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ABSTRACT

Motivation: Although widely accepted that high-throughput
biological data are typically highly noisy, the effects that this
uncertainty has upon the conclusions we draw from these data
are often overlooked. However, in order to assign any degree of
confidence to our conclusions, we must quantify these effects.
Bootstrap resampling is one method by which this may be achieved.
Here, we present a parametric bootstrapping approach for time-
course data, in which Gaussian process regression (GPR) is used to
fit a probabilistic model from which replicates may then be drawn.
This approach implicitly allows the time dependence of the data
to be taken into account, and is applicable to a wide range of
problems.
Results: We apply GPR bootstrapping to two datasets from the
literature. In the first example, we show how the approach may
be used to investigate the effects of data uncertainty upon the
estimation of parameters in an ordinary differential equations (ODE)
model of a cell signalling pathway. Although we find that the
parameter estimates inferred from the original dataset are relatively
robust to data uncertainty, we also identify a distinct second set
of estimates. In the second example, we use our method to show
that the topology of networks constructed from time-course gene
expression data appears to be sensitive to data uncertainty, although
there may be individual edges in the network that are robust in light
of present data.
Availability: Matlab code for performing GPR bootstrapping is
available from our web site:
http://www3.imperial.ac.uk/theoreticalsystemsbiology/data-software/
Contact: paul.kirk@imperial.ac.uk, m.stumpf@imperial.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The use of data obtained from high-throughput technologies such
as microarrays has become standard in systems biology. There are
many ways in which these data are exploited, such as reverse
engineering putative pathways and networks directly from the data
(e.g. Lèbre, 2007; Opgen-Rhein and Strimmer, 2007), or inferring
the values of unknown parameters in mechanistic models (e.g.
Barenco et al., 2006; Swameye et al., 2003). The methods used to
obtain the data are often subject to significant levels of measurement
noise, and so we might expect repetitions of the experiments to
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yield quantitatively different datasets. However, the costs associated
with high-throughput experiments usually mean that the number of
technical replicates is restricted, and so it is difficult to quantify the
effects of data uncertainty upon the inferences we draw. Clearly, if
our aim is to attach biological meaning to our results (for example,
by proposing putative pathways), then we need to have some degree
of confidence that any conclusions we make are robust to the
uncertainty in the data. That is, we need to be sure that what we
infer (whether it be the rate constants of a biochemical reaction,
the topology of a gene regulatory network or any other unknown
quantity or reverse engineered model) is not specific to the particular
noisy dataset that we happened to observe.

Bootstrapping is a well-known resampling method that may be
used to assess properties (such as the standard error) of an inferred
quantity or statistical estimator (Efron, 1979; Efron and Tibshirani,
1993). The process that generated the data is estimated by an
approximating distribution from which samples may be drawn.
Bootstrap datasets are then obtained from this distribution, and the
statistical estimator is calculated for each. This induces a sampling
distribution over the estimator, from which we may assess, for
example, its variance amongst all of the bootstrap datasets. Previous
biological applications of bootstrapping include, to name a few
examples, placing confidence intervals on phylogenies (Felsenstein,
1985), assessing the reliability of conclusions drawn from clustering
expression data (Kerr and Churchill, 2001), and constructing ‘robust’
estimates of gene networks (Imoto et al., 2005).

We here consider a parametric bootstrap for time-course data
in which the time-dependent process that generated the data is
modelled using Gaussian process regression (GPR). In recent
years, this Bayesian non-linear regression technique has grown
in popularity, and has been applied in several systems biology
contexts (Gao et al., 2008; Lawrence et al., 2007; Yuan, 2006).
To our knowledge, GPR has not previously been used as a method
for bootstrapping time-course data. However, it would seem to be
ideally suited to this task, since it provides a method for fitting a
plausible probabilistic model that captures the time dependence of
the data, and from which it is easy to draw bootstrap samples.

