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Historical records reveal the temporal patterns of a sequence of
plague epidemics in London, United Kingdom, from the 14th to
17th centuries. Analysis of these records shows that later epi-
demics spread significantly faster (“accelerated”). Between the
Black Death of 1348 and the later epidemics that culminated
with the Great Plague of 1665, we estimate that the epidemic
growth rate increased fourfold. Currently available data do not
provide enough information to infer the mode of plague trans-
mission in any given epidemic; nevertheless, order-of-magnitude
estimates of epidemic parameters suggest that the observed
slow growth rates in the 14th century are inconsistent with
direct (pneumonic) transmission. We discuss the potential roles
of demographic and ecological factors, such as climate change
or human or rat population density, in driving the observed
acceleration.
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P lague epidemics have afflicted human populations since at
least the sixth century (1, 2). These events have had dramatic

and long-lasting effects on human demography and behavior,
especially those outbreaks associated with the second pandemic
(14th to 19th centuries) in Europe and Asia (1, 3–5), and have
inspired many theoretical studies of the ecology and evolution
of infectious disease (6–13). We are now in the third pandemic
(Modern Plague), with outbreaks continuing to occur in some
parts of the world (14–18). Plague also remains a source of
concern due to the bioterror potential of the causative agent,
Yersinia pestis (19, 20).

Recent advances in paleogenomics have definitively estab-
lished that historical plague pandemics were caused by Y. pestis
(21, 22), as proposed in the 19th century after Yersin discov-
ered the bacterium’s link to bubonic plague (23). Researchers
have reconstructed the evolutionary history of plague and other
pathogens by sequencing and reconstructing nearly complete
pathogen genomes from persistent DNA fragments (21, 24, 25).
The strain isolated from victims of the Black Death (London
1348) is remarkably similar to extant human strains (Mod-
ern Plague): the core genomes∗ of these strains are ≈ 99.99%
similar (21), which makes it challenging to identify important
evolutionary or ecological patterns from genomic investiga-
tions alone. Here we complement genetic studies by exploring
more traditional (historical, demographic, and epidemiological)
sources of information from a 300-y span of plague outbreaks
in the same location (London), revealing a striking change in
plague transmission dynamics over the course of the Renaissance
period, namely, a fourfold increase in the initial growth rate of
outbreaks.

We quantify this change without making any assumptions
about the underlying transmission processes, exploiting method-
ology that we have developed previously for this purpose (26).
We then consider how this inference can contribute to the
debate concerning whether plague transmission was primar-
ily indirect (via rat fleas) or direct (pneumonic human-to-

human). We argue that strictly pneumonic transmission in the
14th century is implausible but that beyond this the best that
can be done at present is to highlight the biological com-
plexities and uncertainties that limit the potential for further
inferences.

Data
The city of London, United Kingdom, is unusual in the extent
to which patterns of death and disease can be reconstructed
from extant documents. We have analyzed three sources of data
(Fig. 1).

London Bills of Mortality. The London Bills of Mortality (LBoM)
(27, 28) provide weekly counts of deaths by cause during each
of the known plague epidemics in the 16th and 17th centuries.
The LBoM thus give us information specifically about mortality
attributable to plague for each epidemic, which we will use as a
proxy for plague incidence (6, 26). When available, the LBoM
are our most reliable records (except for the epidemic of 1593;
SI Appendix).

Parish Registers. After 1538 (ref. 29, p. 54, and ref. 30), Lon-
don parish registers provide information on mortality. We use
weekly counts of deaths published online by Cummins, which are
estimated to cover 80% of total deaths (31). During plague epi-
demics, most deaths were likely due to plague; we also adjust for
nonplague mortality by estimating a baseline death rate from the
years before and after an epidemic (Materials and Methods).

Significance

Epidemics of plague devastated Europe’s population through-
out the Medieval and Renaissance periods. Genetic studies
of modest numbers of skeletal remains indicate that the
causative agent of all these epidemics was the bacterium
Yersinia pestis, but such analyses cannot identify overall pat-
terns of transmission dynamics. Analysis of thousands of
archival records from London, United Kingdom, reveals that
plague epidemics spread much faster in the 17th century than
in the 14th century.
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Fig. 1. (Top Left) Part of a will proved in the PCC, dated 18 December 1644 (34). (Top Center) A parish register page from St Giles without Cripplegate,
August 1665 (38). Image credit: Wellcome Collection, licensed under CC BY 4.0. (Top Right) One of the LBoM, for the week beginning 26 September 1665
(photo by Claire Lees, taken in the Guildhall Library, City of London). (Bottom) Mortality in London, United Kingdom, 1340 to 1380 and 1540 to 1680,
aggregated 4-weekly, plotted on a log scale. The three distinct sources of data (SI Appendix, Table S2) are last wills and testaments of Londoners whose wills
were probated in the Court of Husting (14th century) or the PCC (16th to 17th centuries), weekly aggregations of burials listed in extant parish registers (29),
and weekly plague deaths listed in the LBoM (27). Major plague years are highlighted in yellow. Aside from these and various minor plague years, there
are notably unusual patterns during an epidemic of sweating sickness in 1551 (ref. 29, p. 70), the influenza epidemic of 1557 to 1559 (ref. 29, p. 70) (which
coincided with the end of the reign of Bloody Mary I and the ascension of Elizabeth I in 1558 [indicated by a crown icon]), and the absence of a monarch
during the Interregnum from 30 January 1649 to 29 May 1660.

