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Abstract

Neural correlates of mind wandering

The ability to detect mind wandering as it occurs is an important step towards improving our

understanding of this phenomenon and studying its effects on learning and performance.

Current detection methods typically rely on observable behaviour in laboratory settings,

which do not capture the underlying neural processes and may not translate well into real-

world settings. We address both of these issues by recording electroencephalography

(EEG) simultaneously from 15 participants during live lectures on research in orthopedic

surgery. We performed traditional group-level analysis and found neural correlates of mind

wandering during live lectures that are similar to those found in some laboratory studies,

including a decrease in occipitoparietal alpha power and frontal, temporal, and occipital beta

power. However, individual-level analysis of these same data revealed that patterns of brain

activity associated with mind wandering were more broadly distributed and highly individual-

ized than revealed in the group-level analysis.

Mind wandering detection

To apply these findings to mind wandering detection, we used a data-driven method known

as common spatial patterns to discover scalp topologies for each individual that reflects

their differences in brain activity when mind wandering versus attending to lectures. This

approach avoids reliance on known neural correlates primarily established through group-

level statistics. Using this method for individual-level machine learning of mind wandering

from EEG, we were able to achieve an average detection accuracy of 80–83%.

Conclusions

Modelling mind wandering at the individual level may reveal important details about its neu-

ral correlates that are not reflected when using traditional observational and statistical
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methods. Using machine learning techniques for this purpose can provide new insight into

the varieties of neural activity involved in mind wandering, while also enabling real-time

detection of mind wandering in naturalistic settings.

Introduction

Whether at rest or under cognitive load, the human mind is prone to turning inwards [1–4].

This spontaneous internal thinking, which can occupy up to 50% of our daily lives by some

accounts [5], is often referred to as mind wandering (MW) [6, 7]. While there is evidence that

MW can play a useful role in a variety of settings (e.g., for content integration, creative think-

ing, and future planning [8, 9]), its occurrence during attention-demanding tasks can have det-

rimental effects on task-related learning and performance [8, 10–13].

Studies of MW during live or recorded lectures have suggested that a greater time spent

mind wandering is negatively correlated with direct educational outcomes, such as poorer

retention and comprehension [14–19]. Indirect effects of MW can also occur, such as through

poorer note-taking [20]. However, MW remains challenging to fully understand because we

lack reliable and objective means of identifying exactly when someone is mind wandering and

when they are not [7, 21]. The ability to detect MW as it occurs is, therefore, a crucial step

towards improving our understanding of MW and its impacts on learning and performance.

Furthermore, MW detection is an important first step towards developing approaches to coun-

teract its negative effects. For example, real-time MW detection based on objective measures

can facilitate the study of MW in a more fine-grained way and in more naturalistic settings,

such as during lectures and other real-world tasks.

A major challenge in MW research is the various ways in which it has been defined

throughout the literature. Many studies have either implicitly or explicitly used a content-

based definition of MW, wherein any task-unrelated thought is categorized as MW [22, 23].

However, since this definition includes external stimulus-driven distractions (e.g., background

noise), some researchers have opted to use a narrower definition: stimulus-independent

thought [2, 9, 24]. More recently it has been argued that MW should be defined more specifi-

cally as spontaneous and unconstrained thought, which may better reflect the dynamic and

uninhibited flow of thought that we internally experience when our minds wander [7]. Despite

these nuances, the definition of MW varies considerably across empirical studies, and what is

considered MW may partially depend on the context in which it is studied. It is therefore

important to study MW in naturalistic settings not only to better understand it and its effects

more fully but also to ensure that MW detection methods apply to the settings in which they

are intended to be used.

Thought probes in mind wandering research

A particular challenge in MW detection is that there is currently no known clear, objective,

and externally observable indicator of MW. The most common approach to determining

which time periods are likely to correspond to MW, and which are not, is to use thought

probes (also known as experience sampling) [25]. Thought probes involve interrupting a given

task and prompting study participants to self-report their state of attention [26, 27]. Thought

probes, however, may have limited utility as a tool for MW research and detection. One reason

is that thought probes artificially disrupt the task and MW alike by presenting a stimulus to

cue participants to respond to the probe. In a naturalistic setting like a lecture, this method can
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be problematic because it requires instructor buy-in and time for student responses, which is

counter to the goal of the instructor because it disrupts student learning. There is also the

potential for accidental cueing of participants’ attention if lecturers are aware of when thought

probes are to occur and adopt strategies to minimize disruption, such as timing lecture mate-

rial in a particular way. Since thought probes are most effective when unanticipated, it is gener-

ally preferable if the lecturers are also unaware of when they will occur. In addition, the

effectiveness of thought probes depends, in part, on the probe rate as well; if they are used too

often, participants do not have enough time between probes to begin mind wandering again

[28]. These factors make it challenging to obtain the data required to develop methods that can

enable reliable continuous detection of MW, as the unreliability of self-reported MW and the

likelihood that the thought probes affect the data are both factors that must be considered.

It is also important to note that some thought probes, depending on how they are presented

to and interpreted by participants, may assume a content-based definition of MW [25]. How-

ever, as the neural correlates of MW are not yet fully understood, thought probes remain a use-

ful, simple, and low-cost tool for collecting data about MW until alternative and demonstrably

superior detection methods are available. Moreover, despite their limitations, thought probes

may be the one the most efficient and reliable tools available with which to develop and vali-

date potentially better methods of MW detection.

Neural correlates of mind wandering

In recent years, neurophysiological measures, especially those acquired through functional

magnetic resonance imaging (fMRI), have been increasingly used to understand the brain

regions and processes that underlie MW. The default mode network (DMN), a brain network

involving the posterior cingulate cortex, medial prefrontal cortex, temporoparietal cortex, and

various lateral parietal regions, is often discussed in relation to MW. As its name suggests, the

DMN has repeatedly been shown to be active during spontaneous thought, or when the mind

is at “rest” [4, 7, 26]. More specifically, the DMN has also been shown to be active during self-

reported instances of MW [8] and lapses in attention [9], and has even been shown to predict

events of human error [10]. However, the DMN is also known to be activated during purpose-

ful internal thought, including future planning and episodic memory retrieval [29–31], and is

interestingly not strictly anticorrelated with the dorsal attention network [32]. This finding is

important because it suggests that MW cannot simply be reduced to activation of the DMN,

and activation of the DMN is not a sufficient indicator of MW.

Paradoxically, in addition to the DMN, MW also appears to be associated with activation of

the executive control system of the brain, a finding that may help explain the relationship

between MW and reduced task performance and learning [7, 26]. The role of the executive

control network in MW remains unclear, but different hypotheses have been presented. A

straightforward explanation is the control failure hypothesis, which proposes that brain

regions that are a part of the executive control system attempt to reorient the brain to the task

at hand during MW [33, 34]. However, there is some evidence to suggest that this may not be

the case [7]. For example, direct stimulation of the nodes in the executive control network can

increase task-unrelated mental activity, while the control failure hypothesis would predict a

decrease of task-unrelated mental activity [35]. The decoupling hypothesis, on the other hand,

proposes that the executive control network supports MW by suppressing task-related percep-

tual processing and orienting the brain towards personal goal-oriented thought [24, 36, 37].

However, it has been noted that this could instead reflect internal task-related thought (e.g.,

task-related creative problem solving), which would only be included in the broadest defini-

tions of MW [7].
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Although studies exploring functional connectivity (i.e., temporal correlations in the activ-

ity of multiple brain regions) using fMRI have contributed a wealth of information regarding

the neuroanatomy and network activity related to MW, the phenomenon is thought to be a

highly dynamic process that involves rapid fluctuation and spontaneity in thought. Under-

standing and detecting MW may, therefore, require the study of dynamic neural processes that

give rise to such thinking on shorter time scales (see [12] for a review of dynamic functional

connectivity with fMRI to better understand MW). EEG is a technology for acquiring neuro-

electric activity with substantially greater temporal resolution (timescales in the order of a few

hundred milliseconds to a few seconds versus a few seconds to few minutes with fMRI). EEG

is therefore preferred for the more precise study of temporal dynamics of brain activity, albeit

at the expense of the spatial resolution available with fMRI. Although EEG is largely limited to

the cortex and large brain structures, it has been used to estimate the propagation of activity

through less deep nodes of the neural networks established in fMRI research [38].

