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Evidence demonstrated that many aspects
of drug abuse and dependence involve
changes in glutamate neurotransmission.
Neuroadaptations of the glutamatergic
system are critical in alcohol dependence,
tolerance and withdrawal (Krystal et al.,
2003; Backstrom and Hyytia, 2005; Cowen
et al., 2005; Olive et al., 2005; Hodge et al.,
2006; Bird et al., 2008; Kapasova and
Szumlinski, 2008; Besheer et al., 2010).
One of the selective effects of alcohol
has been determined to be the inhibi-
tion of glutamatergic neurotransmission
by antagonizing N-methyl-D-aspartate
(NMDA) receptors (Grant et al., 1990;
Chen et al., 1997). Furthermore, one of
the effects of chronic alcohol exposure is
the upregulation of NMDA receptors that
results from chronic inhibition of glu-
tamate transmission as a compensatory
mechanism (Grant et al., 1990; Sanna
et al., 1993; Snell et al., 1996; Chen et al.,
1997). In addition, the effects of alco-
hol withdrawal have been found to be
associated with increased extracellular glu-
tamate levels in the striatum (Rossetti and
Carboni, 1995), and enhanced NMDA
sensitivity in the nucleus accumbens
(NAc) of alcohol dependent rats (Siggins
et al., 2003). Importantly, studies have
reported that alcohol exposure affects
glutamate transport and glutamate trans-
mission (Smith, 1997; Smith and Weiss,
1999; Othman et al., 2002).

Although the neurocircuitry of the glu-
tamatergic system is not fully defined, it
has been suggested that the prefrontal cor-
tex (PFC) (Goldstein and Volkow, 2002)
and the NAc (Childress et al., 1999)
play a critical role in drug reinforcement.
These brain regions receive input from

midbrain dopaminergic neurons, and all
major drugs of abuse, including alcohol,
increase forebrain dopamine transmission
(Berridge and Robinson, 1998; Kalivas,
2004). The important roles of these gluta-
matergic projections from the PFC to the
NAc and the ventral tegmental area (VTA)
have been observed in neuroimaging stud-
ies performed during craving periods in
several paradigms for commonly abused
drugs such as alcohol, cocaine, metham-
phetamine, heroin and nicotine (Childress
et al., 1999; Goldstein and Volkow, 2002).
Moreover, glutamatergic projections from
the PFC to the NAc are also important
in the expression of addictive behaviors,
and are the primary driver of drug abuse,
including alcohol (for review see Kalivas,
2004; Rao and Sari, 2012).

Glutamate neurotransmission is regu-
lated by several glutamate transporters.
Among them, glutamate transporter 1
(GLT1, its human homolog is excitatory
amino acid transporter 2, EAAT2) reg-
ulates the majority of extracellular glu-
tamate (Robinson, 1998; Danbolt, 2001).
GLT1 is present in the brain in two splice
variant isoforms such as GLT1a and GLT1b
(Chen et al., 2002, 2004; Berger et al.,
2005). It has been reported that GLT1a is
predominantly localized in neurons and
astrocytes, and GLT1b is localized in astro-
cytes (Berger et al., 2005; Holmseth et al.,
2009). Both isoforms regulate extracellu-
lar glutamate at the synaptic clefts. Our
central question in our laboratory was
whether we could increase the expression
of GLT1 level in rat brains exposed to
alcohol, and further determine the effects
of this increase in alcohol intake. The
increase in the expression of GLT1 can

lead to the reduction of the amount of
glutamate available to activate neurons in
central reward brain regions, and thus
decrease the craving initiated by it.

Studies have tested more than 1040
FDA-approved drugs to determine target
compounds that may have effects in upreg-
ulating the expression of GLT1 (Rothstein
et al., 2005). Rothstein et al. (2005) have
found that among several β-lactam antibi-
otics, ceftriaxone was the potent drug that
has an upregulatory effect in the expres-
sion of GLT1. This drug has been used to
treat meningitis and is in phase III clini-
cal trials for the treatment of Amyotrophic
Lateral Sclerosis. We further examined the
ability of this drug to increase the level
of GLT1 and thereby decrease the amount
of extracellular glutamate available to acti-
vate addictive behaviors. Thus, elevation
of the expression of GLT1 might be asso-
ciated with reduction in alcohol consump-
tion as well as attenuation of relapse to
alcohol intake.

