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Abstract

Background and purpose:Neurodegenerative processes are widespread in the brains

of type 2 diabetes mellitus (T2DM) patients; gaps remain to exist in the current

knowledge of the associated graymatter (GM)microstructural alterations.

Methods: A cross-sectional study was conducted to investigate alterations in GM

microarchitecture in T2DM patients by diffusion tensor imaging and neurite orien-

tation dispersion and density imaging (NODDI). Seventy-eight T2DM patients and

seventy-four age-, sex-, and education level-matched healthy controls (HCs) without

cognitive impairment were recruited. Cortical macrostructure and GM microstruc-

ture were assessed by surface-based analysis and GM-based spatial statistics (GBSS),

respectively. Machine learning models were trained to evaluate the diagnostic values

of cortical intracellular volume fraction (ICVF) for the classification of T2DM versus

HCs.

Results: There were no differences in cortical thickness or area between the groups.

GBSS analysis revealed similar GMmicrostructural patterns of significantly decreased

fractional anisotropy, increased mean diffusivity and radial diffusivity in T2DM

patients involving the frontal and parietal lobes, and significantly lower ICVF values

were observed in nearly all brain regions of T2DM patients. A support vector machine

modelwith a linear kernelwas trained to realize theT2DMversusHCclassification and

exhibited the highest performance among the trainedmodels, achieving an accuracy of

74% and an area under the curve of 83%.

Conclusions: NODDI may help to probe the widespread GM neuritic density loss

in T2DM patients occurs before measurable macrostructural alterations. The corti-

cal ICVF values may provide valuable diagnostic information regarding the early GM

microstructural alterations in T2DM.
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1 INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a systematic metabolic disor-

der that affects approximately 415 million people worldwide and

accounts for 90% of diabetes cases globally (Tripathi & Srivastava,

2006; Zheng et al., 2018). T2DM patients were at a 1.5-2 times higher

risk of neuropsychological dysfunction than healthy individuals (Cheng

et al., 2012). Studies have revealed the association between acceler-

ating brain aging related to T2DM and the development of cognitive

impairment (CI) and Alzheimer’s disease (Moran et al., 2019; Sato &

Morishita, 2014). Neuroimaging evidence, especially in MRI studies,

has shown alterations in the brains of T2DMpatients.

T1-weighted imaging (T1WI) helps identify macroscale abnormali-

ties in the cortical gray matter (GM) region. A variable degree of brain

atrophy associated with T2DM marked by loss of brain volume can

be detected with T1WI (Geijselaers et al., 2015). A significant reduc-

tion in global brain volume has been found, along with atrophy in

the orbitofrontal, hippocampus, basal ganglia, and occipital regions, in

T2DMpatients (Moulton et al., 2015). However, diffusion tensor imag-

ing (DTI) is sensitive and objective for microscale pathologies and has

long been used to study the changes in brain microstructure in many

diseases (Drenthen et al., 2021; Scherfler et al., 2011; Yadav et al.,

2020). Nonetheless, previous diffusion imaging studies mainly focused

on white matter (WM) microstructural pathologies in T2DM patients,

and the whole-brain-scale GM microstructure abnormalities underly-

ing T2DM-related brain damage are still unclear since DTI analysis

of the GM is often susceptible to the partial volume effect of cere-

brospinal fluid (CSF), which leads to deviations in the results (Henf

et al., 2018).

The novel diffusion imaging reconstruction model neurite orienta-

tion dispersion and density imaging (NODDI) overcomes the short-

comings of DTI (Zhang et al., 2012). In this procedure, each voxel is

divided into three microstructure intervals to provide corresponding

metrics: (1) the intracellular volume fraction (ICVF), measuring the

neuritic density; (2) the orientation dispersion index (ODI) reflecting

the degree of neurite coherence; and (3) the isotropic volume frac-

tion (ISOVF) representing the proportion of free water (Kamiya et al.,

2020). Takingadvantageof themulticompartmentmodelingofNODDI,

a newly emerging method, named GM-based spatial statistics (GBSS),

was derived from tract-based spatial statistics and can be used for

unbiased analysis of GMmicrostructure in various diseases (Ball et al.,

2013; Nazeri et al., 2017).

In this study, we analyzed the changes in the cortical GM of the

brains of normal cognitive (NC) T2DM patients to identify the early

cortical GM microstructural characteristics of diabetic brain damage.

First, we analyzed cortical thickness and surface area with surface-

based analysis derived from T1WI. Subsequently, GBSS was used

to investigate cortical GM microstructural alterations based on DTI

and NODDI models, and the diagnostic value was further assessed

by machine learning algorithms. Our research aimed to identify the

changes in the cortical GM structure of the brains of T2DM patients

and to provide new biomarkers for the detection of diabetes-related

brain damage.

2 METHODS

2.1 Participants

The current prospective cross-sectional study was approved by the

Medical Research Ethics Committee of the First Affiliated Hospi-

tal of Guangzhou University of Chinese Medicine (No. k[2020]115).

All procedures performed in this study involving human participants

followed the ethical standards of the institutional and/or national

research committee and complied with the 1964 Helsinki Decla-

ration and its later amendments or comparable ethical standards.