A primary paradigm in EEG research is the use of event-related potentials. Event-related

potentials are obtained by averaging periods of recorded brain activity that are time-locked to

an event or stimulus and are thus thought to reflect neural responses to that event or stimulus

[39]. Analysis of the P300, an event-related potential often used as an index of cognitive pro-

cessing and attention, shows a decrease in average amplitude during MW, supporting the idea

that MW may reduce the amount of cognitive resources available for task-related processing

[36, 40].

Researchers also use EEG to investigate the oscillatory patterns of brain activity under a

variety of conditions. Measuring such oscillations requires temporally-precise sampling of the

local field potentials generated by populations of neurons firing synchronously in the brain,

and is thus one of the most common applications of EEG [41, 42]. Moreover, the activity in

various frequency bands has been linked to a variety of cognitive functions [43–45] and states

[46, 47].

To investigate MW specifically, one study measured neural oscillations with EEG in partici-

pants who were instructed to focus on their breath and press a button whenever they noticed

that their attention had lapsed [40]. As expected, the authors found changes in oscillatory pat-

terns that are associated with decreased alertness and vigilance: specifically, an increase in

delta power (2–3.5 Hz; predominately in frontocentral regions) and theta power (~4–7 Hz;

widespread, but most pronounced in occipital and parietocentral regions), along with

decreased alpha (~9–11 Hz; focused on occipital regions) and beta power (~13–30 Hz; in fron-

tolateral regions) during MW. Concordantly, a study investigating the relationships between

oscillatory processes using a nearly identical study design found that the ratio between theta

and beta activity in the frontal cortex, a measure that has been found to be negatively corre-

lated with cognitive load [48] and attentional control [49], was higher during MW (although

they did not find a relation between this measure and attentional control in their study) [50].

In a seemingly contradictory finding, another study employing thought probes while partic-

ipants listened to stories discovered that not only did alpha power increase broadly over the

scalp during MW (a finding that is consistent with previous work showing a similar change in

alpha power associated with attentional shifts away from auditory language processing [51]),

but that this change was also predictive of comprehension [52]. Together, these findings sug-

gest that the study design and the attentive task used as a control condition may themselves

elicit different subtypes (or perhaps definitions) of MW, and/or influence the neural correlates

of MW that are subsequently discovered. Given these findings, there is a significant need

for further translational research that aims to study MW in naturalistic settings, and for the

development of objective MW detection methods that can generalize across experimental

paradigms.
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Given that the broader research community has not yet reached a consensus on whether

MW is simply spontaneous thought, stimulus-independent thought, or more broadly, task-

unrelated thought [7], the neural correlates of MW have not been fully delineated from other,

potentially related, mental processes. Consequently, methods of detecting MW that are based

upon already known or suspected neural correlates of MW may not fully capture the dynamics

and the diversity of brain activity involved in MW, which may be especially underrepresented

by current methods that discover neural correlates after aggregating responses to thought

probes in group-level analyses. Moreover, which neural correlates contribute to detection may

depend on the definition of MW that is most applicable for the setting. For these reasons,

there is considerable interest in being able to detect MW on an online basis using objective

measures as a means of furthering the study of MW in a way that more fully characterizes its

dynamic and variable nature. In addition, online MW detection is relevant to education and

performance science research, where the ability to monitor MW and taper the delivery of edu-

cational and training material during MW may lead to more optimal learning [17].

Online detection of mind wandering

In the effort to better understand MW, there has been recent interest in developing methods

for online detection. Previous approaches have made use of various physiological measures to

detect MW, including eye tracking [53–55], heart rate variability [56, 57], and skin conduc-

tance and temperature [56, 58]. A few of these studies employed machine learning techniques

to train classifiers that are, in theory, capable of automatic and continuous online detection of

MW [21, 54, 55, 57, 58]. In comparison to other physiological measures, the use of neurophysi-

ological signals for MW detection is both new and challenging. However, as MW reflects

purely internal mental processes, reliable and accurate online detection of MW may ultimately

necessitate the analysis of brain activity [25].

Online detection of MW with machine learning has mainly been explored with known neu-

ral correlates as provided by the cognitive neuroscience literature discussed earlier. One of the

early studies demonstrating this approach used fMRI combined with measures of pupil diame-

ter to achieve an average classification accuracy of nearly 80% [59]. While further development

of this approach may enable more precise neuroimaging studies, detection of MW using fMRI

is unlikely to translate well to real-world applications in naturalistic settings. Using a more

portable modality for measuring the hemodynamic response in the brain to address this limi-

tation, another group used functional near-infrared spectroscopy to detect MW [60]. How-

ever, this approach yielded a significantly reduced detection accuracy of 56% on average.

More recent work has focused on EEG for purely neurophysiological detection of MW.

Combining both the event-related potential and spectral neural correlates of MW that have

been discovered by previous EEG work, standard (i.e., group-level) machine learning tech-

niques were able to achieve detection accuracies between 50% and 85%, depending on the par-

ticipant [21]. Notably, the study referenced here used two different laboratory attention tasks

to train a model of MW that was not overly specific to only one task.

Individual variability in mind wandering

The overwhelming majority of previous work has focused on establishing behavioural and

neural correlates of MW based on group-level analyses. This paradigm is powerful for estab-

lishing measures that are common across instances of MW and across individuals. However,

individual-level analyses, especially those employing data-driven machine learning methodol-

ogies that do not rely on previously determined neural correlates of the mental process or state

under investigation, have revealed surprising degrees of individual variability in the neural

Detecting mind wandering during live lectures

PLOS ONE | https://doi.org/10.1371/journal.pone.0222276 September 12, 2019 5 / 30

https://doi.org/10.1371/journal.pone.0222276


correlates of emotional states [61–63], the effects of concussion [64], and other areas [65, 66]. It

remains an open question as to whether individual-level analysis of MW will also reveal a rich

set of neural correlates that may only appear for some individuals under certain conditions.

While some have explored whether individual personality and cognitive factors contribute

to MW rates [67–69], including as they relate to differences in brain activity using group-level

correlations [70, 71], few studies have explored the individual variability in brain activation

during MW itself. One study associated the type of self-generated thought, assessed on an indi-

vidual level, to different neural correlates at the group level, demonstrating that even some

degree of individual-level analysis can reveal a greater diversity of brain activation than previ-

ously discovered [6]. Here we present work in which, in addition to group-level analyses, we

also use novel analytic techniques to explore brain activity on a fully individual level and per-

form individual-level detection of MW.

Current study

In this study, we demonstrate, for what we believe to be the first time, machine learning-based

detection of MW from EEG recorded simultaneously across the entire study sample in a natu-

ralistic educational setting: during live lectures. Given the educational setting and the goal of

identifying when participants were focused on the lecture itself, we used a general content-

based definition of MW and considered a participant to be mind wandering if they were not

paying attention to the lecture, as self-reported during thought probes. In addition to using a

novel naturalistic setting, we employed a feature learning approach adapted from brain-com-

puter interfacing in which patterns of brain activity associated with MW were learned on an

individual basis from the data directly without constraining the models based on known neural

correlates.

Materials and methods

Study setting and population

The study took place in the Large Interactive Virtual Environment (LIVE) Lab at McMaster

University in Hamilton, Ontario, Canada [72]. This 106-seat research center and performance

space allows for the measurement of brain waves using 16-channel EEG in up to 16 audience

members simultaneously, serving as a unique environment for research related to the neuro-

physiology of music, hearing, vision, movement, and learning. Simultaneous data collection,

which is a key feature of the LIVELab, ensured that all participants were exposed to the same

stimuli in the same manner and accounted for the potential for students’ attention to be influ-

enced by their peers’ behaviours, which often occurs during live lectures [73].

Upon approval from the Hamilton Integrated Research Ethics Board (HiREB-0629), all

orthopedic resident trainees (N = 25) and medical students completing an elective in orthope-

dic surgery (N = 9) at McMaster University were invited to attend two lectures in the LIVELab.

Orthopedic surgery was selected because of the program’s interest in exploring innovative

teaching methods in medical education. The first lecture was given by a female, doctoral-level

researcher on the topic of intimate partner violence while the second was given by a male, doc-

toral-level researcher on the topic of meta-analytic methods in orthopedic surgery research.

Each was approximately 30 minutes in length with a 15-minute break in between.