Wills and Testaments. Before 1538, no direct tabulations of mor-
tality for London are available. However, we do have detailed
information on last wills and testaments, which can be used as
proxies for mortality (29). In particular, we have digitized and
tabulated daily counts of wills recorded in the Court of Husting
(32) for the 14th century; these give us data for the plague epi-
demics of 1348, 1361, 1368, and 1375 [monthly counts for three
of these epidemics were previously published by Cohn (33)]. We

use online data from the Prerogative Court of Canterbury (PCC)
(34) for the plague epidemics of the 16th and 17th century.
Plague epidemics in London are mentioned in historical docu-
ments from the 15th century (ref. 27, chap. IV), but during this
period, wills recorded in the Courts of Husting and Canterbury
were too sparse to enable identification of epidemics.

Two dates are associated with each will: the date on which
it was written and the date on which it was probated (i.e.,
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accepted by the court after the death of the testator). Tra-
ditionally, demographers have used annual counts of wills by
probate date as testators are known to have died by these
dates. While this approach works well for inferring long-term
trends in annual mortality, probate dates are inappropriate
for reconstructing detailed time series of mortality over short
time scales as there is a variable and irregular lag between
the (unknown) date of the death and the probate date; most
of the wills associated with 14th century epidemics were pro-
bated several months after they were written (35) (SI Appendix,
Fig. S2).

Instead, we use the counts of wills written in a given time inter-
val as a proxy for plague incidence. The date on which a will
was written may precede the testator’s death by a long period,
but during severe epidemics, will dates were likely to have been
correlated with the fear of infection (and hence with disease
incidence), just as internet searches for influenza symptoms can
predict 21st century epidemic patterns (36).

When using wills as proxies for mortality or incidence, we must
keep in mind that 1) a much smaller proportion of the popu-
lation is sampled (the will counts in Fig. 1 are about 10 times
smaller than the counts based on parish registers) and 2) the
subpopulation of individuals who wrote wills is strongly biased
toward merchants and others who owned property (primarily
males).

For the period since 1540, the existence of multiple sources
allows us to cross-check results—in particular, to test our asser-
tion that aggregated counts of wills by date written are an
adequate proxy for mortality rates—and avoid relying on any
questionable or poorly sampled segments of data (37) (SI
Appendix). In 1563 and 1593, the number of PCC wills is too
small to extract a signal from the noise, but the data for the
later three outbreaks verify that the numbers of wills written
follow the plague epidemic patterns evident in the mortality
records (Fig. 2). Based on cross-correlation analysis and dif-
ferences between epidemic peak times, will counts appear to
have lagged mortality recorded in parish registers and LBoM by

approximately 3 to 5 wk; our inferences about epidemic growth
rates appear to be robust to this lag (SI Appendix).

The LBoM indicate that there were 18 other plague epi-
demics in London between 1563 and 1666; these were all of
much smaller magnitude and are discussed only in SI Appendix.
No plague epidemics have occurred in London since the end of
the Great Plague in 1666: a total of 77 deaths from plague are
recorded in the LBoM after 1666, never more than 5 in a sin-
gle week. The last plague deaths recorded in the LBoM occurred
during the week of 6 May 1679.

Approach
Estimation of Epidemic Growth Rates. While our collection of
high-resolution mortality time series during plague epidemics
allows us to estimate epidemic growth rates, we are constrained
by the limitations of our data—the time series for each epi-
demic are short and noisy, especially during the 14th century
(e.g., the epidemics of 1368 and 1375 peaked at a total of five
wills written per week). Thus, we chose to use simple phe-
nomenological models with a small number of parameters that
can be fitted to short time series (starting size, growth rate,
and total size; Materials and Methods) and do not attempt to
separate different sources of variability or estimate the influ-
ence of various mechanistic processes [King et al.’s exhortation
to use epidemic models that separate process from observa-
tion noise (39) applies primarily to forecasting, which we are
not attempting]. Furthermore, we primarily consider the initial
growth rate r , which—unlike the basic reproduction number
R0—can be estimated reliably from mortality data alone with-
out any knowledge of the disease characteristics or natural
history (26).