We demonstrate GPR bootstrapping using two examples from the
systems biology literature: estimating the parameters of an ordinary
differential equation model for the STAT5 signalling pathway
(Swameye et al., 2003); and inference of gene regulatory networks
in Arabidopsis thaliana (Smith et al., 2004).

Below, we first provide an overview of GPR and how it may
be used in general as a bootstrapping method (Section 2), and
then we describe how the approach may be applied (Section 3).
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In Section 4, we summarize our findings for two examples, and
discuss the implications in Section 5. We conclude by highlighting
the importance of bootstrapping in general as a method for assessing
the effects of data uncertainty.

2 APPROACH
GPR is a Bayesian non-linear regression method, which has been
used to good effect in a number of studies (Gao et al., 2008;
Lawrence et al., 2007; Yuan, 2006). Formally, a Gaussian process
(GP) is a collection of random variables, any finite number of
which have a joint Gaussian (normal) distribution (Rasmussen
and Williams, 2006). A GP is defined by a mean function and a
covariance function, which specify the mean vectors and covariance
matrices for each finite collection of the random variables. GP theory
is discussed in more detail by MacKay (1998) and Rasmussen
and Williams (2006), but for completeness and convenience we
present an overview of standard GPR theory in addition to our
own contribution of how it may be used to perform a parametric
bootstrap.

2.1 Regression
In a regression problem, we are interested in elucidating the
relationship between a collection of covariates or inputs x1, ...,xp,
and a continuous dependent output variable, z. We assume that
x1, ...,xp,z are all real-valued, and we write the collection of
covariates as a p-component column vector, x=[x1, ...,xp]� ∈R

p.

It is assumed that there is an unknown deterministic function, f ,
which wholly describes the relationship between z and x, so that
z= f (x). Our aim is therefore to find the function, f .

In practice, the methods by which measurements of z are obtained
introduce experimental noise. We hence define a random variable,
y, to represent the experimentally observable version of z. We
assume that y may be written as y=z+ε, where ε is a noise term.
For convenience, we also assume that ε∼N (0,σ 2) and that ε is
independent of x. For the time being, we consider the case in which
the variance, σ 2, is known, but shall return later to the problem of
how it may be estimated.

To summarize, we have,

y(x)= f (x)+ε, where ε∼N (0,σ 2). (1)

One way to approach the regression problem is to impose a fixed
parametric form on f [such as f (x)=∑M

i=1βiφi(x), where the βi
are parameters, the φi are a set of basis functions and M ∈N],
and then to estimate its parameters from a set of experimentally
obtained observations using methods such as ordinary least squares.
An alternative is to recognize that the function, f , is unknown, and
hence is itself a source of uncertainty; GPR provides us with a means
by which to do this.

GPR belongs to a class of approaches known as non-parametric
Bayesian methods. Such methods can be viewed broadly as
providing probability models on function spaces (Müller and
Quintana, 2004). Apart from GPs, the other well-known non-
parametric Bayesian methods are those based on Dirichlet processes
(DPs). These were introduced by Ferguson (1973) and Antoniak
(1974), and provide a framework for the probabilistic modelling
of unknown probability distributions. That is, rather than assuming
that a given sample has been drawn from a probability distribution of

known parametric form (but with unknown parameters), DP-based
approaches model the uncertainty in the probability distribution
itself. In contrast, GP approaches provide a framework for the
probabilistic modelling of unknown functions rather than unknown
distributions.

2.2 GP priors
In GPR, we assume a GP prior for f (x) with mean function m and
covariance function k. This means the following:

• For any input, x∗ ∈R
p, we regard the value taken by f (x) at

x=x∗ to be a random variable. The notation f (x∗) should now
be understood to denote this random variable.

• Given a finite collection of covariate vectors, x1, ...,xn, the
random variables f (x1), ..., f (xn) are assumed to be jointly
distributed according to a multivariate Gaussian with mean m=
[m(x1), ...,m(xn)]� and covariance matrix (K)ij =k(xi,xj).