Procedure

We informed invitees about the study via email before the teaching session and again on the

morning of the event. The study contained a behavioural component, comprised of thought
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probes and quizzes, and an EEG component, comprised of EEG recording during both lec-

tures. Interested individuals could consent to participate in both the behavioural and EEG

components of the study, or the behavioural component only. Assignment to these groups was

determined by participants’ preference at the time of study enrollment, as some participants

wished to participate in the study but preferred not to be connected to the EEG equipment.

Participants provided both their verbal and written informed consent to participate in the

study.

EEG participants were fitted with caps and seated in the LIVELab. Sixteen-channel EEGs

were collected simultaneously from each participant using the configuration shown in Fig 1.

We interrupted each lecture approximately every four minutes with a bell ring and on-screen

prompt asking participants to report their state of attention just before seeing the probe using

the following question: “Just prior to seeing this probe, which of the following best describes

your cognitive state?” Response options were: A) Paying attention, B) Not paying attention

(i.e., mind wandering), or C) Unsure or unaware. The purpose of the probes was to identify

points in the EEG data when participants self-reported that they were mind wandering versus

not. Non-EEG participants also responded to the probes as a comparison group to ensure that

being connected to the EEG equipment did not influence their attention.

In addition to the thought probes, we administered two quizzes after each lecture (shown in

S1 and S2 Appendices). The first was administered immediately after each lecture to measure

recall while the second was administered two weeks later at a teaching session to measure

retention. Both quizzes contained five short answer (either fill-in-the-blank or one-word

answer) questions worth one mark each that were supplied by the presenters and matched for

difficulty. The questions spanned the entire lecture and were designed to test participants’

knowledge of the material covered, for example: “What is the best-reported IPV study design?”

Fig 1. Electrode configuration for the EEG data collection.

https://doi.org/10.1371/journal.pone.0222276.g001
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(Quiz 1, Immediate Recall) or “What term is used to describe a network with few trials and/or

patients included within it?” (Quiz 2, Retention). In addition to testing content, the immediate

recall quizzes also contained questions to gauge participants’ perceptions overall engagement,

interest in the content of each lecture, and perceptions of presenter engagement.

Analysis

Behavioural measures. We summarized behavioural data using descriptive statistics and

conducted Shapiro-Wilk tests to verify assumptions of normality. Responses to the MW

probes and questions about overall engagement, interest in the content, and presenter engage-

ment were not normally distributed; thus, we opted to use non-parametric statistical tests to

analyze these data. Quiz scores, on the other hand, met assumptions of normality and were

therefore analyzed using parametric statistics. An exception was the retention scores for Lec-

ture 2, which were skewed due to a floor effect caused by poor retention among participants.

Since these data represented only a small portion of our data set and analyses of variance

(ANOVAs) are considered relatively robust to deviations from normality [74], we opted to still

use parametric analyses to analyze the quiz scores from both lectures.

We performed Mann-Whitney U tests to test for statistically significant differences in

thought probe responses between EEG and non-EEG participants. We used mixed-effects

ANOVAs using time of retention/recall quizzes (immediately following the lectures versus two

weeks later) as the within-subjects factor and group (EEG versus non-EEG) as the between-

subjects factor to test for statistically significant differences in quiz scores. We also computed

Spearman’s rank-order correlation coefficients to test for associations between MW and quiz

performance and used Cochran’s Q tests to determine if patterns of MW were stable over

time.

The above statistical tests were conducted using IBM SPSS v. 25. The Holm-Bonferroni

method of correcting for multiple comparisons was used when testing for differences between

our EEG participants and behavioural-only participants (five measures).

Neurophysiological measures

Preprocessing and data cleaning. We analyzed EEG data using the MNE toolbox in

Python [75]. We used extensive denoising procedures because we expected greater contamina-

tion from eye movement and motor artifacts in a live lecture setting compared to traditional

laboratory EEG recordings. These were performed separately for each participant. However,

since some studies show that eye movements and possibly other artifacts can be indicative of

MW [53–55, 76], we performed two machine learning analyses: one with artifact rejection,

denoted Artifacts Suppressed, and one without artifact removal, denoted Artifacts Present.

The Artifacts Suppressed approach was used to determine to what extent we could classify

MW from just neuroelectric patterns and thereby promote the discovery of neural correlates

of MW in naturalistic settings. In contrast, we elected to perform the Artifacts Present analysis

as a comparison because in many real-world applications of MW detection, including educa-

tion and performance science, the main concern is optimal detection of MW rather than reli-

ance on purely neurological processes. In addition, since many previous MW detection studies

used eye tracking rather than neural signals [53–55], the Artifacts Present approach allowed us

to determine whether there was a benefit in terms of detection accuracy to skipping the use of

ocular artifact suppression algorithms for real-world applications.

We removed an average of 0.53 (range: 0–2) channels per participant before analysis based

on extreme variance. Remaining EEG signals were re-referenced to the average of all remain-

ing channels and standardized using the exponential running mean and variance with a
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smoothness factor of 0.001, a technique for time-series standardization that reduces the influ-

ence of local fluctuations, such as high-voltage artifacts [77]. While existing research tends to

associate MW with changes in EEG alpha band activity [40, 51, 52], we chose to retain a

broader range of frequencies to test whether machine learning analysis would benefit from

other frequency bands. Thus, we bandpass filtered the standardized EEG signals to 1–30 Hz

using a Type II finite impulse response filter.

Following this simple signal preprocessing procedure, we performed two-stage artifact

rejection for each participant’s EEG data. First, we epoched the entire signal into a series of

non-overlapping 1s epochs. We automatically rejected epochs containing major artifacts using

the autoreject Python toolbox [78]. This was done for both machine learning analyses (with

and without independent component analysis artifact rejection), because most of the artifacts

removed by autoreject were either of too high amplitude for the EEG amplifiers to properly

characterize due to momentary loss of connection with the wireless receiver during data

streaming, or due to major motion artifacts (e.g., major changes in posture).

Since autoreject does not remove most eye artifacts or smaller motor artifacts, we fit an

independent component analysis model using the remaining epochs to separate and suppress

those artifacts [79]. The autoreject method was used before independent component analysis

because the presence of large artifacts can interfere with the technique’s ability to separate eye

movements and smaller motor artifacts from the remaining EEG. Models with 16 components

were fit using the extended infomax algorithm, which is well-suited to EEG data containing a

variety of noise sources [80]. Since we did not directly record electrooculograms or electro-

myograms, we used statistical thresholding (skewness: ± 2.50, kurtosis: ± 3.00) to reject arti-

fact-containing components and visually confirmed the selections [81]. We removed an

average of 5.0 independent components (range: 3–8). We then re-mixed the signals into chan-

nel space with the artifactual components removed for further analysis.

We re-epoched the denoised EEG signals for machine learning analysis by extracting the

10s periods before each MW probe onset. Each of these 10s periods was then further epoched

into five, 2s time windows and labelled according to the participant’s response to the MW

probe. Epochs where the participant reported being unsure if they were MW (approximately

4% of responses), were ignored. From an initial total of 65 epochs per participant, we retained

an average of 49 (range: 35–60) epochs per participant, with an average of 17 (range: 5–25)

MW epochs, and 32 (range: 15–45) non-MW epochs. The exact distribution of epochs for

each participant is given in Table 1 to make it easier to compare the class distribution for each

participant to the subject-specific classification performance measures presented in the results.

Statistical analysis. Since this is a novel study design in which MW was probed in a natu-

ralistic setting and EEG was collected for the entire study group simultaneously, we performed

a more traditional statistical analysis to determine whether the same neural correlates of MW

reported in previous studies were also found in our study. We computed the band powers per

epoch within canonical frequency bands typically used in EEG analysis (theta: 4–7 Hz, alpha:

8–12 Hz, beta1: 13–18 Hz, beta2: 19–30 Hz). To determine whether specific combinations of

channels and frequency bands showed differences in band power during MW versus not MW,

we fit a two-factor repeated-measures ANOVA over band powers for each channel aggregated

across participants (16 total models). This included eight response variables since there are

four frequency bands (theta, alpha, beta1, and beta2) over two conditions (MW versus not

MW probe responses). We used probe response and frequency band as within-subject factors.