Participants were recruited from among in-hospital patients and

clinic visitors admitted to the First Affiliated Hospital of Guangzhou

University of Chinese Medicine from January to December 2021.

Written informed consent was obtained from participants before

the study. The diagnosis of T2DM was established based on guide-

lines from the American Diabetes Association recommendations

(American Diabetes Association, 2019) (i.e., diabetes symptoms and

hemoglobin A1c level (HbA1c) >6.5%, and/or a fasting blood glucose

level (FBG) of > 7.0 mmol/L, and/or a random plasma glucose level

of > 11.1 mmol/L and/or a 2-h glucose level of >11.1 mmol/L after

an oral glucose tolerance test). The healthy control (HC) participants

were age-, sex- and education level-matched volunteers without any

history of blood glucose abnormalities who underwent a routine physi-

cal examination, fasting finger-prick blood glucose (GA-6 blood glucose

meter, Sinocare, China) and finger-prick HbA1c (A1CNOW+ system,

PTSDiagnostics, USA) to exclude potential diabetic subjects. All partic-

ipants were right-handed, HanChinese adults. In addition, participants

were examined in detail by experienced neurologists to ensure that

they had no positive neurological symptoms.

For each registered participant, parameters such as age, sex, educa-

tion level, systolic blood pressure, diastolic blood pressure, and body

mass index (BMI) were recorded as basic information. All participants

underwent a neuropsychological assessment, the Mini-Mental State

Examination (MMSE), to assess their cognitive status, and independent

testers were blinded to the grouping information while performing

the assessment. Plasma HbA1c (%), FBG, and fasting insulin (FIs,

mU/L) levels were routinely tested for in-hospital T2DM patients

and were retrieved from the electronic medical records. Individual
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TABLE 1 MRI acquisition protocols

Sequence TR/TE/TI (ms) Slice thickness (mm) / gap FOV (mm2) Voxel size (mm3) Acquisition time (min)

T1WI 2530/2.98/– 1/0 256× 256 1× 1× 1 5:58

T2WI 3650/92/– 5/1 220× 220 0.7× 0.7× 5 0:49

T2-FLAIR 9000/84/2500 5/1 220× 220 0.7× 0.7× 5 1:50

DSI* 4200/72/– 2/1 220× 220 2× 2× 2 7:31

T1W1, T1-weighted imaging; T2WI, T2-weighted imaging; T2-FLAIR, T2-fluid-attenuated inversion recovery; DSI, diffusion spectrum imaging; TR, repetition

time; TE, echo time; TI, inversion time; FOV, field of view.

*Diffusion imaging data were acquired by using a half coverage Cartesian q-space grid schemewith a radial grid size of 4. Eleven b-values (b= 300, 350, 650,

950, 1000, 1350, 1650, 1700, 2000, 2700, and 3000 s/mm2) along 99 diffusion gradient directions were included in the acquisition, two b= 0 s/mm2 images

were acquired, and onewas taken in opposing phase encoding directions.

insulin-resistant status was estimated by the homeostatic model

assessment for insulin resistance (HOMA-IR) which was calculated

with HOMA2Calculator 2.2.3 (OCDEM,Oxford, UK).

Subjects with the following characteristics were excluded from

the trial: (1) participants with cognitive impairment (MMSE < 26);

(2) participants with unstable blood glucose control; (3) organic

lesions/abnormalities in the brain, such as tumors, infarction, hem-

orrhage, vascular malformation, head trauma, surgery, or congenital

brain defects; (4) any previous history of neuropsychological diseases,

such as epilepsy, depression, schizophrenia, or Parkinson’s disease; (5)

chronic infections, systemic diseases (e.g., organ failure and autoim-

mune diseases), a history of tumors, a history of alcohol dependence or

substance abuse; (6) diabetes-related complications (e.g., ketoacidosis,

diabetic-related retinopathy, nephropathy, or peripheral neuropathy);

(7) moderate to severe hypertension (systolic blood pressure higher

than 160 mmHg or diastolic blood pressure higher than 100 mm Hg),

or hyperlipidemia; (8) contraindications to MRI examination, such as

metallic implants or claustrophobia; (9) other types of abnormal glu-

cose conditions or diabetes (e.g., impaired glucose tolerance, or type

1 diabetes mellitus); and (10) other factors that might affect thyroid

function.

2.2 Magnetic resonance image acquisition and
preprocessing

Images of all participants were acquired on a 3.0TMRI scanner (MAG-

NETOM Prisma, Siemens, Germany) equipped with a 64-channel head

coil. T2-weighted imaging, T1WI, and T2-fluid-attenuated inversion

recovery were acquired to rule out organic lesions/abnormalities, such

as lacunar infarction and moderate to severe WM disease. Diffusion

spectrum imaging and three-dimensional T1WIwere used for the anal-

ysis. The detailed MRI scanning parameters are shown in Table 1.

Datasets with excessive head movement or poor image quality were

excluded.

Diffusion data were first subjected to the topup tool in FSL 6.2.1

(FMRIB, Oxford, UK) for distortion correction. Subsequent prepro-

cessing was performed with a 3D shoreline strategy in the Qsiprep

package 0.14.3 (LINC, University of Pennsylvania, USA). The prepro-

cessed diffusion data were reconstructed with the DTI model, and

metrics, such as fractional anisotropy (FA), mean diffusivity (MD), axial

diffusivity (AD), and radial diffusivity (RD), were then calculated with

the dtifit command in FSL. The AMICO toolkit 1.2.10 (Department of

Computer Science, University of Verona, Italy) was used to reconstruct

the NODDImodel with associatedmetrics (ICVF, ODI, and ISOVF).