We thus write f (x)∼GP(m,k).
Note that if we assume the regression model of Equation (1), the

GP prior over f (x) induces a GP prior over the observable outputs
y(x). That is, assuming Equation (1) and that f (x)∼GP(m,k), it
follows that,

y(x)∼GP(m,l), (2)

where l(xi,xj)=k(xi,xj)+σ 2δ(xi,xj). Here, δ(xi,xj) is the standard
Kronecker delta function.

2.3 From prior to posterior
We now suppose that, having assumed a GP prior f (x)∼GP(m,k),
we proceed to obtain a set of output measurements y1, ...,yr at
the covariate vectors x1, ...,xr. We are interested in determining
how we may update our GP prior in light of these observed data.
We show below that, given any finite collection x1

∗, ...,xs
∗ of

covariate vectors, the joint conditional probability of the function
values f (x1

∗), ..., f (xs
∗) given the observations is again described

by a multivariate normal. We hence obtain a GP posterior over f (x).
We view y1, ...,yr as realizations of the random variable y(x) at

the inputs x. We know from Equation (2) that,[
y
(
x1
)
, ...,y

(
xr
)]� ∼N (mo,Ko), (3)

where mo =[m(x1), ...,m(xr)]� and
(
Ko
)
ij =k(xi,xj)+σ 2δ(xi,xj).

For notational brevity, we henceforth write [y(x)]� to mean[
y
(
x1
)
, ...,y

(
xr
)]�.

Let x1
∗, ...,xs

∗ be another finite collection of covariate vectors.
From our assumption of a GP prior over f , together with Equation
(3), it is straightforward to see that,

[
y(x),f (x1

∗), ..., f (xs
∗)
]� ∼N

([
mo
m∗

]
,

(
Ko K∗
K�∗ K∗∗

))
, (4)

where, m∗ =[m(x1
∗), ...,m(xs

∗)]�,
(
K∗∗

)
ij =k(xi

∗,xj
∗) and(

K∗
)
ij =k(xi,xj

∗).
From Equations (3) and (4), and using standard properties of

Gaussian distributions (von Mises, 1964), it follows that the function
values f (x1

∗), ..., f (xs
∗) conditioned on the observed outputs y

are also jointly distributed according to a multivariate normal.
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Specifically,[
f (x1

∗), ..., f (xs
∗)
]�∣∣∣([y(x)]� =y

)
∼ N (mpost,Kpost), (5)

where y=[y1, ...,yr ]�, and,

mpost =m∗+K�∗
(

Ko +σ 2Ir

)−1(
y−mo

)
, (6)

Kpost =K∗∗−K�∗
(

Ko +σ 2Ir

)−1
K∗. (7)

Here, Ir is the r×r identity matrix.
Since Equation (5) is true for any s∈N, it follows that the function

outputs, f (x), conditioned on the observations, y, define a GP, which
is referred to as the GP posterior.

2.4 Using the GP posterior
Equation (5) provides the joint posterior distribution of the function
values f (x1

∗), ..., f (xs
∗), given the GP prior and the observations,

y. Since the mean of a Gaussian distribution is also its mode,
the maximum a posteriori prediction of [f (x1

∗), ..., f (xs
∗)]� is

simply the mean vector mpost. Thus, GPR allows the prediction
of f (x) at any finite collection of covariate vectors, x1

∗, ...,xs
∗. The

covariance matrix, Kpost, describes the variability of the distribution
about the mean, and hence may be used to place confidence intervals
around this prediction. Figure 1A illustrates the use of GPR to make
predictions and specify confidence intervals.

In this article, we are concerned not only with fitting a regressor
to the dataset, but also with sampling from the regression model
in order to obtain bootstrap datasets. This is similar to the work of
Kerr and Churchill (2001), who also generate bootstrap samples by
first fitting a model to a set of time-course data (in their case, an
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Fig. 1. Using a GP regressor to fit gene expression time-course data and draw
bootstrap samples [data taken from the ‘arth800’ dataset of the R package
‘GeneNet’ (Schäfer et al., 2006)]. (A) The red line shows the mean of the
posterior process, while the grey region is a 99% credible interval around
this mean. (B) The marginal distribution over the observable output values at
each time point is univariate Gaussian, centred at the mean of the posterior
process. The crosses represent samples drawn from the posterior, with blue
crosses used to highlight one particular draw.