We then performed a similar analysis within each individual to determine whether MW

was associated with changes in certain frequency bands. For this analysis, we fit a separate

two-factor repeated-measures ANOVA over band powers for each participant aggregated

across channels using probe response and frequency band as within-subject factors (15
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models). We used Holm-Bonferroni corrections to correct the p-values across the multiple

models (16 models for the channel-wise ANOVAs, and 15 models for the individual-specific

ANOVAs). We report effect sizes in terms of ηp
2, where:

η2

p ¼
SSef f ect

SSef f ect þ SSerror
:

Machine learning analysis. We performed intra-subject and inter-subject classification of

MW using common spatial patterns to learn discriminative spatial filters [82, 83], and a non-

linear support vector machine to fit a classification model [84]. We computed six common

spatial patterns (three for MW and three for not MW) and computed the log of the normalized

power for each to use for classification. We used six common spatial pattern components to

keep the dimensionality of the feature space low, reducing the potential for overfitting. We

developed this approach as an adaptation of previous work on brain-computer interfacing [85,

86]. This approach has been developed for similar small-sample machine learning problems

with EEG, where overfitting is avoided by learning a small number of features with a linear

algorithm (although a greater number of samples may still lead to improved performance).

Features were learned with common spatial patterns for each of the frequency bands

described earlier, and machine learning analysis was performed on each band independently.

This was done so that we could determine whether the association between MW and band

power changes found in prior research would remain important for single-subject detection of

MW, given that the associations were discovered through the statistical analysis of EEG data

averaged across participants.

Cross-validation was used to obtain statistically sound measures of classification accuracy.

For each cross-validation iteration, common spatial pattern and support vector machine mod-

els were trained on a portion of the data and classification accuracy was obtained from the

withheld portion of data. For intra-subject classification, we used five-fold cross-validation to

partition epochs into training and test sets five different times while ensuring that epochs cor-

responding to the same MW probe always remained in the same set. For inter-subject

Table 1. The distribution of classes across epochs and total epochs per participant.

Participant # MW Epochs # Non-MW Epochs # Total Epochs

P1 25 22 47

P2 15 45 60

P3 15 45 60

P4 10 30 40

P5 5 30 35

P6 15 33 48

P7 30 30 60

P8 20 25 45

P9 10 25 35

P10 15 15 30

P11 20 40 60

P12 20 35 55

P13 15 40 55

P14 20 25 45

P15 20 35 55

Average 17 32 49

https://doi.org/10.1371/journal.pone.0222276.t001
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classification, we used leave-one-subject-out cross-validation, meaning that each participant

served as a test set once for a model trained on data aggregated from all other participants.

Due to MW occurring at a lower frequency than not MW, we report the precision, recall,

and F1 score of the MW class alongside classification accuracy. The F1 score is a performance

metric for binary classifiers that can be more informative for imbalanced class distributions

because it considers both precision and recall as follows:

F1 ¼ 2 �
precision � recall
precision þ recall

Moreover, we obtained the chance-level F1 score using random permutations of the ground

truth labels. We obtained a distribution of scores by randomly shuffling the ground truth labels

and training our machine learning pipeline to classify the shuffled labels. This was done for

500 iterations per participant, each with a random shuffling of the ground truth labels. We

then used those scores to estimate the 95% confidence interval for a chance-level F1 score.

Finally, we performed independent-samples t-tests comparing these randomized permutation

results with the cross-validation results that were obtained with the correct ground truth labels

[87]. Chance-level F1 was computed after epoch rejection to compare classification accuracy

to chance as accurately as possible.

Results

Participant demographics

A total of 23 individuals participated in the study. Fifteen participated in both the EEG and

behavioural components and eight participated in the behavioural-only component. Further

demographic information about the study participants is provided in Table 2.

Behavioural measures

Mind wandering. We administered 15 thought probes across the two lectures (eight dur-

ing the first and seven during the second), to which all 23 participants responded. A technical

error occurred while administering the first and second probes during Lecture 1; thus, data

from these probes were excluded from both the behavioural and machine learning analyses.

On average, participants reported MW during 32% of the probes in the first lecture and

38% of the probes in the second lecture, resulting in an average of 35% across both lectures.

Participants were unsure about whether or not they had been MW approximately 4% of the

Table 2. Participant demographics.

Demographic Variable EEG + Behavioural (n = 15) Behavioural-only (n = 8)

Participant type Residents: 11 (73%)

Junior: 7 (64%)a

Senior: 4 (36%)a

Medical students: 2 (13%)

All in first year

Research assistants: 2 (13%)

Residents: 7 (88%)

Junior: 4 (57%)a

Senior: 3 (43%)a

Medical students: 1 (13%)

All in first year

Age M = 27.00, SD = 3.89 M = 29.50, SD = 2.73

Handedness Left: 3 (20%)

Right: 12 (80%)

Not applicable

Sex Female: 3 (20%)

Male: 12 (80%)

Female: 1 (13%)

Male: 7 (88%)

aJunior residents were classified as those in years one to three of residency, while senior residents were classified as those in years four and five of residency.

https://doi.org/10.1371/journal.pone.0222276.t002
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time across both lectures. We did not find any significant differences in self-reported MW

between EEG and non-EEG participants during either lecture (see Table 3 for detailed statisti-

cal results). We also did not find any significant differences in the proportion of MW at each

time point for Lecture 1, χ2(5) = 6.08, p = 0.30; however, during Lecture 2, participants

reported significantly more MW during the fourth (53% of participants) and sixth probes

(56% of participants) than during the other probes (on average 16% of participants), χ2(6) =

38.67, p< 0.001.

Perceptions of interest and engagement. Using a five-point Likert scale where 1 = Very

uninteresting and 5 = Very interesting, participants rated the content of both lectures as inter-

esting (Lecture 1: M = 3.65, SD = 0.88; Lecture 2: M = 3.74, SD = 1.21). Using a similar scale,

they also rated both presenters as engaging (Lecture 1: M = 3.78, SD = 0.85; Lecture 2:

M = 3.70, SD = 0.88). We did not find any significant differences between EEG and non-EEG

participants on either measure (see Table 3).

Immediate recall and retention. Completion rates of the immediate recall quiz and the

retention quiz administered two weeks later were 100% and 87%, respectively. One question

was removed from the immediate recall quiz corresponding to the first lecture due to poor

wording.

Table 3 shows descriptive and test statistics for performance on the immediate recall and

retention quizzes. For both lectures, mixed-effects ANOVAs showed significantly higher

scores on the immediate recall quiz than the retention quiz two weeks later, Lecture 1:

F(1,18) = 13.24, p< 0.01; Lecture 2: F(1,18) = 47.35, p< 0.001. There was also an effect of

lecture on retention, such that participants’ retention scores were significantly higher for Lec-

ture 1 than for Lecture 2, F(1,38) = 12.49, p = 0.001.

We did not find any significant differences in quiz scores between EEG and non-EEG par-

ticipants for either lecture (see Table 3). Moreover, the number of times MW was reported did

not significantly correlate with immediate recall, Lecture 1: rS(23) = 0.12, p = 0.58; Lecture 2:

rS(23) = -0.02, p = 0.94, nor retention quiz scores, Lecture 1: rS(20) = -0.22, p = 0.35; Lecture 2:

rS(20) = -0.18, p = 0.45 (see Fig 2). However, we caution readers that with sample sizes of 20

Table 3. Comparison of EEG and non-EEG participants on various measures.