2.3 Surface-based analysis

T1WI data were imported into FreeSurfer 7.2.0 (MGH, Harvard Med-

ical School, USA) for the automatic recon-all processing pipeline.

Gaussian kernel smoothing with a full width at half a maximum of

15 mm was chosen for all surface maps. Additionally, the estimated

total intracranial volume (eTIV) for each subject was calculated.

2.4 GBSS

GM microstructure was assessed using a GM-based spatial statistics

approach on DTI- and NODDI-derived metrics as described in a pre-

vious study (Nazeri et al., 2017) with slight modifications to fit the

current study. The population-based GMwas skeletonized to preserve

only the voxels with a GM fraction > 0.65 in 70% of the participants.

Diffusion metric maps were then projected onto the GM skeleton with

themaximumGM fraction.

2.5 Statistical analysis

Statistical tests were performed in R 4.2 (R Core Team and R Foun-

dation). Data analysts were blinded to the grouping labels in the data

analysis procedures. Sex distribution among the two groups was com-

pared through the chi-square test. Significant differences between two

groups in other demographic, clinical, and psychological variableswere

identified by the t-test if data were normally distributed; otherwise,

the Kruskal–Wallis test was used. Statistical tests were performed at

a significance level set to .05.

Cortical thickness and area were assessed with the vertex-based

general linear model, which fitted with the cortical thickness or area as

adependent factor andgroupas the independent variable towhichage,
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sex, education level, BMI, and eTIV were regressed out as covariates.

Vertices above the thresholding value of 3.0 were considered part of

clusters thatwere tested for statistical significance. The resultingmaps

were further corrected for the multicomparison of both hemispheres

with a clusterwise p threshold of .001.

Population-space GM skeleton mappings were subjected to FSL’s

randomise program for voxelwise analyses between two groups using

a nonparametric permutation test with 10,000 permutations and

adjusting for age, sex, education level, BMI, and eTIV with familywise

error (FWE, pfwe < .05) correction, followed by threshold-free cluster

enhancement (TFCE), resulting in 1 – pmappings for diffusion metrics.

Significantly different GM regionswere clusteredwith the cluster com-

mand in FSL with cluster sizes >100 voxels and a 1 – p threshold of

.95.

Finally, we explored the diagnostic accuracy of the NODDI metric

ICVF for T2DM and healthy subjects. To structurally analyze the met-

ric, the Destrieux cortical deterministic atlas (Destrieux et al., 2010)

was nonlinearly registered to the subjects’ space, and the mean ICVF

values of regions of interest (ROIs) were extracted from the sub-

jects. Data randomly were split into the training and the test set in

a 7:3 ratio. Principal component analysis was used for dimensional-

ity reduction, and components that explained 99% of the variance in

the training set were selected. Four machine learning algorithms were

tested for the classification task, namely, K-nearest neighbors (KNN),

logistic regression classification (LRC), and the linear kernel support

vector machine (SVM) and radial basis function (RBF) kernel SVM. In

the training process, a grid search strategy was performed for parame-

ter optimization with fivefold cross-validation using scikit-learn 1.1.1.

The performances of the algorithms were evaluated with weighted

average precision, recall, accuracy rate, and F1-score. For each algo-

rithm, a receiver operating characteristic (ROC) and the area under the

curve (AUC) were also generated.

3 RESULTS

3.1 Participants’ characteristics

In total, 181 participants completed the MRI scans and all the assess-

ments; 27 participants were excluded due to CI (MMSE <26), and

2 participants were excluded due to poor image quality (Figure 1).

Seventy-eight T2DM patients and 74 HCs were finally enrolled in

the current study. The demographic, clinical, and cognitive measure-

ments are summarized in Table 2. No significant differences in sex,

age, or education levels between the participants in the two groups

were observed. The average diabetes duration in the T2DM group was

4.08 ± 3.58 years. Compared to the HC group, HbA1c and fasting glu-

cose levels were significantly higher in the T2DM group (p < .001).

Regarding clinical testing andpsychological cognitive assessment, BMI,

MMSE scores, the systolic and diastolic blood pressure also showed no

significant differences between groups (p> .05).

F IGURE 1 Study flowchart. T2DM, type 2 diabetes mellitus;
MMSE,Mini-Mental State Examination

3.2 Cortical thickness and area

In the surface-based analysis, the cortical area and thickness of partic-

ipants were studied. No significant group difference in T2DM and HC

participants was detected after a cluster thresholding value of 3.0.