We estimate the epidemic growth rate for each epidemic as
the maximum likelihood estimate of the initial growth rate of a
logistic function fitted to the cumulative death curve (using first
differences to avoid overconfidence; see Materials and Methods
for more detail), along with likelihood profile CIs. To summarize
the overall difference between epochs, we then use the estimates

Fig. 2. Observed time series (points) and phenomenological model fits (lines; Materials and Methods) that yield the estimated growth rates (listed in Table
1 and plotted in Fig. 3). The data sources (SI Appendix, Table S2) are described in the main text and the legend of Fig. 1. For visual comparison, wills were
aggregated weekly to match the frequency of mortality observations (fits to wills were based on the original daily counts). Vertical dashed lines show 1
April, 1 July, and 1 October of each year. Weeks with zero counts are shown along the bottom edge of the graph (present in all 14th century epidemics,
1625, and 1665). SI Appendix, Figs. S5 and S6, display the data during the major plague epidemics on linear rather than logarithmic scales.
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for each epidemic as observations in a linear mixed model includ-
ing fixed effects of epoch (early/14th century vs. late/16th to 17th
centuries) and data source, and a random effect of outbreak year
(see below), where each estimate was weighted by its certainty.

Finally, to robustly quantify the statistical significance of the
difference between epochs, we ran a permutation test. We com-
puted the null distribution of the between-epoch difference in
growth rate by scrambling the estimates and associated CIs
randomly across epochs. For each of the 126 possible permuta-
tions, we refitted the mixed model and extracted the estimated
among-epoch difference in growth rate.

Estimating R0 and Attack Rate. Our analysis focuses on the epi-
demic growth rate r , rather than the more commonly investi-
gated basic reproduction number R0 [the expected number of
secondary cases caused by a primary case in a completely sus-
ceptible population (7)], because estimates of R0 depend on
information about the life history of the pathogen as well as on
the epidemic curve itself (40). However, if we can estimate R0,
then we can predict epidemic outcomes that we are unable to
predict from r alone; then, by comparing observed with theoret-
ical outcomes under different scenarios, we can make inferences
about modes of transmission.

In particular, if the host population is homogeneously mixed,
we can useR0 to estimate the expected final size Z (the propor-
tion of the population infected by the end of an epidemic, also
called the attack rate) (6, 41). The observed attack rate based on
mortality records depends in turn on the fraction of infected indi-
viduals who die from disease. We can thus compare theoretical
expectations of observed attack rates under different transmis-
sion modes with historical information about observed attack
rates (see Implications of Growth Rate Estimates for Transmission
Mode).

We can use the distribution of the generation interval (the
times elapsed between the moment a host is infected and the
times at which they infect others) to compute R0 from r (40).
If we know only the mean generation interval Tg, we can
still approximate R0≈ rTg +1, by assuming that the genera-
tion intervals are exponentially distributed; this approximation
underestimatesR0 in the typical case where the generation inter-
val distribution is less variable than an exponential distribution
with the same mean.

Beyond the information on generation interval that we use to
derive R0 from r , the observed attack rate depends on addi-
tional characteristics of an epidemic. If the population does
not mix homogeneously, the final size will typically decrease
(e.g., figure 6 in ref. 42). Since the case fatality proportion
(CFP; the proportion of plague cases who die) is not 100%,
the observed attack rate is less than the final size. Observed
attack rates also decrease if some individuals are infected with-
out showing symptoms (asymptomatic infections) (43) or without
symptoms identified as plague (subclinical infections). Finally,
the observed attack rate depends on the initial proportion of the
population susceptible, which will be lower if some individuals
have previously acquired immunity after prior nonfatal plague
infections.

We can use independent estimates of the generation inter-
val to estimate R0 (and hence the theoretical attack rate) for
London epidemics under different transmission modes. Given
the limited information that we have, we consider the additional
(extreme) assumptions that 1) the population was homoge-
neously mixed, 2) the population was initially 100% susceptible,
3) there were no asymptomatic infections, and 4) all infected
individuals died (i.e., the CFP was 100%). All of these assump-
tions increase the observed attack rate (as detected from wills or
deaths), so we can calculate an upper bound on the total mortal-
ity we would expect to observe in an epidemic with a particular
transmission mode.

Results
The fitted models do as good a job as one could hope for
in capturing the initial patterns of epidemic growth evident in
the noisy will counts and agree very well with the patterns of
growth in the mortality time series that are available in the later
epoch (Fig. 2).

The growth rates for the 14th century epidemics are lower
than those for the 16th to 17th centuries (Fig. 3); they may
also be more variable than in the later period, although some
of the appearance of variability is due to larger uncertainties
(presumably due to the relatively poor sampling in the early
epoch). The mixed model quantifies the dramatic increase in
growth rate (“acceleration”) of epidemics between epochs. The
growth rates increased fourfold in the late vs. early epochs: r
increased 3.9× [95% CI (1.5×, 10.3×)] (Materials and Methods).
The permutation test results support the statistical significance
of this difference; the observed order of outbreaks yields the
most extreme difference in growth rates out of all 126 possible
orderings, giving a two-tailed P value of 2/126=0.016.

Discussion
Plague epidemics in London appear to have been faster in the
16th to 17th centuries than in the 14th. Our analysis shows that
this difference is very likely real, rather than driven by changes in
the types of documentary evidence that are available; in particu-
lar, we have shown that inferences from will counts are consistent
with those from death counts when both are available, in the 17th
century.