Measure EEG + Behavioural (n = 15) Behavioural-only

(n = 8)

Statistic,

Corrected p-value

Lecture 1

Self-reported MW M = 2.53, SD = 0.52

“A little”

M = 2.50, SD = 0.76

“A little”

U = 58, p = 1.00

Interest in content M = 2.40, SD = 0.91

“Interesting”

M = 2.00, SD = 0.53

“Interesting”

U = 45, p = 1.00

Presenter engagement M = 2.27, SD = 0.70

“Engaging”

M = 2.13, SD = 1.13

“Engaging”

U = 53, p = 1.00

Immediate recall M = 2.57/4.00 (64%) SD = 1.03 (26%) M = 2.50/4.00 (63%) SD = 1.16 (29%) t(21) = 0.14, p = 1.00

Retention M = 2.23/5.00 (45%) SD = 1.52 (30%) M = 1.57/5.00 (31%) SD = 1.23 (25%) t(18) = 0.93, p = 1.00

Lecture 2

Self-reported MW M = 2.40, SD = 0.83

“A fair amount”

M = 2.13, SD = 0.83

“A fair amount”

U = 48, p = 1.00

Interest in content M = 2.33, SD = 1.35

“Interesting”

M = 2.13, SD = 0.99

“Interesting”

U = 58, p = 1.00

Presenter engagement M = 2.47, SD = 0.92

“Engaging”

M = 2.00, SD = 0.76

“Engaging”

U = 43, p = 1.00

Immediate recall M = 2.80/5.00 (56%) SD = 1.37 (27%) M = 2.50/5.00 (50%) SD = 0.93 (19%) t(21) = 0.55, p = 1.00

Retention M = 0.81/5.00 (16%) SD = 1.22 (24%) M = 0.07/5.00 (0%) SD = 0.19 (0%) t(18) = 1.57, p = 0.65

https://doi.org/10.1371/journal.pone.0222276.t003
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and 23, these correlational analyses are considerably underpowered, with post-hoc power cal-

culations using G�Power v. 3.1 suggesting values of 0.05–0.15.

Neurophysiological measures

Power spectrum statistics. The results of the channel-wise repeated-measures ANOVA

models are given in Table 4. We found small to moderate effects of MW in most channels, which

we would not expect to see if the neural correlates of MW were constrained to specific networks

in the brain and generalizable across participants. The largest effect sizes found were in F7 (ηp
2 =

0.19, uncorrected p = 0.11), F8 (ηp
2 = 0.22, uncorrected p = 0.08), P8 (ηp

2 = 0.26, uncorrected

p< 0.05), and O1 (ηp
2 = 0.20, uncorrected p = 0.08). When examining the interaction between

MW and frequency band, we found only moderate effects in F8 (ηp
2 = 0.17, uncorrected p =

0.06), T8 (ηp
2 = 0.29, uncorrected p< 0.01), O1 (ηp

2 = 0.19, uncorrected p = 0.03), and Oz (ηp
2 =

0.16, uncorrected p = 0.06), possibly suggesting that the frequency bands associated with MW

were not consistent across individuals. However, none of the group-level statistics were significant

at a 0.05 level after correcting for multiple comparisons. Post-hoc analyses revealed a similar pat-

tern of findings (see Fig 3), but more clearly showed that the effect of MW remaining after aggre-

gating data from the entire group of participants may depend on the frequency band as well.

The results of the individual-specific repeated-measures ANOVA models are given in

Table 5. Here we found strong effects of MW and the interaction of MW and frequency band

for all participants except for P7. For P14 and P15, we only found an effect of the interaction

between MW and frequency band, suggesting that the effect of MW may be more isolated to a

Fig 2. Top Left: MW rate versus immediate recall during Lecture 1. Top Right: MW rate versus retention during

Lecture 1. Bottom Left: MW rate versus immediate recall during Lecture 2. Bottom Right: MW rate versus retention

during Lecture 2.

https://doi.org/10.1371/journal.pone.0222276.g002
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specific frequency band in those participants. Post-hoc analyses (see Fig 4) showed that the

effect of MW appeared to be spread across frequency bands for most individuals, except for

those individuals previously identified. For P7, we found no effect in any frequency band, and

for P14 and P15, the strongest effect appeared in the beta frequencies. For some participants,

MW was associated with a reduction in band power, while for others, the opposite was true.

Common spatial pattern and classification performance. Classification performance in

terms of the F1 score is shown in Fig 5 for MW detection for the Artifacts Suppressed

approach and in Fig 6 for the Artifact Present approach. The average intra-subject classifica-

tion performance was well above chance for both approaches (Artifacts Suppressed: M = 0.83,

SD = 0.12; Artifacts Present: M = 0.85, SD = 0.07) when considering the best frequency band

per individual. The classification performance for the best frequency band per individual is

shown in Table 6 for the Artifacts Suppressed approach and Table 7 for Artifacts Present

approach. Inter-subject classification did not yield classification performance above chance

levels (Artifacts Suppressed best frequency band: M = 0.56, SD = 0.12; Artifacts Present:

Table 4. Results of repeated-measures ANOVA models for each channel.

Channel Factor Result Corrected p-value ηp2

Fp1 MW F(1,14) = 1.98 1.0 0.12

MW x Freq. F(3,42) = 0.43 1.0 0.03

Fpz MW F(1,13) = 1.82 1.0 0.12

MW x Freq. F(3,39) = 1.35 1.0 0.09

Fp2 MW F(1,13) = 2.32 1.0 0.15

MW x Freq. F(3,39) = 0.41 1.0 0.04

F7 MW F(1,13) = 2.99 1.0 0.19

MW x Freq. F(3,39) = 0.57 1.0 0.04

F3 MW F(1,14) = 1.17 0.87 0.08

MW x Freq. F(3,42) = 0.60 1.0 0.04

F4 MW F(1,14) = 1.29 1.0 0.09

MW x Freq. F(3,42) = 0.34 1.0 0.02

F8 MW F(1,13) = 3.71 1.0 0.22

MW x Freq. F(3,39) = 2.63 0.82 0.17

T7 MW F(1,14) = 2.49 1.0 0.15

MW x Freq. F(3,42) = 0.41 1.0 0.03

C3 MW F(1,14) = 2.02 1.0 0.13

MW x Freq. F(3,42) = 0.33 1.0 0.02

C4 MW F(1,13) = 1.39 1.0 0.10

MW x Freq. F(3,39) = 0.81 1.0 0.06

T8 MW F(1,12) = 2.80 1.0 0.19

MW x Freq. F(3,36) = 4.80 0.10 0.29

P7 MW F(1,13) = 0.95 0.60 0.07

MW x Freq. F(3,39) = 0.36 1.0 0.03

P8 MW F(1,14) = 4.80 0.73 0.26

MW x Freq. F(3,42) = 0.80 1.0 0.05

O1 MW F(1,14) = 3.52 1.0 0.20

MW x Freq. F(3,42) = 3.37 0.41 0.19

Oz MW F(1,14) = 1.20 1.0 0.08

MW x Freq. F(3,42) = 2.70 0.81 0.16

O2 MW F(1,14) = 1.43 1.0 0.09

MW x Freq. F(3,42) = 1.79 1.0 0.11

https://doi.org/10.1371/journal.pone.0222276.t004
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M = 0.56, SD = 0.11). In other words, we were able to predict MW in individuals, but the neu-

ral patterns of MW differed across participants, as shown in Fig 7.

It is noteworthy that for some participants the Artifacts Present approach yielded the best

classification performance, suggesting a potential role of ocular and some motor artifacts in

MW detection. On average, the Artifacts Suppressed approach produced a slightly lower classi-

fication accuracy than the Artifacts Present, but this difference was not significant using a two-

sided, paired-samples t-test, t(14) = -0.30, p = 0.77.

We computed Spearman’s ρ (rho) between the number of epochs available for training and

the F1 score for each participant to check whether the variation in classification accuracy

could partially be explained by the amount of available training data. For the Artifacts Sup-

pressed classification accuracies, we found that ρ = 0.28, p = 0.32, indicating no significant

relationship. For the Artifacts Present approach, we found that ρ = 0.51, p = 0.05, suggesting

that there may be a relationship, and that additional training data may improve accuracy.

In addition to measuring the classification accuracy of our models, we compared their pre-

dicted MW rates per participant with each participant’s actual MW rate (see Fig 8). For both

the Artifacts Suppressed and Artifacts Present approaches, observed and predicted rates were

highly correlated (Artifacts Suppressed: r = 0.78, p = 0.0007; Artifacts Present: r = 0.81,

p = 0.0002). Additionally, the predicted MW rates obtained with both approaches were very

highly correlated with one another (r = 0.91, p< 0.0001).

Discussion

In this study, we used machine learning methods designed for data-driven feature learning

with EEG to detect MW during live lectures at both the individual and group levels. While our

Fig 3. Power spectrum distributions for each channel in each frequency band, aggregated across participants. Statistical significance is calculated using

paired-samples t-tests. Uncorrected p-values are reported as follows: �, p< 0.05, ��, p< 0.01, ���, p< 0.001, ����, p< 0.0001.

https://doi.org/10.1371/journal.pone.0222276.g003
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data revealed some similarities in the neural correlates of MW that have been found in prior

studies, the neural correlates found in our study were much more highly individualized than

previously reported. Our work suggests that understanding MW and developing applications

based on MW detection may considerably benefit from methods that are capable of single-sub-

ject analysis of brain activity. This work suggests that further research on the individual vari-

ability of MW using signal processing methods that are more suitable for interpreting which

networks are activated during MW is needed.