ANOVA model). The advantages of GPR are its non-linearity, that
it implicitly allows us to model the uncertainty in the underlying
function, f , and that it is relatively easy to apply. Generating samples
from our GP regressor is also fairly simple. We know that the joint
posterior distribution of any finite collection, f (x1

∗), ..., f (xs
∗), is

a multivariate normal [as given in Equation (5)], and hence we
may simulate samples using standard methods for such distributions
(Press et al., 2007).

Since we are concerned with the generation of plausible datasets,
rather than just plausible samples of the underlying function values,
it follows that we are actually interested in y(x) rather than f (x).
However, if we can sample function outputs, f (x), and if we know
(or can estimate) the variance σ 2, then we can use Equation (1)
in order to obtain samples of y(x). Thus, in practice, we proceed
by first sampling [f (x1

∗), ..., f (xs
∗)]� from the multivariate normal

described by Equations (5), (6) and (7), and then adding Gaussian
noise sampled from N (0,σ 2Is).

In this study, we generate bootstrap samples at the same points as
those at which the data were observed (i.e. we choose s=r and set
x1

∗ =x1, ...,xs
∗ =xr). Figure 1B provides an example of a number

of bootstrap samples obtained using a GP regressor fitted to a gene
expression time course.

2.5 The mean and covariance functions
In order to specify a GP prior, it is clearly necessary to provide a
mean function, m, and a covariance function, k. The covariance
function is the more important of these, as it describes how
we believe the value of the function outputs, f (x), covary with
one another, and hence allows us to express our beliefs about
fundamental properties of f , such as how rapidly it changes. For
the sake of simplicity and parsimony, the mean function is often
chosen to be zero, and this is the approach we adopt here. This does
not present a serious limitation: as we can see from the regressor in
Figure 1A, the mean of the posterior process (represented by the red
line) is certainly not constrained to be zero, and we are able to obtain
a good fit to the data. Of course, other mean functions may be chosen
to express stronger prior beliefs about the underlying function. There
are many possible choices for the covariance function, k, and we here
consider two of the more popular options, the squared exponential
covariance function,

kSE(xi,xj)=σ 2
g exp

(
− 1

2l1
|xi −xj|2

)
, (8)

where |·| denotes the Euclidean distance; and a standard Matérn
covariance function,

kM (xi,xj)=σ 2
f

(
1+

√
3|xi −xj|

l2

)
exp

(
−

√
3|xi −xj|

l2

)
. (9)

Here, the constants σg,σf ,l1 and l2 are hyperparameters. Although
its smoothness properties have been criticized as unrealistic (Stein,
1999), the squared exponential covariance function remains the
most frequently used ‘default’ choice for GPR, largely because
of its simplicity. There are many examples of covariance function
(Rasmussen and Williams, 2006, ch. 4), which allow the GP prior
to be tailored to specific scenarios. In this article, we employ kSE
and kM , as they are simple, yet sufficiently flexible to allow a good
fit to the data.
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The hyperparameters of the covariance function provide us with
another means to encode our prior beliefs about the nature of f .
We can see, for example, that if l1 (or l2) is very large, then f (xi) and
f (xj) will only tend to vary together if |xi −xj| is small: the value of
the function at xi will only affect the value at xj if xi and xj are close
together. Ideally, we would either use prior knowledge to specify the
hyperparameters, or adopt a fully Bayesian approach and integrate
them out. However, we are rarely able to express our prior beliefs
so precisely, and while a full Bayesian approach is possible (using,
for example, Markov chain Monte Carlo (MCMC)), the associated
computational expense is often undesirable. This is certainly the
case here: in the example presented in Section 3.2 (which we
expect may represent a typical application), we are required to fit
regressors to 800 gene expression time-course datasets, so we wish
to minimize the costs of fitting the GPR model. An alternative and
computationally cheaper method is to estimate the hyperparameters
in order to maximize the (log) likelihood of the observed data. We
also use this approach to estimate the variance of the noise term,
σ 2, in Equation (1). From Equation (3) and the definition of a
multivariate normal, the likelihood of y is given by,

p(y(x)=y|θ,σ 2)=
exp

(
− 1

2 (y−mo)�Ko(θ,σ 2)−1(y−mo)
)