Why the later plague epidemics were faster than the earlier
ones is not clear. Nevertheless, to provide some context, we con-
sider below a number of mechanisms that could have contributed
to increases in epidemic growth rates. We then consider what
our estimated epidemic growth rates suggest about the mode of
transmission during the various London plague epidemics.

Possible Causes of Acceleration. What factors could have caused
plague epidemics in London in the 16th and 17th centuries to
accelerate relative to the earlier plagues in the 14th century?
Pathogen or host evolution. Faster growth could be a conse-
quence of the pathogen evolving to infect hosts more effectively
or to remain infectious for longer. However, such evolution
may be challenging to demonstrate, particularly in light of the
strong genetic similarity between the Second Pandemic and
Modern Plague strains (21). Evolution of host resistance has also
been suggested as a cause of changes in plague dynamics (11),
although we have no particular mechanisms in mind for how
the evolution of resistance over the course of centuries could
accelerate epidemics.
Shifts in transmission mode. Modes of transmission may have
differed between epochs, which could account for differences
in epidemic growth rates. The reservoir host of Y. pestis in
London was rat populations where it was primarily spread by
flea vectors such as Xenopsylla cheopis (ref. 14, p. 54). This
transmission mode gives rise to bubonic plague in humans,
as a consequence of zoonotic spillover; epidemic growth rate
is driven by spread among rats and fleas, with human infec-
tion and mortality as a secondary consequence. In contrast,
when Y. pestis infection in humans spreads to the lungs,
it gives rise to pneumonic plague, which can then spread
directly from human to human like other severe respiratory
infections. It has also been more recently hypothesized that
human ectoparasites (including lice and human fleas) could
have supported indirect plague transmission without involving
rats (13, 45).

Pneumonic plague probably has shorter generation intervals
than bubonic plague (44, 46) and is often thought to spread much
faster at the population level (44); one potential explanation for
our observations is that 14th century epidemics were primarily

27706 | www.pnas.org/cgi/doi/10.1073/pnas.2004904117 Earn et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2004904117


PO
PU

LA
TI

O
N

BI
O

LO
G

Y

Fig. 3. Estimated initial growth rates (r) and 95% profile CIs on a logarithmic scale, for each of the epidemics shown in Fig. 2. Second and third panels show
mixed-model estimates (Materials and Methods) of overall average growth rate for each epoch (early, 14th century vs. late, 16th to 17th centuries) and
data source. To aid interpretation, the additional vertical scales show the implied intrinsic reproductive number (R0,P) and epidemic final size (ZP) under the
assumption that the generation interval distribution (40) was the same as that estimated from 20th century pneumonic plague epidemics (44). All estimates
and CIs are listed in Table 1 (which also lists the associated doubling times).

bubonically transmitted, while 16th to 17th century epidemics
were primarily pneumonic. With currently available data, we are
unable to confirm or reject this hypothesis, but we consider below
whether any inferences about transmission mode can be made at
present.
Ecological and demographic changes. The complete multispecies
ecology of Y. pestis is extremely complicated (47). We focus on
humans and not on the rest of the ecological community sup-
porting Y. pestis because the only data available for the epochs
studied here concern humans. Human population size and pop-
ulation density in London increased enormously from the 14th
to 17th centuries (48–50) (SI Appendix, Table S1 and Fig. S1),
and density increases were exacerbated in the 17th century by
the isolation of the sick and their contacts in pest houses (51).
Since bubonic plague epidemics are driven by spillover from
rat–flea epidemics, human population density would only have
a direct effect on the speed of pneumonic epidemics. However,
changes in human population (and living conditions) almost cer-
tainly affect rat, and flea, density (52). In addition, higher rat
densities make it more likely that fleas departing dying rats end
up on susceptible rat hosts. The magnitudes of these effects are
extremely difficult to estimate, but in SI Appendix we explore
them in a (crude) quantitative manner, without attempting to
model the truly complex population dynamics that occur even
during a single epidemic (46, 53).
Environmental change. The external environment represents the
third side of the host–parasite–environment disease triangle (54).
Northern European climates changed significantly between the
14th and 16th to 17th centuries (the coldest period of the Lit-
tle Ice Age occurred in the 17th century; ref. 55 and figure 1 of
ref. 56). Furthermore, late-epoch epidemics occurred later in the
calendar year and hence in different seasons (Fig. 2). A variety
of studies link climate (e.g., overall wetness/dryness) or weather

(e.g., annual precipitation or temperature) to plague incidence or
transmission (57–63). Climatic changes may have been responsi-
ble for the changes in plague epidemics in London between 1348
and 1666, but it is challenging to make reliable inferences due
to the lack of consensus about climate and weather variations in
Medieval/Renaissance Europe (64).