Behavioural findings

Consistent with the majority of the literature in the field, we found that MW occurred on aver-

age 35% of the time during the lectures based on participant responses to thought probes.

However, individual rates of MW varied considerably, as can be seen in Fig 7, likely reflecting

a combination of individual propensity to MW, interest in the lecture material, and circum-

stantial factors (e.g., how well each participant slept the night before the study). The consider-

able variability in MW rates further illustrates the need for individual-level analysis of MW as

Table 5. Results of repeated-measures ANOVA models for each participant.

Participant Factor Result Corrected p-value ηp2

P1 MW F(1,15) = 400.95 < 0.0001 0.96

MW x Freq. F(3,45) = 17.58 < 0.0001 0.54

P2 MW F(1,14) = 95.49 < 0.0001 0.87

MW x Freq. F(3,42) = 38.83 < 0.0001 0.74

P3 MW F(1,14) = 58.84 < 0.0001 0.81

MW x Freq. F(3,42) = 12.04 < 0.0001 0.46

P4 MW F(1,13) = 21.17 0.003 0.62

MW x Freq. F(3,39) = 3.29 0.061 0.20

P5 MW F(1,15) = 5.99 0.109 0.29

MW x Freq. F(3,45) = 12.86 < 0.0001 0.46

P6 MW F(1,15) = 248.06 < 0.0001 0.94

MW x Freq. F(3,45) = 14.14 < 0.0001 0.49

P7 MW F(1,13) = 0.88 1.0 0.06

MW x Freq. F(3,39) = 1.36 0.269 0.09

P8 MW F(1,15) = 22.51 0.002 0.60

MW x Freq. F(3,45) = 24.11 < 0.0001 0.62

P9 MW F(1,15) = 82.16 < 0.0001 0.85

MW x Freq. F(3,45) = 6.50 0.003 0.30

P10 MW F(1,15) = 35.42 < 0.001 0.70

MW x Freq. F(3,45) = 15.52 < 0.0001 0.51

P11 MW F(1,15) = 162.52 0.002 0.92

MW x Freq. F(3,45) = 39.53 < 0.0001 0.72

P12 MW F(1,14) = 24.88 < 0.0001 0.64

MW x Freq. F(3,42) = 20.60 < 0.0001 0.60

P13 MW F(1,15) = 12.49 0.015 0.45

MW x Freq. F(3,45) = 18.37 < 0.0001 0.55

P14 MW F(1,14) = 0.37 1.0 0.03

MW x Freq. F(3,42) = 24.64 < 0.0001 0.64

P15 MW F(1,15) = 0.38 1.0 0.03

MW x Freq. F(3,45) = 18.76 < 0.0001 0.56

https://doi.org/10.1371/journal.pone.0222276.t005

Detecting mind wandering during live lectures

PLOS ONE | https://doi.org/10.1371/journal.pone.0222276 September 12, 2019 16 / 30

https://doi.org/10.1371/journal.pone.0222276.t005
https://doi.org/10.1371/journal.pone.0222276


a means of understanding the phenomenon in more detail. The individual predicted rates of

MW obtained by our machine learning approach varied considerably as well, but were not sig-

nificantly different from the observed rates. Fig 8 shows that the predicted rates of MW were

highly correlated with the observed rates, providing further evidence that the models were able

to capture something useful about MW on an individual basis.

Similar MW rates were found using thought probes in a classroom-based study [88], but in

that case, MW was also found to be predictive of lower academic performance [16]. Contrary

to what might be expected, we did not find a significant correlation between the prevalence of

MW and recall or retention. A likely explanation is that the quiz questions used in our study

were sent to us by the lecturers in advance, and therefore not directly linked to the content that

was presented immediately before the thought probes. There was no mechanism used to con-

nect the quiz items to the thought probes because we did not want the lecturers to be any more

aware of when the probes would appear than the students to lower the probability of accidental

cueing. This means that we had no way of truly knowing if participants were mind wandering

when testable content was covered. Trainee motivation to learn and retain the content may

also have been a factor, as anecdotal feedback suggested that not all participants found the lec-

ture content relevant to their day-to-day clinical experiences.

Our findings also indicate some differences in participants’ behaviours during the two lec-

tures. While the level of MW was roughly consistent across the various time points sampled in

Lecture 1, there were two time points during Lecture 2 at which participants were significantly

more likely to report MW. Lecture 2 also had overall poorer immediate recall and retention

than Lecture 1. While no specific changes in the lecturer’s behaviour were documented during

the two time points previously mentioned, the observed effects may have at least in part been

due to differences in participants’ interest in the lecture content (there was more variability in

Fig 4. Power spectrum distributions for each participant in each frequency band, aggregated across channels. Statistical significance is calculated

using paired-samples t-tests. Uncorrected p-values are reported as follows: �, p< 0.05, ��, p< 0.01, ���, p< 0.001, ����, p< 0.0001.

https://doi.org/10.1371/journal.pone.0222276.g004
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participants’ reactions to Lecture 2). They may also have been related to the order in which the

lectures were presented. Since Lecture 2 took place after participants had been in the LIVELab

for nearly two hours, participants may have started to become fatigued, and thus may have

been less motivated to pay attention to or retain content.

As stated earlier, the retention score data for Lecture 2 did not meet the assumptions of nor-

mality. However, since the significant differences reported were relatively large, they are

unlikely to be false positives. Additionally, the correlational analyses reported in our study

were underpowered due to a small sample size and we were unable to link the quiz questions

in our study directly to the probes. However, since participants tended to MW at different

time points throughout the lectures, linking the quiz questions and probes may ultimately

have been of limited benefit as there would likely not have been enough data points to deter-

mine if those who were paying attention at a particular time point performed better on the

corresponding quiz questions than those who were not. Linking the two may also have inad-

vertently cued participants to better remember the content covered close to a probe.

Mind wandering detection

We were able to classify MW significantly above-chance accuracy for most participants using

only neuroelectric signals (the Artifacts Suppressed approach; see Fig 5). We were also inter-

ested in classification approaches that prioritized optimal MW detection over other consider-

ations motivated by numerous studies showing that eye tracking was useful for MW detection

[53–55]. For this reason, we also experimented with the Artifacts Present approach. Using this

Fig 5. Classification performance for the Artifacts Suppressed approach given by the F1 score for each participant and frequency band. The rightmost set of bars

are the averages across participants. Standard error bars are given for five cross-validation runs for each participant and all 15 participants for the averaged accuracies.

The 95% confidence intervals for chance-level F1 scores per participant are plotted as grey regions, and statistical significance is calculated using independent two-

sample t-tests using the best frequency band. �: p< 0.01, ��: p< 0.001, ���: p< 0.0001.

https://doi.org/10.1371/journal.pone.0222276.g005
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Fig 6. Classification performance for the Artifacts Present approach given by the F1 score for each participant and frequency band. The rightmost set of bars are

the averages across participants. Standard error bars are given for five cross-validation runs for each participant and all 15 participants for the averaged accuracies. The

95% confidence intervals for chance-level F1 scores per participant are plotted as grey regions, and statistical significance is calculated using independent two-sample t-

tests using the best frequency band. �: p< 0.01, ��: p< 0.001, ���: p< 0.0001.

https://doi.org/10.1371/journal.pone.0222276.g006

Table 6. Classification performance (with standard error across cross-validation runs) for the best frequency band using the common spatial pattern algorithm

with the Artifacts Suppressed approach. Frequency band chosen based on F1 score. Average performance (with standard deviation across participants) is given by the

best frequency band for each participant. Observed MW rate reflects the MW rate of the processed epochs after epoch removal, and therefore may not be the exact rate of

MW observed in the probe responses. Predicted MW rate is the rate at which the machine learning model predicts MW.