3.3 Microstructural aberrants in the GM

GBSS analysis was performed to study the pattern of the altered

microstructure in the GM between participants with T2DM and HCs

(Table 3 and Figure 2). We observed a significant decline in FA across

the frontal, parietal, and occipital regions in the T2DM group. Higher

MD values were observed across the frontal and parietal lobes in the

T2DM group. RD values were also increased in the T2DM group and

exhibited similar patterns with frontal, parietal, insular, and tempo-

ral region involvement. Surprisingly, we found nearly the whole brain

GM region with decreased ICVF in T2DM patients compared with HC

participants, predominantly in the frontal, parietal, temporal, occipital,

cerebellum, and insular regions, as well as some subcortical and cere-

bellar structures. No GM regions had significantly higher FA and ICVF

values and lower MD and RD values in the participants in the T2DM

group compared to the HCs. Furthermore, there were no significant

GM differences in the AD and ODI values between the T2DM group

andHC group.

3.4 Classification of T2DM versus HCs with
cortical ICVF

In the GBSS analysis, nearly whole ICVF decremental abnormalities

were observed in T2DM patients. To assess the diagnostic value of

ICVF for T2DM brain damage, the Destrieux cortical deterministic
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TABLE 2 Demographic and clinical information and neuropsychological assessment results of participants in the two groups

HC T2DM Statistics p

Groups (n= 74) (n= 78) χ2/t Value

Age (years) 47.82 (10.31) 46.96 (9.56) −0.534 .593

Sex=male (%) 26 (35.1) 29 (37.2) 0.009 .926

Education level (years) 10.98 (3.42) 11.33 (3.77) 0.591 .563

Systolic blood pressure (mmHg) 125.31 (17.28) 128.89 (16.76) 1.294 .197

Diastolic blood pressure (mmHg) 83.06 (10.98) 85.11 (9.25) 1.243 .214

BMI 23.20 (3.08) 24.08 (3.31) 1.690 .093

Diabetes duration (years) – 4.08 (3.58) –

HbA1c (%)* 5.24 (0.76) 9.10 (2.57) 12.680 <.001†

Fasting glucose level (mmol/L)* 4.84 (0.63) 8.85 (2.92) 11.816 <.001†

Fasting insulin (mU/L) – 12.13 (11.12) –

HOMA-IR – 1.74 (1.50) –

MMSE 29.50 [28.00, 30.00] 29.00 [28.00, 30.00] 3.026 .082

eTIV (cm3) 1496.47 (154.29) 1534.65 (139.02) 1.600 .111

Note: The data are expressed as the mean and standard deviation when the data are normally distributed; otherwise, they are expressed as the median and

25% and 75% interquartile range.

T2DM, type 2 diabetes mellitus; HC, healthy control; BMI, body mass index; HbA1c, glycosylated hemoglobin A1c level; HOMA-IR, homeostatic model

assessment for insulin resistance;MMSE,Mini-Mental State Examination; eTIV, estimated total intracranial volume.

*Plasma gluc tests in the T2DMgroup and fasting finger-prick blood tests in the HC group.
†p< 0.05.

atlas was adopted and nonlinearly registered to the subject’s diffu-

sion space. A total of 150 ROIs (cortical structures) were defined in

the Destrieux atlas (75 per hemisphere), and the mean IVCF for each

subject was extracted from the ROIs. All 152 subjects were randomly

split into a training set (53 T2DM patients and 53 HCs) and a valida-

tion set (25 T2DM patients and 21 HCs) with diabetic status as the

label. PCA was subsequently performed for dimensionality reduction,

and components that explained 99% of the variance in the training set

were selected. Data were transformedwith the PCAmodel before fur-

ther analysis. Four ML algorithms were tested for classification with a

grid search strategy and fivefold cross validation in the model training

(Table 4). In the KNN model, the optimized number of neighbors was

10, and the model showed a precision rate of 72%, a recall rate of 72%,

andanF1-scoreof 71%. Theaccuracy forKNNwas72%.The L2penalty

was used in LRC model training, and the optimal inverse of regulariza-

tion strength (C values) was 37.93. The LRC model showed a precision

rate of 74%, a recall rate of 67%, and an F1-score of 66%. The accuracy

for the LRC was 67%. In the SVM model with a linear kernel, the opti-

mal C valuewas 61.58, and themodel yielded a precision rate of 80%, a

recall rate of 74%, an F1 score of 73%, and an accuracy of 74%. An addi-

tional SVMmodel with an RBF kernel was also trained with an optimal

C value of 5.46 and an inverse of the radius of 2.07, showing a precision

rate of 72%, a recall rate of 65%, an F1-score of 64%, and an accuracy

of 65%.ROCcurveswere generated (Figure 3),withAUCs for theKNN,

LRC, SVM with a linear kernel, and SVMwith an RBF kernel models of

0.711, 0.838, 0.832, and 0.808, respectively.

4 DISCUSSION

In the current study, we investigated the cortical macrostructural

and microstructural alterations in T2DM patients without cogni-

tive decline. T2DM affects brain structure, although the mechanisms

underlying these effects are unclear. Previous studies indicated that

T2DMpatientswith peripheral neuropathy showed changes in the cor-

tical thickness of the corresponding brain regions (Hajek et al., 2016;

Zhang et al., 2020); moreover, T2DM patients with MCI showed bidi-

rectional changes in cortical thickness in multiple brain regions (Li

et al., 2018). Nonetheless, a 5-year longitudinal study did not find that

T2DMhad a direct effect on cortical thickness or cognitive decline, but

there are ways to indirectly link T2DM and cognitive decline through

baseline cortical thickness (Moran et al., 2019). In the surface-based

analysis, our results indicated that compared to the values of HC sub-

jects, the cortical thickness and surface area values of T2DM subjects

did not change significantly. Our results are consistent with those of a

previous longitudinal study; the diabetes durations of the T2DM par-

ticipants were relatively short, and the damage to brain tissue may not

yet be reflected in themacrostructure.