√(
2π
)r det

(
Ko
(
θ,σ 2

)) ,

where θ is the vector of the covariance function’s hyperparameters,
det(·) denotes the determinant, and we write Ko(θ,σ 2) to make
explicit the dependence of Ko on the hyperparameters. Taking
logs and removing constant terms, we deduce that the maximum
likelihood values for θ and σ 2 are given by,

θ̂ ,σ̂ 2 =argmax
θ,σ 2

{
−1

2
log
(

det
(

Ko

(
θ,σ 2

)))

−1

2
(y−mo)�Ko (θ,σ 2 )−1(y−mo)

}
.

This optimization can be approached using standard methods for
optimization (Press et al., 2007), such as the Nelder–Mead simplex
method or gradient descent.

3 APPLICATIONS
In order to demonstrate the potential applications of the GPR bootstrap, we
consider two examples from the literature: estimating the parameters of a
model of the STAT 5 signalling pathway, and inferring a gene network.

3.1 Parametric ODE modelling of signalling pathways
The JAK-STAT pathway is a well-studied signalling pathway that describes
a mechanism by which signals carried by cytokines may be transduced to
the cell nucleus via STAT activation, dimerization and relocation to the
nucleus (Aaronson and Horvath, 2002; Horvath, 2000). Swameye et al.
(2003) suggested a number of parametric ODE models to describe the JAK2-
STAT5 signalling pathway, the parameters of which were estimated from
experimental data. We consider one of the proposed models (taken from
Swameye et al., 2003, Supplementary Material), and—using data from the
original experiments—apply our GPR bootstrapping approach in order to
assign confidence intervals to the parameter estimates.

3.1.1 The Model The model we consider is as follows,

dv1

dt
=−r1v1D +2r4v4

dv2

dt
=r1v1D − v2

2 (10)

dv3

dt
=−r3v3 +0.5v2

2
dv4

dt
=r3v3 − r4v4.

Here, v1,v2 and v3 represent the concentrations of (respectively) unphos-
phorylated STAT5, phosphorylated monomeric STAT5 and phosphorylated
dimeric STAT5 in the cytoplasm. The variable v4 denotes the concentration of
STAT5 in the nucleus, and D is an experimentally determined quantity (which
varies over time) related to the amount of Epo-induced phosphorylation of
the EpoR (Swameye et al., 2003). The ri’s are parameters (see Swameye
et al., 2003; Supplementary Material). The initial values of v2,v3 and v4

at time t =0 are assumed to be zero (since it is supposed that all STAT5
in the cell is initially cytoplasmic and unphosphorylated), while the initial
concentration of unphosphorylated cytoplasmic STAT5, v1(t =0), is treated
as an unknown parameter.

The quantities v1,v2,v3 and v4 were not measured individually. Instead,
the amount of phosphorylated STAT5 in the cytoplasm, y1, and the total
amount of cytoplasmic STAT5 (phosphorylated and unphosphorylated), y2,
were recorded. These can be written in terms of the vi’s as follows,

y1 =r5(v2 +2v3)

y2 =r6(v1 +v2 +2v3),

where r5 and r6 are two unknown scaling parameters, which must also be
estimated. In total, there are thus six unknown parameters in this model
[r1,r3,r4,r5,r6 and v1(0)].

