(±4.7) 28.4(±4.8) 30.0(±4.9) 28.5(±4.8)

Gender

F 57.9% 60.3% 58.1% 57.9% 65.6% 58.4%

M 42.1% 39.7% 41.9% 42.1% 34.4% 41.6%

KL grade

0 2113 12 2125 2113 14 2127

1 820 22 842 820 22 842

2 834 79 913 834 91 925

3 238 153 391 238 164 402

4 2 109 111 0 0 0
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Out of the total number of knees that underwent TKA prior to the 108-month follow-up, more than 87% had 
a KL ≥ 2 at baseline, while more than 73% of the control knees had a KL < 2 at baseline.

Figure 5 show the ROC curves obtained by the 8 prediction models listed in the previous section, using the 
datasets of Scenario I and Scenario II, respectively. The model based only on CCov was not strongly predictive 
(AUC < 0.7). Combining TBT parameters and KL grades improved the performance of the TKA-risk prediction 
compared to the classical reference model (KL). The TBTp-KL model achieved an AUC of 0.92 (95% Confidence 
Interval [CI] 0.90, 0.93), using the dataset of Scenario I and an AUC of 0.89 (95% CI 0.87, 0.91), using the dataset 
of Scenario II, while the KL model achieved an AUC of 0.86 (95% CI 0.84, 0.86; P < 0.001) using the dataset of 
Scenario I and an AUC of 0.81 (95% CI 0.78, 0.83; P < 0.001) using the dataset of Scenario II. The sensitivity of 
Model 1 (using only cov parameters, Scenarios I and II) and of Model 2 (using only KL scores, Scenario I) is 
zero, as predicting all subjects as controls. Table 2 reports the obtained F1 scores for the different tested models 
for both scenarios. The prediction model Model 6, combining KL and TBT, provided a better performance than 
the models Model 1, Model 2, and Model 3 where only one descriptor was employed as summarized in Table 2. 
The performance of the TBTp-KL model was not improved when including CCov, JSNM, or JSNL parameters in 
addition to the TBTp and KL descriptors. More statistical results are summarized in Table 2. For example, while 
the KL model (Model 2) provided a recall value of 0.29, the proposed model (Model 6) provided a recall value 
of 0.47, resulting in a 60% increase in TKA case prediction in Scenario I.

Discussion
In the current study, we explored a model based on the fractal analysis of radiographic TBT to identify a popula-
tion at higher risk of TKA, even at less advanced stages of OA. Our prediction model showed that a combination 
of radiography-based KL scoring and TBTA provided a high level of performance as reflected by either an AUC 
of 0.92 (Scenario I) or an AUC of 0.89 (Scenario II).

The associations between knee arthroplasty and radiographic or clinical features of KOA have already been 
published24,25,39. The association between trabecular bone texture and knee arthroplasty was firstly studied in a 
limited dataset (n = 114 patients, 28 TKA cases)25. In the latter study, TBT parameters were evaluated using the 
Variance Orientation Transform (VOT) method. The mean fractal dimension (Texture parameter) analyzed in 
the medial subchondral tibial region was found to be lower in the TKA cases than in control patients. However, 
the study did not specify whether total or partial knee replacement, or both, was considered. Moreover, no pre-
diction model was proposed. In the present study, we used a different TBT analysis method, (VAR), which was 
previously validated for the prediction of KOA progression27. Furthermore, we included not only the patients with 
severe OA (KL = 4, Scenario I), in agreement with the VOT-based study, but also the patients with non-severe 
OA (KL < 4, scenario II). When considering patients with (KL = 4) at baseline, the number of cases (109) was 
dramatically higher than the number of controls (2), contrarily to the other situations (patients with KL < 4 at 
baseline), as shown in Table 1. As expected, including patients with KL = 4 at baseline (Scenario I) in the training 
procedure provided a better prediction performance with an AUC of 0.92 than that of Scenario II (excluding 
patients with KL < 4 at baseline) with an AUC of 0.89.