Since no different macroscale changes were detected, we applied

the GBSS method to quantitatively evaluate GM microstructure

changes in T2DM. In theGBSS analysis, ADderived from theDTImodel

was not significantly different between the groups, indicating that cell

integrity was intact in T2DM. In addition, the ODI and ISOVF derived

from the NODDI model did not reveal GM areas with abnormalities,
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TABLE 3 Clusters with significantly different diffusionmetrics in the T2DMgroup compared to the HC group
MNI coordinates

of peak voxel

Diffusionmetric Cluster Index Voxels Peak (1 – p) X Y Z
Anatomical region(% of all

clusters overlapped)*

FA

(T2DM<HC)

1 7423 0.998 –2 –9 41 Frontal lobe (61.21)

Parietal lobe (13.07)

Occipital lobe (2.36)

2 1091 0.979 –14 –74 56

3 407 0.965 –11 –88 39

4 114 0.962 –7 58 35

MD

(T2DM>HC)

1 1614 0.972 5 5 60 Frontal lobe (73.36)

Parietal lobe (3.09)

2 1498 0.965 13 27 61

3 340 0.965 43 18 52

4 217 0.962 –5 3 44

5 191 0.959 44 –2 58

RD

(T2DM>HC)

1 8150 0.992 4 10 37 Frontal lobe (63.79)

Parietal lobe (6.53)

Insula (0.03)

Temporal lobe (0.01)

2 666 0.960 –42 –20 56

3 252 0.957 –58 10 21

4 229 0.961 –57 –18 45

5 200 0.957 –47 14 45

6 156 0.956 –44 –5 11

7 153 0.957 –49 7 38

8 142 0.961 –34 40 37

9 133 0.955 –38 32 43

10 104 0.953 –46 –36 61

ICVF

(T2DM<HC)

1 76226 0.993 28 –1 64 Frontal lobe (26.60)

Parietal lobe (15.29)

Temporal lobe (14.03)

Occipital lobe (9.35)

Cerebellum (4.30)

Insula (1.72)

T2DM, type 2 diabetes mellitus; HC, healthy control; FA, fractional anisotropy;MD, mean diffusivity; RD, radial diffusivity; ISOVF, isotropic volume fraction.

*The percentage of the total volume of all the clusters that overlappedwith the structure.

which means that there was no significant change in the orientation

dispersion between the participants in the two groups. We found that

diabetic patientsmainly exhibited a reduction in the FAand increments

in the MD and RD of the bilateral frontal and parietal cortices, which

means neurodegeneration was significant in the above regions. More-

over, GBSS analysis highlighted significantly decreased ICVF involving

nearly thewhole brain GM region of T2DMpatients, indicating density

loss of neurites in the brain microarchitecture (Kara et al., 2014).

Theuseof theDTI andNODDIhasbeen reported in aprevious study

on brain WMmicrostructural alterations in T2DM patients, identified

larger WM regions showed decreased FA and ICVF in T2DM patients

with MCI, and the ICVF values in the genu of the corpus callosum and

thalamic regions correlated with the HbA1c level, diabetes duration,

and cognitive performance (Xiong et al., 2019). DTI-derived metrics

were used as quantitative indicators of brain WM microstructural

alterations in diseases (Andica et al., 2020; Dennis & Thompson, 2013).

Nonetheless, theDTImodel, assuming aGaussian distribution ofwater

molecules (Andersson et al., 2017), may not be suitable for specif-

ically identifying the microstructural characteristics in the GM that

consist of neurites. NODDI based on the multicompartment biophys-

ical model can effectively preclude the influence of the partial volume

effect caused by the CSF (Assaf et al., 2013). With the advantages of

the NODDI model, GBSS analysis tests for GM microstructural alter-

ations on a whole-brain scale with a voxelwise approach, allowing the

detection of density and orientation changes in GM neurite structure

(Fukutomi et al., 2018; Vogt et al., 2020), which has attracted interest

in a variety of psychiatric and neurological conditions (Kamagata et al.,

2017; Nazeri et al., 2017).
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F IGURE 2 Patterns of the alteredmicrostructure of the GMbetween participants with T2DMandHCs (FEW correctedwith TFCE). T2DM,
type 2 diabetes mellitus; HC, healthy control; FA, fractional anisotropy;MD, mean diffusivity; RD, radial diffusivity; ISOVF, isotropic volume
fraction; color bar represents the (1 – p) values; red color indicates significantly increasedmetric value in T2DMgroupwith (1 – p)> .95; Blue color
indicates significantly decreasedmetric value in T2DMgroupwith (1 – p)> .95

In our study, we applied GBSS with DTI and NODDI metrics.