Best Band Accuracy F1 Score Recall Precision Observed MW Rate Predicted MW Rate

P1 Beta1 88 ± 4.38 0.50 ± 0.19 0.45 ± 0.18 0.60 ± 0.22 0.53 0.80

P2 Beta2 80 ± 7.30 0.87 ± 0.05 1.00 ± 00.0 0.79 ± 0.07 0.25 0.03

P3 Alpha 90 ± 5.96 0.94 ± 0.04 1.00 ± 0.00 0.89 ± 0.06 0.25 0.10

P4 Beta2 70 ± 13.04 0.78 ± 0.10 1.00 ± 0.00 0.70 ± 0.13 0.25 0.00

P5 Theta 80 ± 10.95 0.87 ± 0.07 1.00 ± 0.00 0.80 ± 0.11 0.14 0.05

P6 Theta 88 ± 4.38 0.93 ± 0.03 1.00 ± 0.00 0.87 ± 0.05 0.31 0.16

P7 Beta2 90 ± 5.96 0.89 ± 0.06 0.83 ± 0.09 1.00 ± 0.00 0.50 0.60

P8 Alpha 92 ± 4.38 0.90 ± 0.06 0.90 ± 0.09 0.95 ± 0.04 0.44 0.40

P9 Beta1 85 ± 5.48 0.90 ± 0.04 1.00 ± 0.00 0.83 ± 0.06 0.29 0.15

P10 Beta1 100 ± 0.00 0.80 ± 0.17 0.80 ± 0.18 0.80 ± 0.18 0.50 0.47

P11 Alpha 67 ± 6.67 0.78 ± 0.05 1.00 ± 0.00 0.65 ± 0.07 0.33 0.03

P12 Alpha 73 ± 3.65 0.82 ± 0.03 0.97 ± 0.03 0.78 ± 0.09 0.36 0.10

P13 Beta2 90 ± 3.65 0.91 ± 0.04 1.00 ± 0.00 0.85 ± 0.06 0.27 0.23

P14 Theta 76 ± 8.76 0.64 ± 0.17 0.76 ± 0.17 0.61 ± 0.18 0.44 0.36

P15 Beta2 90 ± 3.65 0.92 ± 0.03 0.95 ± 0.04 0.91 ± 0.05 0.36 0.33

Avg. 84 ± 8.96 0.83 ± 0.12 0.91 ± 0.15 0.80 ± 0.12 0.35 ± 0.11 0.25 ± 0.23

https://doi.org/10.1371/journal.pone.0222276.t006
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approach, we obtained significantly better than chance classification accuracy for all partici-

pants (see Fig 6). In particular, participants for whom MW was difficult to classify in the Arti-

facts Suppressed approach yielded results more in line with the other participants in the

Artifacts Present approach. However, since classification accuracy was higher in the Artifacts

Suppressed approach for some participants, the average classification accuracies were not sig-

nificantly different between the two approaches.

Table 7. Classification performance (with standard error across cross-validation runs) for the best frequency band using the common spatial pattern algorithm

with the Artifacts Present approach. Frequency band chosen based on F1 score. Average performance (with standard deviation across participants) is given by the best

frequency band for each participant. Observed MW rate reflects the MW rate of the processed epochs after epoch removal, and therefore may not be the exact rate of MW

observed in the probe responses. Predicted MW rate is the rate at which the machine learning model predicts MW.

Best Band Accuracy F1 Score Recall Precision Observed MW Rate Predicted MW Rate

P1 Alpha 100 ± 0.00 0.80 ± 0.18 0.80 ± 0.18 0.8 ± 0.18 0.53 0.68

P2 Beta2 80 ± 7.30 0.87 ± 0.05 1.00 ± 0.00 0.79 ± 0.07 0.25 0.03

P3 Theta 87 ± 5.58 0.92 ± 0.03 1.00 ± 0.00 0.86 ± 0.06 0.25 0.07

P4 Theta 80 ± 8.37 0.83 ± 0.07 1.00 ± 0.00 0.75 ± 0.10 0.25 0.10

P5 Theta 80 ± 10.95 0.87 ± 0.07 1.00 ± 0.00 0.80 ± 0.11 0.14 0.05

P6 Theta 92 ± 4.38 0.96 ± 0.02 1.00 ± 0.00 0.92 ± 0.04 0.31 0.20

P7 Beta2 93 ± 3.65 0.94 ± 0.03 0.90 ± 0.05 1.00 ± 0.00 0.50 0.57

P8 Beta2 64 ± 6.69 0.71 ± 0.05 0.86 ± 0.09 0.65 ± 0.08 0.44 0.28

P9 Beta1 80 ± 4.47 0.87 ± 0.03 1.00 ± 0.00 0.78 ± 0.05 0.29 0.10

P10 Theta 87 ±7.30 0.76 ± 0.17 0.73 ± 0.17 0.80 ± 0.18 0.50 0.47

P11 Beta2 73 ± 3.65 0.81 ± 0.03 0.96 ± 0.04 0.72 ± 0.04 0.33 0.17

P12 Theta 80 ± 5.58 0.85 ± 0.04 0.89 ± 0.06 0.85 ± 0.08 0.36 0.23

P13 Theta 93 ± 3.65 0.94 ± 0.04 0.96 ± 0.04 0.93 ± 0.06 0.27 0.33

P14 Beta1 96 ± 3.58 0.78 ± 0.17 0.76 ± 0.17 0.80 ± 0.18 0.44 0.56

P15 Theta 87 ± 5.58 0.88 ± 0.05 0.85 ± 0.09 0.95 ± 0.04 0.36 0.43

Average 85 ± 9.11 0.85 ± 0.07 0.91 ± 0.09 0.83 ± 0.09 0.35 ± 0.11 0.28 ± 0.20

https://doi.org/10.1371/journal.pone.0222276.t007

Fig 7. The learned common spatial pattern for four selected participants within frequency band yielding optimal detection (due to space

restrictions) after artifact rejection. Note that these patterns do not reflect brain activations; rather, they show where the greatest change in activation
took place between MW versus not MW. Pattern one refers to the learned pattern that is most strongly indicative of MW or not MW (listed as MW 1 or

not MW 1), and increasing pattern number refers to less predictive patterns.

https://doi.org/10.1371/journal.pone.0222276.g007
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Since our machine learning approach was based upon data-driven feature learning with

common spatial patterns, a method adapted from brain-computer interfacing, we note a

potential limitation in its application to MW detection. While the algorithm may learn spatial

patterns that reflect different modes of MW (or perhaps mind wandering about different

things) that may generalize well for an individual during a single session, the fact that it is a

supervised algorithm means that its generalizability is limited to patterns already represented

in the training data. Due to both the non-stationarity of brain activity and the day-to-day

changes in mood, concerns, and preoccupations of an individual, it is possible that common

spatial patterns learned on one day or in one context may not generalize to MW on other days

or in other contexts. Indeed, this limitation of common spatial patterns is also present and

actively being addressed in the brain-computer interfacing literature [89–91], and can be con-

sidered a limitation of supervised machine learning for non-stationary data more broadly [92].

Contrary to other studies identifying EEG correlates of MW using more traditional statisti-

cal analyses [40, 50], we did not find a consistent pattern of frequency band activation or spa-

tial topographies that could be identified as a signature of MW across participants. While a

recent study using machine learning to detect MW from EEG also showed that a variety of fea-

tures of the EEG needed to be used together to reliably detect MW [18], our findings differed

in that patterns of MW were highly individualized. In fact, our inter-subject model did not

achieve above chance-level accuracy. The differences between our findings and those of previ-

ous studies can be explained by several factors, which we discuss next.

As discussed in the introduction, some of the discrepancies found in the neural correlates

across EEG studies of MW may emerge from differences in experimental settings and the

attentive task used as a control condition. As can be seen in Fig 3, our data were more in line

with the EEG-derived neural correlates of MW discovered in more controlled laboratory-

based experimental designs in which MW was contrasted against breath focus [40]. While we

did not find an effect on the lower frequency range (i.e., theta), we did find a decrease in alpha

power (which we defined as the more commonly used 8–12 Hz band, rather than 9–11 Hz)

over occipital and parietocentral regions, although we note that these findings were only statis-

tically significant before correcting for multiple comparisons. In addition, we found a similar

decrease in beta power over frontolateral regions, with the addition of a decrease over the left

occipital cortex. It is important to note that, unlike previous studies, we split our beta band

Fig 8. The relationships between observed and predicted MW rates.

https://doi.org/10.1371/journal.pone.0222276.g008
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into a lower beta band and a higher band and only found these significant effects in the higher

frequency beta band. The main difference in our findings was a lack of effect in the theta band,

which may be because our study took place in a more naturalistic setting with both auditory

and visual stimuli. This may have resulted in a greater degree of ocular artifact contamination,

which would have disproportionately affected lower frequency bands. In a study where the

active task was listening to stories, a similar decrease in alpha power in occipital and parietal

areas was found when participants were aware that they were thinking about something other

than the task, and were still partially attending to the task [52]. In contrast, this study showed a

widespread increase in alpha activity when participants were not aware that they were no lon-

ger paying attention to the task. If we were to interpret our results in the same way, it is possi-

ble that, on average, the participants in our study were often aware that they were thinking

about something other than the lectures, and thus were intentionally mind wandering [93].