Recently, a deep learning (DL) based approach was used for the prediction of TKA risk24 from the OAI 
cohort. In this study, the TKA outcome was defined, in line with our work, as whether a subject had undergone 
a TKA within 9 years or not. This binary definition of TKA does not reflect the TKA incident time. Considering 
time-dependent outcomes would involve the use of multinomial logistic regression instead of the binary logistic 
regression used in our study and it could be the subject of future investigation.

Several points, however, distinguish the present study from the previously reported one24. First, in the latter, 
radiographs were analyzed using a multitask DL approach, while in our study, a fractal-based TBT approach 
was used. The TBT analysis method, VAR, used in our study, has been shown to be invariant to both the quality 
and type of the images obtained in routine radiography20, whereas in DL-based methods, more attention should 
be paid to the variation in image quality during the training part24. Second, our case–control selection criteria 
did not impose the one-to-one case–control matching employed in their study24. Finally, in the current study, 
results related to the OARSI grades were omitted since better results of prediction were obtained with KL grades. 
Table 3 summarizes the main differences and similarities between the present study and the DL-based study24.

The AUC in Scenario II was 0.89. Although significantly different from 0.92 in Scenario I (p = 0.022), they 
are both higher compared to the AUC of 0.87 (95% CI 0.85, 0.90) found in a DL-based prediction model24, 
although a direct comparison is not applicable due to the different knee-selection criteria used in both meth-
ods. The presented results highlight the potential of our prediction model for patients even with non-severe 
osteoarthritis (KL < 4).

Based on a dataset from the OAI cohort18, it was shown that both the baseline values of TBT parameters and 
12–18 month changes in MRI subchondral bone texture score were significantly associated with radiographic 
progression at 36 months. Combining such MRI-based parameters with 2D radiographic TBT-based parameters 
might help to better predict TKA.

In another study40, more than half of the knees with no/mild radiographic OA at baseline progressed to severe 
radiographic OA before knee replacement during 4 years of follow-up. Patellofemoral-femoral bone marrow 
lesions (BMLs) and worsening pain status were often associated with knees that had no/mild radiographic OA. 
MRI-defined joint inflammation defined as effusion- or Hoffa-synovitis, reflecting whole joint inflammation, 
developed over time in a majority of knees, indicating the presence of active disease at time points close to knee 
replacement. It would also be interesting to evaluate the prediction capacity of a model that combines DL-based 
and TBT-based descriptors. Such an idea has already been investigated in the context of the prediction of KOA 
progression and encouraging results were found20. Several DL approaches have recently been proposed for the 
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Figure 5.   ROC curves obtained by the different TKA prediction models, using tenfold cross-validation: (A) 
using the dataset of Scenario I (0 ≤ KL ≤ 4 at baseline), (B) using the dataset of Scenario II (0 ≤ KL < 4 at baseline).
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prediction of TKA24,39,41. The association of such approaches with radiographic TBT analysis would certainly 
deserve to be investigated.

Changes in subchondral bone are constitutive of the OA disease process42. It has been demonstrated that the 
subchondral bone is intimately related to the structure and function of the cartilage43. Subchondral bone changes 
in its structure and thus in its biomechanical properties interfere with the interaction between the cartilage and 
the subchondral bone during mechanical loading44,45. Distribution of local stress in the subchondral bone is part 
of the parameters leading to the occurrence and development of the OA process as it has been demonstrated after 
changes in the joint’s biomechanical environment following anterior cruciate ligament injury46 or associated with 
abnormal knee alignment47. Subchondral bone structure and texture analyses can thus be considered as relevant 
tools to reflect bone remodeling changes induced by the osteoarthritis disease process19.