Although similar patterns of GM microstructural alterations were

observedwith FA,MD, andRDmetrics in T2DMpatients across frontal

and parietal regions, a much larger area of microstructural abnor-

malities in T2DM patients was reflected with ICVF. In ex vivo and

in vivo studies (Fukutomi et al., 2018; Grussu et al., 2017), evidence

showed that ICVF reflects myelinated axonal density in GM and ODI

reflects the variation of the myelinated axonal orientation, which may

capture the processes during brain damage preceding neurite loss in

GM (Fukutomi et al., 2018). Moreover, dispersion of the orientation

and density of neurites are the two key contributors to FA (Jeurissen

et al., 2013; Vos et al., 2012); hence, NODDI may be advantageous

for capturing the specific microstructural characteristics of neurites in

GM. Previous studies demonstrated peripheral axonal dysfunction and

myelinated axonal diameter reduction in T2DM patients (Kwai et al.,

2016; Mohseni et al., 2017). However, gaps exist in the current knowl-

edge of GM microstructural alterations in T2DM. The findings of this

study indicated that widespread GMmyelinated axonal density loss in

T2DM patients may be an early characteristic before macrostructural

changes.

To explore the diagnostic value of neuritic density loss for T2DM

versus HCs, the mean ICVFs were extracted from subjects with ROIs

defined in the Destrieux cortical deterministic atlas. We trained four

frequently used machine learning models for the classification task,

namely KNN, LRC SVM with linear kernel, and SVM with RBF kernel,

and the SVMmodel with linear kernel exhibited the best performance

among the train models and the KNN performed worst. Because using

a low dimensional feature space in classification tasks can improve

the classification efficiency and mitigate the overfitting problem (Jin

et al., 2019), we used PCA for dimensionality reduction. After PCA
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TABLE 4 Performance of the trainedmodels for the classification of T2DMversus HCs

Weighted avg. Weighted avg. Weighted avg.

Model precision recall F1-score ACC AUC

KNN 0.72 0.72 0.71 0.72 0.72

LRC 0.74 0.69 0.67 0.67 0.84

SVM (linear ) 0.80 0.74 0.73 0.74 0.83

SVM (RBF kernel) 0.72 0.65 0.64 0.65 0.81

Avg., average; KNN, K-nearest neighbors; LRC, logistic regression classification; SVM, support vectormachine; Linear, SVMwith the linear kernel; RBF, radial

basis function; ACC, accuracy; AUC, the area under the curve.

F IGURE 3 Receiver operating characteristic curves of the trained
models for the classification of T2DMversus HCs. KNN, K-nearest
neighbors; LRC, logistic regression classification; SVM, support vector
machine; Linear, SVMwith the linear kernel; RBF, SVMwith radial
basis function kernel; AUC, area under the curve

transformation, the SVMwith linear kernel achieved accuracy andAUC

of 74% and 0.83, respectively in distinguishing T2DM patients from

HCs. LRC showed higher AUC than that of linear kernel SVM, but the

accuracy of the LRC model was 67% compared to 74% in SVM. SVM

shows good overall performances in classification tasks of neuroimag-

ing and is themostpopularmachine learning algorithm inneuroimaging

studies (Arbabshirani et al., 2017; Yassin et al., 2020). As showed in

GBSS analysis, the GM ICVF was unidirectional altered (decreased) in

T2DM, linear kernel SVM model may be more capable of capturing

this type of linear pattern, despite nonlinear kernels for SVM mod-

els, such as polynomial and RBF kernel, have more hyperparameters

and are more capable to learn nonlinear patterns behind the neu-

roimaging data (Arbabshirani et al., 2017). Machine learning and deep

learningmethodshavebeen introduced todiscriminateT2DMandcog-

nitive conditions from structural and functional MRI. Our recent study

showed that deep transfer learning in T1WI data achieves accuracies

of 60.48% and 62.90% for identifying T2DM-CI versus T2DM normal

cognition (NC) and T2DM versus HCs, respectively (Chen et al., 2021).

Higher classification performances were also reported in studies on

single-digit brain function connections and resting-state functional

connections with SVM and E-net models in the detection of T2DM

and cognitive conditions (Liu et al., 2019; Qian et al., 2020). Although

our model exhibited a moderate performance compared to previous

research, the findings suggested that simple ICVF values extracted

from subjects can provide valuable diagnostic information and be used

for clinical implementation regarding GM microstructural alterations,

while macrostructural damage is still silent in T2DM.

There are some limitations in the present study. First, the cur-

rent study used diffusion maps to generate the GM skeleton with a

well-developed GBSS pipeline, while a study argued that processing

low-resolution diffusion images is challenging due to partial volume

effects and artifacts. The incorporation of spatial surface-based maps

and NODDI may exhibit higher sensitivity in capturing differences

(Parvathaneni et al., 2019). Second, we focused on microstructural

changes in this study, and future functional MRI studies can be con-

ducted to investigate the synchronized functional alterations in GM

regions that are significantly altered in T2DMpatients. Third, cognitive

dysfunction is the major clinical concern following T2DM brain dam-

age, and the present study only focused on the microstructural alter-

ations in T2DM without CI. Fourth, although GBSS analysis revealed

some subcortical and cerebellar GM microstructural alterations, the

current study focused on cortical microstructural abnormalities in

T2DM patients. Fifth, the diagnostic value results of cortical ICVF

are exploratory, further external validity is a need in future studies.