Implications of Growth Rate Estimates for Transmission Mode. One
might hope to exploit ancient DNA (2, 21) to identify the
transmission mode during London plague epidemics. Unfor-
tunately, there are currently no identified genetic differences
between strains that have caused indirect or direct transmis-
sion, so it will be difficult to determine from genetic analyses
whether one mode or the other was dominant in any given
Medieval/Renaissance epidemic.

Our growth rate estimates provide a starting point from which
we can begin to explore the extents to which direct or indirect
transmission played a role in the various London plague epi-
demics. Current data are too sparse and limited to make precise
predictions (26, 65), but we consider the extremes of estimated
parameter ranges that would favor each mode of transmission
and ask whether the resulting predictions of attack rates are con-
sistent with the rough knowledge of epidemic sizes available from
the literature.
In the early epoch, primarily pneumonic transmission is implau-
sible. If we assume pneumonic transmission and use generation
interval estimates from 20th century outbreaks (44) (i.e., assum-
ing that the natural history of infection in London was similar
to that of Modern pneumonic plague), in the early epoch we
find R0,P =1.1 [CI (1.04, 1.16)], which implies an attack rate
of ZP =15% [CI (7.5%, 27%)] (left axes in Fig. 3). This esti-
mate of total mortality is the largest possible for the early-epoch
epidemics (violations of any of the four extreme assumptions
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Table 1. Maximum likelihood estimates (MLEs) of the initial exponential growth rate (r) and doubling time ((log 2)/r) with their 95%
CIs, obtained from the time series shown in Fig. 2 (see Materials and Methods)

Assuming pneumonic plague

Source Epidemic Growth rate (1/y) Doubling time (days) R0,P Attack rate ZP R2

Husting wills 1348 4.5 (3.4, 6.2) 55.6 (41.1, 74.1) 1.06 (1.04, 1.09) 0.11 (0.08, 0.16) 0.439
Husting wills 1361 9.2 (4.9, 15.4) 27.5 (16.4, 51.6) 1.14 (1.07, 1.25) 0.23 (0.12, 0.37) 0.693
Husting wills 1368 8.4 (3.3, 21.7) 30.2 (11.7, 77.2) 1.12 (1.04, 1.38) 0.21 (0.08, 0.49) 0.333
Husting wills 1375 20.3 (6.0, 60.3) 12.5 (4.2, 42.2) 1.35 (1.08, 2.41) 0.47 (0.15, 0.88) 0.669
London bills 1563 21.8 (20.1, 23.7) 11.6 (10.7, 12.6) 1.38 (1.34, 1.42) 0.49 (0.46, 0.52) 0.961
London parish 1563 20.6 (18.9, 22.5) 12.3 (11.2, 13.4) 1.35 (1.32, 1.39) 0.47 (0.44, 0.51) 0.978
London parish 1593 15.9 (14.2, 17.3) 15.9 (14.6, 17.8) 1.26 (1.23, 1.29) 0.38 (0.35, 0.41) 0.986
Canterbury wills 1603 14.0 (8.3, 23.8) 18.0 (10.6, 30.4) 1.23 (1.12, 1.42) 0.34 (0.21, 0.53) 0.853
London bills 1603 29.1 (26.5, 31.8) 8.7 (8.0, 9.5) 1.54 (1.48, 1.60) 0.61 (0.57, 0.64) 0.927
London parish 1603 19.9 (18.2, 21.8) 12.7 (11.6, 13.9) 1.34 (1.30, 1.38) 0.46 (0.43, 0.49) 0.988
Canterbury wills 1625 27.1 (11.4, 53.5) 9.3 (4.7, 22.3) 1.49 (1.18, 2.19) 0.58 (0.28, 0.84) 0.900
London bills 1625 27.3 (25.9, 28.4) 9.3 (8.9, 9.8) 1.50 (1.46, 1.52) 0.58 (0.56, 0.60) 0.996
London parish 1625 23.0 (22.3, 23.7) 11.0 (10.7, 11.3) 1.40 (1.39, 1.42) 0.51 (0.50, 0.53) 0.999
Canterbury wills 1665 35.8 (17.6, 47.5) 7.1 (5.3, 14.4) 1.69 (1.29, 2.01) 0.69 (0.42, 0.80) 0.842
London bills 1665 22.2 (21.0, 23.4) 11.4 (10.8, 12.0) 1.39 (1.36, 1.41) 0.50 (0.48, 0.52) 0.984
London parish 1665 23.2 (20.6, 26.0) 10.9 (9.7, 12.3) 1.41 (1.35, 1.47) 0.52 (0.47, 0.56) 0.987
Husting wills Early 5.9 (3.5, 9.8) 43.2 (25.7, 72.5) 1.08 (1.04, 1.15) 0.15 (0.08, 0.25)
Canterbury wills Late 23.0 (11.7, 45.0) 11.0 (5.6, 21.5) 1.40 (1.18, 1.94) 0.51 (0.29, 0.78)
London bills Late 23.9 (21.3, 26.7) 10.6 (9.5, 11.9) 1.42 (1.37, 1.48) 0.53 (0.49, 0.57)
London parish Late 20.4 (18.3, 22.8) 12.4 (11.1, 13.8) 1.35 (1.31, 1.40) 0.47 (0.43, 0.51)