We have considered the TKA as a relevant outcome of KOA progression, as it has been proposed by the 
researchers interested in KOA related studies24,25,39,41,48,49. However, since the occurrence of TKA may vary by 
patient groups, within a country or different countries, it could be better in the next future to investigate another 
potential outcome measure as the “End Stage Knee Osteoarthritis” score proposed by Tufts Medical Center, and 
accepted to be included into the Center for Drug Evaluation and Research (CDER) Biomarker Qualification 
Program (BQP) in 201950,51, which relies on a composite of radiographic disease severity, knee pain, knee func-
tion, knee mobility, and knee instability. Despite the inherent variability in the decision to undergo TKA, the 
development of a predictive model is a relevant task in the aim ofaiming at improving our the current strategies 
to reduce the significant burden of TKA. As we lackIn the absence of approved disease modifying therapy, TKA 
has been considered as a relevant proxy of the end stage of KOA and an important clinical outcome in KOA9, 

Table 2.   Performance results of tested models in scenario I and scenario II. Where Model 1 included CCov 
parameters, Model 2 included KL parameters, Model 3 included TBTp parameters, Model 6 included TBTp 
and KL parameters, Model 7 included TBTp, KL, CCov and JSNM parameters, and Model 8 included TBTp, 
KL, CCov and JSNL parameters. NA refers to non-applicable values when sensitivity is zero.

Metrics Model 1 Model 2 Model 3 Model 6 Model 7 Model 8

Scenario I

Recall 0.04 0.29 0.15 0.47 0.47 0.46

Precision 0.38 0.98 0.60 0.75 0.75 0.75

Balanced accuracy 0.52 0.65 0.57 0.73 0.73 0.72

F1 0.07 0.45 0.24 0.58 0.58 0.57

AUC​ 0.77 0.86 0.80 0.92 0.92 0.92

Scenario II

Recall 0.01 0.00 0.06 0.18 0.17 0.18

Precision 0.52 NA 0.56 0.55 0.54 0.53

Balanced accuracy 0.50 0.50 0.53 0.58 0.58 0.58

F1 0.01 NA 0.11 0.27 0.26 0.27

AUC​ 0.73 0.81 0.75 0.89 0.89 0.89

Table 3.   Prediction of radiographic TKA: comparison with a recent study. TBT Trabecular bone texture, VOT 
Variance Orientation Transform, VAR Variogram, TKA Total knee arthroplasty, PKA Partial knee arthroplasty, 
AUC​ Area under the ROC curve, ROC Receiver Operating Characteristic, DL Deep Learning, TL Transfer 
Learning, MT Multi-task, OARSI Osteoarthritis Research Society International, KL Kellgren–Lawrence.

Leung et al. (2020)24 Our study

Method Deep learning:
TL & MT approaches

Fractal texture analysis:
VAR method

Cohort Public (OAI) Public (OAI)

Exclusion criteria
TKA at baseline
PKA
Incomplete radiographic data
Not one-to-one case–control matching

TKA at baseline
PKA
Incomplete clinical and radiographic data

Dataset selected 728 (364 cases) Scenario I: 4382 (375 cases)
Scenario II: 4296 (291 cases)

Prediction models
KL
OARSI
DL-TL-MT

KL
TBT
TBTp-KL

Scenario I Scenario II

KL inclusion 0 ≤ KL ≤ 4 0 ≤ KL ≤ 4 0 ≤ KL ≤ 3

AUC Results
KL = 0.74
OARSI = 0.75
DL-TL-MT = 0.87

KL = 0.86
TBT = 0.80
TBTp-KL = 0.92

KL = 0.81
TBT = 0.75
TBTp-KL = 0.89
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even in a recently published work based on data from the OAI52. However, we alsothere is a lack of consensual 
medical indications for TKA, and with the arrival of potential new DMOADs, that target the structural course 
of OA disease, an earlier identification of KOA progressors will permit targeted interventions in high riskhigh-
risk groups.

The limitations of this study include the non-inclusion of several patient-reported outcomes such as stiffness, 
quality of life, and disability in the proposed model. Clinical decision-making in TKA is a complex process, 
thus considering undergoing a TKA within 9 years as a single clinical outcome measure can also be a limitation 
of the present study. Including decision criteria of TKA eligibility (i.e., radiographic severity53,54, functional 
limitations53, age54, pain53–55, history of arthroscopy55) would help to improve the implementation and perfor-
mance of proposed TKA prediction models.