Individual-level neural correlates of mind wandering

A seemingly unique finding in our study was the highly individualized nature of the neural

correlates of MW that were found via data-driven feature learning (common spatial patterns),

in combination with the inability of our machine learning approach to identify patterns that

could generalize across participants. This can be seen in Fig 4, where MW was associated with

changes in band powers in different directions for different participants, and in Fig 7, where

the spatial patterns most predictive of MW only showed almost no similarity across individuals

(although for participants P3, P8, and P12, for whom the alpha band is shown, there were simi-

larities in the common spatial patterns associated with not MW).

The variety of neural correlates found across individuals is too broad to identify any consis-

tent patterns that can be associated with the neural networks identified in previous studies

using EEG [38]. Moreover, with 16 EEG channels, we lack the spatial resolution needed for

accurate source localization [94, 95]. Furthermore, common spatial patterns only reflect scalp

topologies that maximize the ratio of amplitude variance between two cognitive states, and

may, therefore, omit brain regions that are activated in both states. As such, we would not nec-

essarily expect a one-to-one correspondence between the common spatial patterns learned

from the MW data and the network of brain regions that are associated with MW. With this

limitation in mind, we discuss a possible interpretation of the common spatial patterns seen in

Fig 7 to motivate further research exploring what machine learning methods may reveal about

the neural correlates of MW, and other cognitive processes, based on individual-level analysis.

A study exploring the EEG scalp topologies (as opposed to common spatial patterns) in dif-

ferent frequency bands that appear during the activation of different resting-state networks in

fMRI [96] may allow us to infer something about what the common spatial patterns reveal

about the neural correlates of MW across individuals. Visually, the MW patterns for P3 are

similar to the alpha EEG activity associated with visual networks, whereas the patterns associ-

ated with MW in P8, P12 and P15 are more reminiscent of the EEG activity associated with

co-activation of the DMN, the frontoparietal control network, and the frontal attention net-

work. All of these networks have been associated with MW through prior neuroimaging

research [7]. For P3, P8, and P12, the most predictive common spatial patterns and the most

similar network-related scalp topologies were found in the alpha band, activity in which has

been specifically linked to resting state functional brain activity [96–100] and a decrease in bot-

tom-up sensory processing [97, 101]. For P15, while the common spatial patterns appear dis-

tinct because they show changes in the beta2 frequency band instead of alpha, the most similar

beta band scalp topology shown in [96] is associated with the same networks as P8 and P12.

This suggests that for P15, a reduction in beta activity, which is associated with a decrease in
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active thinking and concentration [102], was more predictive than an increase in alpha activ-

ity, even though they may reflect a change in the same resting-state networks and suggest a

very similar change in cognitive state.

Comparing the common spatial patterns discovered through individual-level feature learn-

ing to EEG scalp topologies associated with specific brain networks may help explain why

group-level analyses of functional connectivity in fMRI data consistently point to the same net-

works, but different EEG studies at times appear to show contradictory neural correlates (see

our review of the neural correlates of MW in the introduction). This interpretation would sug-

gest that while MW may generally be associated with changing activity patterns in the same set

of resting-state networks, the oscillatory dynamics of those networks may change in different

ways for different individuals, and different subnetworks may be activated at different times.

This leads to a very interesting hypothesis about the dynamics and varieties of MW that war-

rants further exploration. However, we caution readers against over-interpreting these find-

ings by assuming that common spatial patterns necessarily reveal the same brain networks

discovered in previous studies. While similar inferences about the network activations for each

participant can be drawn by comparing the learned common spatial patterns to scalp topolo-

gies identified in simultaneous EEG-fMRI studies, doing so in a rigorous way requires an

entirely different kind of experimental approach that is outside of the scope of this paper. Ide-

ally, the association between individual-level common spatial patterns and network activations

would be tested by computing common spatial patterns from EEG data that were simulta-

neously acquired with fMRI.

We note two reasons for finding patterns of brain activity associated with MW that are

more individualized than previously reported. The first is that the common spatial patterns

algorithm may be particularly well-suited to machine learning analysis on an individual basis,

as its roots are found in within-subject brain-computer interfacing research [85, 86]. Common

spatial patterns may, therefore, identify patterns that are highly tuned to individuals and can

be especially powerful in identifying patterns that would likely be lost upon averaging across

individuals, or in other group-level analyses. The tradeoff is that this method may not be well-

suited to generalization across individuals, and as noted earlier, recent research in brain-com-

puter interfacing has focused on developing new methods specifically designed to overcome

this limitation [103, 104].

Second, our broad content-based definition of MW may have led to a large degree of het-

erogeneity in the neural correlates of MW across participants, particularly if there was varia-

tion in how the thought probes were interpreted [25]. This may have further contributed to

poor inter-subject generalizability in our machine learning models. We explained earlier that

we chose to use a broad definition of MW so that we could discover neural correlates of MW

that were more likely to translate well into real-world applications related to our naturalistic

setting (i.e., MW detection and/or attentional monitoring of trainees during live lectures).

High variation has been found in previous work, and is thought to reflect differences in the

content of thought during MW and while paying attention [93, 105], which can, in turn, lead

to the activation of different neural networks in the brain [106]. We add support to this

hypothesis using traditional statistical analyses. As can be seen in Figs 3 and 4, almost every

participant showed differences between MW and non-MW EEG epochs in multiple frequency

bands. However, after combining the epochs across participants and comparing MW to non-

MW EEG at each EEG channel, the differences almost entirely disappeared, suggesting that

these differences did not generalize across participants. By showing that machine learning and

data-driven feature learning can be used to detect MW on an individual basis, we can contrib-

ute further evidence that MW could be considered a highly variable phenomenon that can be

expressed broadly across the neocortex and across a wide range of frequencies.
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The application of machine learning for predictive modelling in other areas of neuroscience

has revealed the possibility of neural correlates of various mental processes that were not previ-

ously identified in group-level statistical analyses [62, 64–69, 85, 86]. It is possible that individ-

ual-level analyses performed on fMRI data may also reveal that MW involves a greater variety

of neural correlates and brain networks than could be identified through group-level analyses.

Such individual analyses of MW may contribute substantially towards resolving the question

of whether these different patterns of neural activation correspond to different types (i.e.,

intentional versus unintentional [93, 107]) or definitions of (i.e., content-based versus stimu-

lus-independent versus spontaneous thought [7]) of MW, and furthermore, if it is possible to

differentially detect types of neural activity unrelated to the task at hand. Future work could

use simultaneous EEG-fMRI with individual-level modelling to gain a more precise under-

standing of the individual variability in network activation involved in MW, including how

those networks interact. In addition, such data could be used to clarify the relationship

between machine learning derived common spatial patterns that enable MW detection by

establishing the correlation between the appearance of those patterns and specific brain net-

works. This may help resolve whether the executive control failure hypothesis or the decou-

pling hypothesis is closer to reality, or if neither is a sufficient description of why the executive

control network can be co-active with the DMN during MW.

Conclusions

We were able to accurately detect MW from EEG at the individual level using data-driven fea-

ture learning and machine learning. These methods allowed us to show that the neural corre-

lates of MW might be more variable than suggested by traditional statistical methods. With

further study, these findings may lead to the development of new methods for online MW

detection that facilitate the deeper study of the phenomenon, particularly at the individual

level, while also enabling real-time MW detection in real-world settings. This work points to

the possibility that MW might be associated with multiple patterns of activity in previously

identified resting state brain networks, which are best revealed by analysis of brain activity at

the individual level.
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