The goodness of fit measure (R2) is the proportional reduction in the mean squared error, i.e., 1− d2/σ2 where d2 is the model mean squared error and
σ2 is the (population) variance of the data; predictions and observations are aggregated to weekly before computing the R2 for wills, for consistency among
data sources. The implied basic reproduction numbers (R0,P) and attack rates (ZP), assuming the generation interval distribution for Modern pneumonic
plague (44), are also shown. All MLEs and associated CIs are shown in Fig. 3.

discussed in Approach would lower the total mortality). Total
mortality of 15% is implausibly low in comparison to typical esti-
mates for 14th century plague epidemics [e.g., “[b]etween the
years 1346 and 1352, [plague] caused the death of . . . one-third
of the world’s population at that time” (ref. 19, p. 163)] and cer-
tainly inconsistent with the careful and comprehensive analysis of
Creighton for the 1348 to 1349 epidemic in London specifically
[“the mortality was about one-half the population” (ref. 27, p.
128)]. It is therefore unlikely that 14th century plague epidemics
in London were primarily pneumonic.
In the early epoch, growth rates appear to be consistent
with bubonic plague. What if we assume bubonic transmis-
sion? Unfortunately, the expected total human mortality from
a bubonic plague epidemic depends on several poorly known
aspects of rat ecology. For the generation interval Tg for bubonic
plague we use a rough estimate of 18 d (≈ 0.05 y) based on
the flea incubation period of 9 to 26 d (46), which dominates
the time scales of other processes involved in rat–flea plague
dynamics (see SI Appendix for further detail). In combination
with a growth rate estimate of r ≈ 6/y, we obtain R0,B≈ 1.3
and ZB≈ 42%. However, this estimate of the final size gives the
fraction of rats, not humans, infected over the course of the epi-
demic. Translating this rat final size to the final size of the human
epidemic requires us to quantify the amount of spillover from
rats to humans. In particular, we need to know the rat-to-human
ratio and the number of infected humans per infected rat, which
can both be crudely estimated as 1:1 (53) (although these ratios
will vary during the course of plague epidemics). Given an esti-
mated CFP of 70 to 80% for early-epoch plagues (66), our (very
rough) mortality predictions are reasonably consistent with the
observed human mortality rates.
In the late epoch, primarily pneumonic transmission is unlikely but
cannot be ruled out. Now suppose that the late-epoch plagues
were pneumonic with a generation interval similar to that of
Modern pneumonic plague. The implied reproduction num-
ber (Fig. 3) would be R0,P =1.4 [CI (1.2, 2.1)], which yields a

maximum attack rate of 51% [CI (27%, 81%)], compared to
the estimated ≈ 20% of the population who died in each of
the late-epoch epidemics (ref. 31, p. 4). Given that the CFP
for (Modern) pneumonic plague is nearly 100% (20, 67–69),
reconciling the predicted attack rates with observed mortality
would require strong effects of heterogeneity, a large frac-
tion of individuals resistant to plague due to prior nonfatal
plague infections, a large proportion of asymptomatic or sub-
clinical infections, or a decrease in transmission rate as the
plague spread (perhaps due to behavioral avoidance of trans-
mission). The effects of heterogeneity and behavioral avoid-
ance may indeed have been stronger in the late epoch, as
a result of concentration of the wealthy in central London
and a tendency for them to flee London during plague epi-
demics (ref. 31, p. 4). While we still consider direct (pneumonic)
transmission in late-epoch London plague epidemics unlikely
because of the strong effects that would be needed to reduce
the expected mortality rates to the observed levels, we cannot
rule it out.
In the late epoch (as in the early epoch), growth rates appear
to be consistent with bubonic plague. Similar calculations with
the estimated r for the late epoch and the approximate gen-
eration interval for bubonic plague give estimated R0,B =2.1
[CI (1.5, 3.5)] and predicted rat attack rates of ZB =83% [CI
(61%, 96%)]. The human ZB would be identical, if we were to
make the same assumptions as above. This attack rate is even
higher than the 51% predicted for pneumonic plague, but the
CFP for bubonic plague was probably only 30 to 60% in the
16th to 17th centuries (e.g., refs. 19 and 69), which could bring
the total mortality roughly in line with the observed ≈ 20%.
The lower CFP of bubonic plague would also lead to a build-
up in the population of individuals who had survived previous
plague epidemics and retained immunity (reducing the suscep-
tible population available to be attacked), which in combination
with heterogeneity and asymptomatic infections makes bubonic
transmission plausible for the late epoch.
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Other possibilities. As mentioned above, it is possible that
human ectoparasites could have supported indirect plague trans-
mission (13, 45). While the biological details of this transmission
mode are still uncertain, we can guess that the generation inter-
val of this transmission mode would be intermediate between
direct and indirect rat–flea transmission, giving rise to estimates
ofR0 and Z intermediate between those discussed above. Inves-
tigations of plague biology in fleas have also raised the possibility
that rat transmission may have shorter generation intervals than
previously thought, which would lower estimated R0 values for
bubonic plague (70, 71) (but cf. ref. 72).