3.1.2 GPR bootstrapping and parameter estimation Swameye et al.
(2003) measured y1 and y2 at a number of discrete time points in order
to obtain several sets of experimental data. We focus on just one of
these datasets (the ‘DATA1_hall’ set, available from the original authors at
http://webber.physik.uni-freiburg.de/∼jeti/), which we use together with our
GPR bootstrapping approach in order to obtain 1500 bootstrapped datasets.
To define our GP prior, we choose a zero mean function and the squared
exponential function of Equation (8).

In order to learn the hyperparameters and fit the GP regressor to
the dataset, we make use of the gpml suite of Matlab functions
accompanying Rasmussen and Williams (2006), available from http://www.
gaussianprocess.org/gpml/.

For each of our bootstrapped datasets, we estimate the unknown
parameters of the ODE system presented in Equation (10) using the stochastic
ranking evolutionary strategy (SRES) of Runarsson and Yao (2000), as
implemented in the libSRES C library (Ji and Xu, 2006). This allows us to
find the parameter values which minimize the sum of squared differences
between the data and the predictions made by the ODE model. This
optimization problem is susceptible to the usual difficulty of becoming stuck
in a local minimum. The evolutionary nature of SRES goes some of the way
toward mitigating this difficulty, but to reduce the impact of becoming stuck
in a local minimum yet further, we also run the algorithm for a large number
of iterations and rerun eight times for each dataset (taking as our final estimate
the ‘best’ amongst these eight runs). Before considering the bootstrapped
data, we use SRES to estimate parameter values from the original dataset.
The values so obtained are: v1(0)=0.996, r1 =2.43, r3 =0.256, r4 =0.303,
r5 =1.27 and r6 =0.944. For this ‘optimal’ set of parameters the model
provides a reasonable fit to the observed data which is comparable with
the fit obtained in the original paper (Swameye et al., 2003). The aim of
our bootstrapping approach is to determine whether or not these parameter
estimates are robust to the uncertainty in the data.

3.2 Gene network inference
When considering how our GPR bootstrapping approach may be applied in
order to investigate the effects of data uncertainty on the reverse engineering
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of gene regulatory networks we consider only relevance networks (Butte
et al., 2000) and graphical Gaussian models (GGMs). However, our method
could just as easily be applied in order to assess the effects of data
uncertainty on network inference methods (such as Lèbre, 2007) more
generally. We consider temporal expression data for the 800 A.thaliana genes
from (Smith et al., 2004) which are provided in the ‘arth800’ dataset of the
R package ‘GeneNet’ (Schäfer et al., 2006).

3.2.1 Gene relevance networks Butte et al. (2000) introduced the idea
of a gene relevance network—a type of graphical model in which vertices
represent genes and in which we draw an edge between genes g1 and g2

if and only if the expressions of g1 and g2 are correlated. Thus, relevance
networks provide us with a means to represent (linear) dependencies between
genes. Correlations are calculated between genes in a pairwise fashion; it is
decided whether or not to draw an edge between g1 and g2 without reference
to the presence or absence of edges between any other genes. To determine
whether or not to place an edge between genes g1 and g2, we first calculate
the (in our case, Pearson) correlation between their gene expression time
courses, square this value to obtain a score s, and then place an edge if s>r
for some prespecified threshold value r.

3.2.2 Graphical Gaussian models GGMs are used to represent
dependencies between genes that have been detected by partial correlations.
In contrast to relevance networks (where a missing edge between two genes
indicates marginal independence), the absence of an edge between genes
g1 and g2 in a GGM means that g1 and g2 are conditionally independent.
We use the R package ‘GeneNet’ in order to infer GGMs from time-course
gene expression data (according to Opgen-Rhein and Strimmer, 2007), and
make use of the package’s capability to calculate an empirical posterior
probability, pe(g1,g2) (Schäfer and Strimmer, 2005), for the existence of
the edge between g1 and g2. If pe(g1,g2) > τ , where τ is some prespecified
threshold (cut-off) value for the probability, then an edge is drawn between
g1 and g2.