Sixth, the current study was a single-center observational study, and

selection bias was not inevitable. Finally, the healthy subjects were

recruited based on self-report medical history and fasting finger-prick

blood tests, which are not sufficient to rule out glucose metaboliza-

tion disorders. Further research is warranted to investigate cognitive

dysfunction-specific GM characteristics and to elucidate the under-

lying mechanisms that produce the structural and microstructural

neuroimaging findings in patients with T2DM.

5 CONCLUSIONS

In conclusion, diabetic neuropathologies have accumulated over the

years, and widespread GM neuritic density loss in T2DM patients may

be an early characteristic before overt macrostructural changes. The

findings also suggest that NODDI metrics provide valuable knowledge
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regarding GMneurodegenerations that are not detectable using T1WI

or DTI, and cortical ICVF values may be used for clinical implementa-

tion in distinguishing early T2DMbrain damage.Our study furthers the

understanding of the early neuropathologies in T2DM.

ACKNOWLEDGMENTS

Thanks to the medical staff in the Department of Radiology and

Geriatric of the First Affiliated Hospital of Guangzhou University of

Chinese medicine. We would like to thank the Guangzhou Key Lab

of early imaging diagnosis and clinical transformation of major brain

diseases for providing the research platform for this study. Thanks to

Mengzhu Wang and Yunzhu Wu from Siemens Healthineers for the

technical support. Thanks to Prof. Junling Zuo and Prof. Liming Lu

from Guangzhou University of Chinese Medicine for their thoughtful

suggestions that improve this work.

CONSENT TO PARTICIPATE

The study adhered to the Declarations of Helsinki. All participants

provided written informed consent.

AUTHOR CONTRIBUTIONS

XMM, HMH, WJL, and XMY wrote the manuscript. WJLyu, JJW, YNC,

and SYK were responsible for recruiting subjects. XMM, XMY, YL, and

YFL collected multimodal MRI data. YL, XT was responsible for the

clinical MRI report. JJW, WJLyu, SYK, and YWR collected psycholog-

ical test data. XMM and HMH analyzed the data. XT, HMH, and SJQ

designed and coordinated the study. All authors read and approved the

final manuscript.

COMPETING INTERESTS

The authors declare that they have no conflict of interest.

DATA AND MATERIALS AVAILABILITY

The data sets used and/or analyzed during the current study are

available from the corresponding author on reasonable request.

PEER REVIEW

The peer review history for this article is available at: https://publons.

com/publon/10.1002/brb3.2746.

ORCID

HaomingHuang https://orcid.org/0000-0003-2809-972X

REFERENCES

American Diabetes Association. (2019). 2. Classification and diagnosis of

diabetes: Standards of medical care in diabetes-2019. Diabetes Care, 42,
S13–S28.

Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., &

Bastiani, M. (2017). Towards a comprehensive framework for move-

ment and distortion correction of diffusion MR images: Within volume

movement.Neuroimage, 152, 450–466.
Andica, C., Kamagata, K., Hatano, T., Saito, Y., Ogaki, K., Hattori, N., & Aoki,

S. (2020). MR biomarkers of degenerative brain disorders derived from

diffusion imaging. Journal of Magnetic Resonance Imaging : JMRI, 52.

Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single sub-

ject prediction of brain disorders in neuroimaging: Promises and pitfalls.

Neuroimage, 145, 137–165.
Assaf, Y., Alexander, D. C., Jones, D. K., Bizzi, A., Behrens, T. E. J., Clark, C. A.,

Cohen, Y., Dyrby, T. B., Huppi, P. S., Knoesche, T. R., Lebihan, D., Parker,

G. J. M., & Poupon, C. (2013). The CONNECT project: Combiningmacro-

andmicro-structure.Neuroimage, 80, 273–282.
Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V.,

Rutherford, M. A., & Edwards, A. D. (2013). Development of cortical

microstructure in the preterm human brain. PNAS, 110, 9541–9546.
Chen, Y., Pan, Y., Kang, S., Lu, J., Tan, X., Liang, Y. i., Lyu, W., Li, Y., Huang, H.,

Qin, C., Zhu, Z., Li, S., &Qiu, S. (2021). Identifying type2diabetic brains by

investigating disease-related structural changes in magnetic resonance

imaging. Frontiers in Neuroscience, 15, 728874.
Cheng, G., Huang, C., Deng, H., &Wang, H. (2012). Diabetes as a risk factor

for dementia and mild cognitive impairment: A meta-analysis of longitu-

dinal studies: Diabetes and cognitive function. Internal Medicine Journal,
42, 484–491.

Dennis, E. L., & Thompson, P. M. (2013). Typical and atypical brain

development: A review of neuroimaging studies. Dialogues in Clinical
Neuroscience, 15, 359–384.

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic par-

cellation of human cortical gyri and sulci using standard anatomical

nomenclature.Neuroimage, 53, 1–15.
Drenthen, G. S., Backes, W. H., & Jansen, J. F. A. (2021). Estimating

myelin-water content from anatomical and diffusion images using spa-

tially undersampled myelin-water imaging through machine learning.

Neuroimage, 226, 117626.
Fukutomi, H., Glasser, M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada,

T., Togashi, K., Van Essen, D. C., & Hayashi, T. (2018). Neurite imag-

ing reveals microstructural variations in human cerebral cortical gray

matter.Neuroimage, 182, 488–499.
Geijselaers, S. L. C., Sep, S. J. S., Stehouwer, C. D. A., & Biessels, G. J.