We have used the animal model of
alcohol-preferring (P) rats to measure the
effectiveness of ceftriaxone in reducing
alcohol consumption. These rats naturally
prefer drink alcohol to plain water. After
5 weeks of a constant free choice of alco-
hol, the rats develop alcohol dependence.
We administered ceftriaxone to the rats
each day for 5 days and measured their
alcohol consumption. P rats treated with
ceftriaxone reduced their alcohol intake as
compared to rats treated with physiologi-
cal saline solution (Sari et al., 2011). This
reduction in alcohol drinking was associ-
ated with increased GLT1 level in central
reward brain regions, including the PFC
and NAc. As shown in Figure 1 (Upper
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FIGURE 1 | Upper panel: diagram shows glutamatergic cortical terminal in contact with
postsynaptic neuron in nucleus accumbens surrounded by glial cells expressing glutamate
transporter 1 (GLT1). Lower panel: diagram shows increased of GLT1 level in glial cells and
decreased synaptic glutamate concentration as a consequence of treatment with GLT1 upregulator
such as ceftriaxone and GPI-106.

panel) that prior ceftriaxone treatment
the level of GLT1 is low and the extra-
cellular glutamate is higher in the NAc.
Importantly, after ceftriaxone treatment
the level of GLT1 is higher and in turn
extracellular glutamate was lower. This
suggests the beneficial effect of ceftriaxone
in regulating glutamate homeostasis.

We have also tested another
drug, namely GPI-1046, which is a
Neuroimmunophilin known to upreg-
ulate GLT1 level (Ganel et al., 2006).
This compound has been shown to
be effective in reducing alcohol intake
(Sari and Sreemantula, 2012). This study
from our laboratory demonstrated that
this reduction was associated in part
with elevation of GLT1 level in PFC
and NAc.

We recently reported that ceftriaxone
administration in male P rats is effec-
tive after 14 weeks of ethanol drinking
paradigm and has a long-lasting effect
after 10 days post-treatment (Rao and Sari,
2014). Furthermore, ceftriaxone treatment

during deprivation period after 5 weeks of
ethanol consumption attenuated relapse to
alcohol drinking in male P rats (Qrunfleh
et al., 2013). We also have shown that
ceftriaxone attenuated the maintenance of
ethanol rather than the acquisition of alco-
hol in female P rats (Sari et al., 2013).
Importantly, our study with ceftriaxone
demonstrated that elevation of GLT1 level
in PFC and NAc can lead to the attenua-
tion of relapse to cocaine-seeking behavior
(Sari et al., 2009). Cocaine is an addictive
substance that shares about the same neu-
rocircuitry as alcohol. The neurochemistry
is different in alcohol and cocaine addic-
tion, but glutamate plays a similar role
in both cases. These findings provide a
solid foundation for targeting GLT1 for
the treatment of drugs abuse, including
alcohol.

It is noteworthy that studies from our
laboratory identified another glial pro-
tein involved in glutamate homeostasis.
This protein termed cysteine/glutamate
exchanger transporter (xCT) was found

downregulated in animal consumed
alcohol for 5 weeks (Alhaddad et al., 2014).
Importantly, this later study demonstrated
that ceftriaxone reversed this downreg-
ulation of GLT1 level in NAc and PFC.
Furthermore, we have demonstrated that
ceftriaxone upregulated GLT1 in amyg-
dala, PFC and NAc even when the rats
consumed alcohol for 14 days (Rao and
Sari, 2014). Studies also have shown
that ceftriaxone upregulated xCT level
in relapse to cocaine seeking (Knackstedt
et al., 2010). These findings suggest xCT as
another target protein for the treatment of
drug abuse, including alcohol.

Furthermore, studies have shown that
adenosine plays an important role in
regulating the activity of neurons and
controlling neurotransmitters, including
GABA, glutamate and dopamine (for
review see Nam et al., 2012). Alcohol
has been shown to increase extracellular
adenosine levels, which in turn regulate
the ataxic and hypnotic/sedative (somno-
genic) effects of alcohol. Adenosine signal-
ing is also involved in the homeostasis of
major inhibitory (GABA) and excitatory
(Glutamate) neurotransmission through
neuron-glial interactions. These inter-
active mechanisms regulate the effects
of alcohol and sleep (for review see
Nam et al., 2012). Furthermore, adeno-
sine exerts its function through sev-
eral adenosine receptors and regulates
glutamate levels in the brain, which
modulate alcohol dependence and sleep
patterns.

Alcohol abuse and dependence con-
tinue to be significant public health
concerns. Thus, a better understanding
of their neurobiology would facilitate
the development of interventions target-
ing prevention and/or treatment of these
major health issues. Here, we focused on
the glutamatergic system as therapeu-
tic target for the treatment of alcohol
dependence. We have identified poten-
tial therapeutic compounds that may
have beneficial effects for treating alco-
hol addiction. We believe that a focus on
the glutamatergic system as a prime can-
didate for mediating drug and alcohol
dependence.
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