3.2.3 Bootstrapping the data We apply our GPR bootstrapping approach
to the A.thaliana data. This dataset comprises measurements taken for 800
genes at 11 times, with two measurements at each time point (Fig. 1A
illustrates the data for one of the genes). We proceed as in the previous
example, but this time make use of the following covariance function,

k(ti,tj)=kSE(ti,tj)+kM (ti,tj), (11)

where kSE and kM are as previously described. Using the method of Section 2
we obtain 1000 bootstrap datasets, each one consisting of two measurements
at 11 time points for 800 genes.

4 RESULTS

4.1 Parametric ODE modelling of signalling pathways
For each of our 1500 bootstrapped datasets, we find the ‘optimal’ set
of parameters using SRES. This induces a joint sampling distribution
over the optimal parameters for the ODE model, whose marginals
are represented by the histograms in Figure 2.

Note that the joint sampling distribution is conceptually very
different to the joint posterior parameter distribution that might be
sought using a Bayesian approach: in the former, we find a single
parameter estimate for each of a large number of sampled datasets,
whereas in the latter we first specify a prior distribution over the
parameters and then seek to update this in light of observed data.

Figure 2 shows that the marginal sampling distributions are
generally quite narrow. This can be quantified by calculating
the coefficient of variation, cv, for each of the parameters,
cv(v1(0))=0.0338, cv(r1)=0.175, cv(r3)=1.77, cv(r4)=0.214,
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Fig. 2. Histograms showing the marginal sampling distributions over the
optimal parameter values. Although these distributions are generally quite
narrow and centred about the parameter estimates obtained from the original
dataset (vertical black dashed lines), note that for r3 there is a small amount
of probability mass located at r3 ≈5 (shown as a red bar and ringed by a red
circle).

cv(r5)=0.0914 and cv(r6)=0.0434. The coefficient of variation
for r3 is significantly greater than for the other parameters. This
is due to the influence of bootstrap samples for which the optimal
estimate for r3 was ∼5 (see the red bar in Fig. 2). Indeed, across
all of the bootstrap samples, there appear to be two distinct sets
of estimated optimal parameter values. The first (much larger) set
comprises estimates centred around the values obtained from the
original dataset. The second set comprises estimates for which
r3 ≈5, and contains only 28 elements. Although obtained for just
a small number of the bootstrap samples (≈2%), the parameter
estimates in this second set still provide a good fit to the original
data (see Supplementary Fig. 1). To quantify this, the average mean
square error (MSE) obtained using parameter estimates from the
second set was 0.10 for the fit to the y1 values, and 0.031 for the
fit to the y2 values. By comparison, the MSE obtained using the
parameter values estimated from the original data was 0.026 for
the fit to the y1 values, and 0.0043 for the y2 values. This suggests
that parameter estimates from the second set provide (on average)
a slightly worse fit overall, but do a marginally better job of fitting
y2 than those derived from the original dataset.

4.2 Gene network inference
We start by considering the inferred GGMs. Let NO(τ ) denote
the network inferred from the original dataset using threshold τ ,

and similarly let N (i)
B (τ ) be the network inferred from the i-th

bootstrap dataset. To assess how similar the bootstrapped networks
are to NO(τ ), we calculate the proportion, ρ(i)(τ ), of edges in the

original network that also appear in N (i)
B (τ ). We hence obtain a

sampling distribution over ρ(i)(τ ) for a given τ . In addition to
considering the data sampled using GPR bootstrapping, we also
performed a non-parametric bootstrap of the data, and calculated a
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Fig. 3. Plots showing the sampling distributions over ρ(i)(τ ) for different
values of τ . Black: GPR bootstrap. White: non-parametric bootstrap.

sampling distribution over ρ(i)(τ ) based upon 1000 (non-parametric)
bootstrap datasets. Histograms describing the sampling distributions
obtained for different values of τ are presented in Figure 3.