Our study has still some other limitations. Only clinical covariates and radiological scores collected at baseline 
were included in the proposed model. The variations in these readings during the subsequent follow-ups might 
improve the prediction performance of our proposed model. We investigated the TBT changes in the tibial 
subchondral bone of the knee. More studies including the femoral zone might also be conducted to investigate 
the potential additional information present in the femoral subchondral bone. The comparison with the work 
of Leung et al.24 should ideally be conducted using the same set of radiographs. However, we did not have access 
to the reference of their selected dataset, thereby, leaving a more systematic comparison to future studies. The 
association between TKA and both 3D MRI bone texture56 or shape57 has recently been evaluated using data 
from the OAI41,56,57, in which features from the femoral region were also included, in addition to those from the 
tibial region.

The radiographs of selected patients were all acquired with a fixed flexion protocol. Therefore, our results may 
not applied to a study that uses a different imaging protocol. A further limitation of the dataset is that, despite the 
fairly large sample size, there are a very limited number of TKA cases. Only 100 such cases existed in the entire 
OAI for the time interval of 2 years. Consequently time-to-event experiments were not carried out in this study. 
Finaly, since the occurrence of TKA may vary by patient groups, with a country or different countries, it might 
be better to investigate another potential outcome measure as the “End Stage Knee Osteoarthritis” (esKOA) 
Score proposed by Tufts Medical Center, and accepted by the FDA in 201950,51, which relies on a composite of 
radiographic disease severity, knee pain, knee function, knee mobility, and knee instability.

Our study had several strengths. The data used in our study was obtained from a validated and well-structured 
research database (OAI cohort) that represents a large well-phenotyped US population. In this paper, we present 
the largest study, in terms of number of predicted events (n = 375 in Scenario I and 291 in Scenario II) that inves-
tigated the role of TBT parameters as TKA risk predictors. Furthermore, a number of clinical predictors were 
included in our tested models such as history of knee injury, WOMAC pain, age, gender and BMI, in addition 
to radiographic disease stage (KL and two OARSI parameters: JSNM and JSNL). Another significant strength of 
our study is the performance analysis of several prediction models with strong validated performance metrics 
such as precision, recall (sensitivity), accuracy and F1 metrics35. In addition, technically, the ROIs used for our 
TBT analysis were segmented in a fully automated manner.

The clinical relevance of this study includes the feasibility of integrating the proposed model in a standard 
clinical routine. The used image processing tools are simple, fully automatic and based on radiography which is 
widely available and relatively not expensive. Furthermore, while the traditional KL model was capable to predict 
correctly less than 30% of total number of cases in Scenario I, and was completely incapable to predict any cases 
in Scenario II, the proposed KL + TBT model was capable to predict correctly 47% and 18% of total number 
of cases in Scenario I and Scenario II, respectively, Table 2. Suggesting radiographic TBT analysis may have a 
strong role in TKA risk screening, considering the lower cost and more readily implementable of radiography 
in primary care practice than MRI-based analysis.

Targeting high-risk individuals to prevent the progression of structural KOA might be possible with the 
advent of new algorithms based on multiple clinical, biologic and imaging biomarkers such as radiographic-based 
TBT parameters and MRI-derived features.

Our proposed prediction model performed well in the OAI cohort, in which a large number of participants 
were included. This type of modeling is often criticized for its inability to reproduce the same effectiveness in 
another sample. Although not with the same clinical endpoint (progression of the KOA disease), we demonstrated 
that the TBT-based models performed well not only when trained and tested on the same cohort, but also when 
trained on one cohort (OAI or MOST) and tested on the other one (MOST or OAI)20. As previously mentioned, 
the number of TBT parameters was optimized using the AIC.

Conclusions
The model presented in this study, involving TBT analysis of conventional knee radiographs associated with 
radiological scoring (KL scores), improves the long-term prediction of TKA risk in patients with KOA.

The clinical decision-making process in TKA is complex53. Early detection and assessment of KOA prognostic 
factors are crucial for developing management and treatments that aim at preventing irreversible damage to the 
knee joint leading to arthroplasty. Identifying the most at-risk patients who may undergo total knee arthroplasty 
(TKA) could be the basis of a more aggressive therapeutic approach to prevent KOA progression.
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