COVID-19 Context. The world is currently in the midst of a
pandemic of COVID-19 disease, caused by the SARS-CoV-2
virus (73). The infection fatality ratio (IFR) for COVID-19 is
uncertain due to case detection limitations, but the evidence
accumulated to date about this IFR (74, 75) indicates that it
is substantially lower than for the 1918 influenza (76, 77) and
much lower than for the historical plague epidemics studied
here. Nevertheless, COVID-19 has had a much greater impact
than seasonal influenza epidemics, which cause of order 500,000
deaths worldwide annually (76, 78).

Epidemic growth rates (and doubling times) have been impor-
tant elements of the COVID-19 public health discourse (79). The
quality and quantity of COVID-19 data far exceed that of the
historical plague data we have analyzed in this paper. In par-
ticular, many countries report daily counts of newly reported
cases, hospitalizations, and deaths. The techniques we have used
to estimate initial growth of plague outbreaks are consequently
easier to apply to modern data streams and should yield more
accurate estimates. In addition, improved information about
generation intervals will make it easier to convert growth rate
estimates into estimates of the basic reproduction number R0.
Of course, modern data are by no means perfect, and there are
still many issues—including estimating generation intervals while
accounting for disease dynamics, and assessing the importance of
asymptomatic and presymptomatic transmission—that can lead
to overconfident or incorrect estimates of disease parameters for
COVID-19 (79–81).

Conclusion. We have estimated epidemic growth rates for all of
the recorded plague epidemics in London, United Kingdom, dur-
ing the second pandemic (1348 to 1666). The major plagues of
the 16th and 17th centuries grew much faster than the early
plagues of the 14th century when the Black Death first invaded
human populations. This conclusion is based solely on esti-
mated growth rates—in particular, our estimates do not rely on
assumptions about the mode of transmission or natural history of
infection. The cause of this substantial acceleration is currently
unclear.

We considered the implications of our estimated growth rates
with respect to the mode of transmission and concluded that
direct transmission (pneumonic plague) was unlikely to have
been the primary mode in the early epoch. Definite conclu-
sions about indirect transmission (bubonic plague) are diffi-
cult because of the substantial uncertainties about rat and flea
ecology during this period.

We have created and assembled—and made available with
this paper—machine-readable databases composed of thousands
of handwritten records spanning more than 300 y. People liv-
ing in London in 1348 or 1665 could not have imagined how
these records might be used hundreds of years later. The time
series that have emerged have allowed us to reveal and char-
acterize large changes in patterns of infectious disease trans-
mission. In concert with other forms of information (31, 82),
these records should continue to contribute to a broader and
more insightful view of population-level processes in early eras
of history.

Materials and Methods
Growth Rate Estimates. We have previously developed methods to use
mortality data to estimate initial epidemic growth rates (26). The naı̈ve
approach of fitting a straight line to the relationship between logarith-
mic death counts and time at the beginning of the epidemic depends
sensitively on the fitting window and produces overly narrow confidence
intervals. Instead, we use maximum likelihood estimation to fit a curve that
resembles the shape of a deterministic epidemic model (see Phenomeno-
logical Model) and compute likelihood profile confidence intervals (83);
this approach yields robust estimates of initial growth rates and accurate
assessments of uncertainty. All variation around the fitted line is assumed
to arise from observation errors. See Ma et al. (26) for methodological
details.

In contrast to Ma et al. (26), who assumed a Poisson error model to
fit simulations that were themselves generated with that assumption, the
results shown here applied a negative binomial error model, which allows
for the broader range of variation found in real data. We initially tried both
logistic and Richards (84) models for the epidemic curve (i.e., the expected
mean of the data) and both Poisson and negative binomial models for the
distribution around the mean. These variants gave qualitatively similar con-
clusions about the pattern of growth rates, but we found that the Richards
model was too unstable to fit reliably across all epidemics, so we reverted
to fitting the logistic model for all epidemics. Similarly, the negative bino-
mial model gave unstable results when the distributions were too close to
Poisson; when the negative binomial dispersion parameter was estimated
as > 104, we reverted to a Poisson fit (see SI Appendix for further details of
the optimization).

In order to summarize the differences between epochs, we fitted a lin-
ear mixed model [using the glmmTMB package in R (85)] to the estimates
of log growth rates. To account for differing precision of the estimates
across epidemics, we approximate the SE of the estimates as the width
of the 95% confidence interval divided by 3.92 (the width in standard
errors of a 95% normal CI), square it to find the variance, and scale the
residual variance for each epidemic curve by this observed variance. This
procedure is equivalent to weighting each epidemic curve by the inverse
of its variance. We quantified the difference in epidemic growth rate
between epochs based on the predicted difference in log(r) between wills in
each epoch.