In each case, the sampling distribution is approximately normal.
For smaller values of τ , the mean of the sampling distribution over
ρ(i)(τ ) is greater than for larger values. This is unsurprising: as τ

gets smaller, the value of the empirical posterior probability required
for an edge gets lower (until at the extreme case, τ =0, edges are
drawn between all vertices, regardless of the data). Thus, for smaller
values of τ , the sensitivity to the data is reduced. This has the effect of
making the inferred network more robust to perturbations in the data,
but unfortunately also makes the network increasingly meaningless.
For more meaningful values of τ (say, of around 0.85 or above), the
degree of similarity between the bootstrapped networks and NO(τ )
[as measured by the mean value of ρ(i)(τ )] is disappointingly low.
This suggests that the original inferred GGM is highly sensitive to
uncertainty in the data.

We repeated the above analysis for relevance networks,
and obtained similar results (see Supplementary Material). To
summarize, the mean values of ρ(i)(r) for r values of 0.95, 0.85,
0.75, 0.65, 0.55 and 0.45 were (respectively) 0.062, 0.18, 0.29, 0.42,
0.51 and 0.61. Yet again, these values are low, indicating that the
topology of relevance networks is sensitive to uncertainty in the
data (note that r and τ are not directly comparable, so it is difficult
to compare the relative tolerance to data uncertainty of relevance
networks and GGMs). Although the overall topology of the network
seems to be sensitive to data uncertainty, there are individual edges
that demonstrate a much higher degree of tolerance. For example,
taking r to be 0.85, we may look for edges that appear in 100% of
the networks obtained from the bootstrapped datasets. If we do this,
then we find 16 edges connecting 13 vertices, as shown in Figure 4.
We can use this approach more generally to construct networks that
have a required level of tolerance to data uncertainty, omitting any

Fig. 4. A high confidence subnetwork constructed from the A.Thaliana data
set. Edges drawn in blue appear in 100% of the bootstrap data samples; green
edges appear in 99%; and red edges appear in 98%. Vertices have the same
colour as whichever of their edges appears in the largest number of bootstrap
samples.

edges that do not appear in at least q% of the bootstrap samples.
In this way, we can construct ‘high confidence’ relevance networks.

5 DISCUSSION
Our results highlight the necessity of accounting for data uncertainty
when trying to draw conclusions from experimentally obtained data.
In the case of the parametric ODE model of the JAK2-STAT5
signalling pathway, we showed that in addition to the parameter
estimates obtained from the original dataset, there is a second set
of plausible estimates which (had stochastic effects provided us
with a slightly different dataset) we may well have concluded were
the ‘correct’ values. We believe that the presence of the distinct
second set of plausible parameter estimates indicates that the error
function (i.e. the sum of squared differences between the data and
the model predictions) that was minimized in order to fit the model
to the original data possesses a second (local) minimum. As well
as demonstrating the importance of taking into account the noise
in experimental datasets, our results could also be viewed as an
endorsement for Bayesian methods, which do not seek to identify
a single optimal parameter set, but instead approximate the whole
posterior parameter distribution.

The results from our network inference investigation perhaps
provide an even better illustration of the effect that data uncertainty
can have upon inference. Our approach demonstrates that the
inference of an edge between two vertices is highly sensitive to the
level of noise in the data, and hence it is likely that the false positive
rate for each individual edge is high. We also showed how GPR
bootstrapping may be used to construct ‘high confidence’ relevance
networks for which we would expect the false positive rate to be
lower.

6 CONCLUSION
Determining the effects of uncertainty in experimental data is
imperative if we are to have any degree of confidence in the
conclusions that we draw or the models that we reverse engineer
from biological data. GPR bootstrapping is a widely applicable
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and easily implemented approach that allows us to investigate
and quantify these effects. We have illustrated the use of GPR
bootstrapping using two examples, and discussed the impact that
data uncertainty has upon inference. Although we have here
concentrated on time-course data, our approach could easily be
applied in situations where the independent variable is something
other than time. Given the current levels of noise in post-genomic
data, approaches such as GPR bootstrapping are vital in order to
allow us to make the most of currently available information and to
provide us with a means to assess the conclusions we draw.
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