The permutation test P value (0.016) reinforces our confidence that late-
epoch epidemics were faster than early-epoch epidemics; however, since it
is larger than the parametric P values derived from the model fit (which
are < 0.001), it suggests that the confidence intervals shown in Fig. 3 may
be too narrow.

In light of recent work investigating the possibility of initial epidemic
growth that is subexponential, we also considered fits based on the more
general growth model of Chowell and coworkers (86–88). This approach
leads to slightly slower initial growth estimates but does not change
our conclusion that the later plagues were much faster than the earlier
plagues.

Phenomenological Model. Following Ma et al. (26), we model the cumulative
mortality curve (or will-accumulation curve; henceforth, we refer to wills or
death records as “mortality”) using a logistic model with an added baseline
linear growth rate,

c(t) = bt +
K

1 + [(K/c0)− 1]e−rt
. [1]

Here c0 = c(0) is the initial cumulative mortality, r is the initial exponential
growth rate, and K is the final size of the epidemic (limt→∞[c(t)− bt]). In
the fitting procedure we use the unitless parameter x0 = c0/K; all parame-
ters are fitted on a transformed, unconstrained scale [i.e., log(r), log(K), and
arctanh(x0)]. The derivative c′(t) is the instantaneous mortality rate. To avoid
the inherent correlations between observations in the cumulative curve, we
fit the observed data to the differences from Eq. 1: ∆c(t) = c(t + ∆t)− c(t),
where ∆t is the observation interval (1 d for wills and 1 wk for mortality
data). The parameter b represents baseline (nonplague) mortality. For the
LBoM fits we set b = 0 (since the LBoM data include only plague mortal-
ity); for the wills and parish register fits we estimated b by computing the
average observed mortality rate over the 2 y preceding and following the
outbreak window (see Outbreak Years and Outbreak Windows).

As discussed above, we initially fitted a Richards model, which extends
the logistic equation with a shape parameter, but found that we could not
get stable fits to the smallest/noisiest epidemics; we never found qualitative
differences between growth rates estimated from logistic and Richards fits.
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Ma et al. (26) found that a delayed logistic curve, which adds an exponen-
tially distributed delay between infection and mortality, estimated growth
rates from mortality curves with less bias. However, the delay between infec-
tion and mortality in our data is extremely uncertain—it would represent
another parameter that would have to be estimated from noisy data. For
wills data, the delay could even be negative; i.e., wills could have been
written out of fear of future infection. Furthermore, because we found
little difference between the Richards and logistic fits—which Ma et al.
(26) found to have opposite biases—growth rates estimated by these two
methods are likely to bracket the growth rate estimated by the delayed
logistic.

Fitting Windows. How well a given model can fit a time series may depend
on the time window used for fitting (88). In order to avoid choosing a
window separately for each individual epidemic, we considered window
selection criteria that could be applied uniformly to all epidemics with-
out first examining the data. In all cases we defined the end of the fitting
window to be one data point past the observed peak date (the date of max-
imum observed deaths). For wills and parish registers, we began the fitting
window at the start of the outbreak window (see below); for LBoM data,
we started immediately after the last observation before the peak for which
the mortality rate was≤ 1/50 of the peak mortality rate. For two epidemics
for which the data are particularly noisy (1593 and 1625), we were unable
to find any simple heuristic that would automatically choose a good fitting
window and resorted to choosing the fitting window by eye.

The fitting windows used for all our fits are listed in SI Appendix,
Tables S6 and S7. Although we experimented with different methods for
determining the fitting window (e.g., starting the window from the obser-
vation after the last local minimum before the peak or based on a threshold
of 1/100 of the peak mortality rate), we emphasize that our choices were
entirely determined by seeking good fits (judged by visual inspection) and
not by the pattern of estimated initial growth rates. Moreover, our conclu-
sion that later plagues were much faster than the earlier plagues is robust
to choices we made about window selection.

Outbreak Years and Outbreak Windows. We refer to the calendar year in
which an epidemic begins as the outbreak year. For each epidemic, we
define an outbreak window that is the maximum time interval to be con-
sidered for fitting. For the 14th century epidemics, we defined the outbreak
window to be the full outbreak year, except for outbreak year 1348 when
the epidemic spanned both 1348 and 1349 (so we took the outbreak win-
dow to be the full length of both calendar years). For the late-epoch
epidemics, we defined the outbreak windows as sequences of consecutive
weeks during which at least one plague death was listed in the LBoM (SI
Appendix, Tables S6 and S7).

Data and Code Availability. Our epigrowthfit R package for estimating initial
growth rates, which includes all of the data used in this paper, is available
in Github at https://github.com/davidearn/epigrowthfit. The data can also
be obtained from the International Infectious Disease Data Archive (http://
iidda.mcmaster.ca). The additional code required to reproduce all of
our results is available in Github at https://github.com/davidearn/plague
growth.
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