(2015). Glucose regulation, cognition, and brain MRI in type 2 diabetes:

A systematic review. The Lancet Diabetes & Endocrinology, 3, 75–89.
Grussu, F., Schneider, T., Tur, C., Yates, R. L., Tachrount, M., IanuåŸ, A.,

Yiannakas, M. C., Newcombe, J., Zhang, H., Alexander, D. C., Deluca, G.

C., & Gandini Wheeler-Kingshott, C. A. M. (2017). Neurite dispersion: A

newmarker of multiple sclerosis spinal cord pathology? Annals of Clinical
and Translational Neurology, 4, 663–679.

Hajek, T., Mcintyre, R., & Alda, M. (2016). Bipolar disorders, type 2 diabetes

mellitus, and the brain. Current Opinion in Psychiatry, 29, 1–6.
Henf, J., Grothe,M. J., Brueggen, K., Teipel, S., & Dyrba, M. (2018). Mean dif-

fusivity in cortical graymatter in Alzheimer’s disease: The importance of

partial volume correction.NeuroImage: Clinical, 17, 579–586.
Jeurissen, B., Leemans, A., Tournier, J. -D., Jones, D. K., & Sijbers, J. (2013).

Investigating the prevalence of complex fiber configurations in white

matter tissue with diffusion magnetic resonance imaging. Human Brain
Mapping, 34, 2747–2766.

Jin, R., Luk, K. D. k., Cheung, J. P. Y., & Hu, Y. (2019). Prognosis of cervical

myelopathy based on diffusion tensor imaging with artificial intelligence

methods.NMR in Biomedicine, May e4114.

Kamagata, K., Zalesky, A., Hatano, T., Ueda, R., Di Biase, M. A., Okuzumi, A.,

Shimoji, K., Hori, M., Caeyenberghs, K., Pantelis, C., & Hattori, N., & Aoki,

S. (2017). Gray matter abnormalities in idiopathic Parkinson’s disease:

Evaluation by diffusional kurtosis imaging and neurite orientation dis-

persion and density imaging: Gray matter abnormalities in Parkinson’s

disease.Human Brain Mapping, 38, 3704–3722.
Kamiya, K., Hori, M., & Aoki, S. (2020). NODDI in clinical research. Journal of

NeuroscienceMethods, 346, 108908.
Kara, A., Unal, D., Simsek, N., Yucel, A., Yucel, N., & Selli, J. (2014).

Ultra-structural changes and apoptotic activity in cerebellum of post-

menopausal-diabetic rats: A histochemical and ultra-structural study.

Gynecological Endocrinology, 30, 226–231.

https://publons.com/publon/10.1002/brb3.2746
https://publons.com/publon/10.1002/brb3.2746
https://orcid.org/0000-0003-2809-972X
https://orcid.org/0000-0003-2809-972X


10 of 10 HUANG ET AL.

Kwai, N. C. G., Nigole,W., Poynten, A.M., Brown, C., &Krishnan, A. V. (2016).

The relationship between dyslipidemia and acute axonal function in type

2 diabetes mellitus in vivo. PLoS One, 11, e0153389.
Li, C., Li, C., Yang, Q., Wang, B., Yin, X., Zuo, Z., Hu, X., Lai, Y., & Wang,

J. (2018). Cortical thickness contributes to cognitive heterogeneity in

patients with type 2 diabetes mellitus.Medicine, 97, e10858.
Liu, Z., Liu, J., Yuan, H., Liu, T., Cui, X., Tang, Z., Du, Y., Wang, M., Lin, Y., &

Tian, J. (2019). Identification of cognitive dysfunction in patients with

T2DM using whole brain functional connectivity. Genomics, Proteomics &
Bioinformatics, 17, 441–452.

Mohseni, S., Badii, M., Kylhammar, A., Thomsen, N. O. B., Eriksson, K. -F.,

Malik, R. A., Rosen, I., & Dahlin, L. B. (2017). Longitudinal study of neu-

ropathy, microangiopathy, and autophagy in sural nerve: Implications for

diabetic neuropathy. Brain and Behavior, 7, e00763.
Moran, C., Beare, R., Wang, W., Callisaya, M., & Srikanth, V., for the

Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2019). Type 2

diabetes mellitus, brain atrophy, and cognitive decline. Neurology, 92,
e823–e830.

Moulton, C. D., Costafreda, S. G., Horton, P., Ismail, K., & Fu, C. H. Y. (2015).

Meta-analyses of structural regional cerebral effects in type 1 and type

2 diabetes. Brain Imaging and Behavior, 9, 651–662.
Nazeri, A., Mulsant, B. H., Rajji, T. K., Levesque, M. L., Pipitone, J., Stefanik,

L., Shahab, S., Roostaei, T., Wheeler, A. L., Chavez, S., & Voineskos, A. N.

(2017).Graymatter neuriticmicrostructuredeficits in schizophrenia and

bipolar disorder. Biological Psychiatry, 82, 726–736.
Parvathaneni, P., Lyu, I., Huo, Y., Rogers, B. P., Schilling, K. G., Nath, V., Blaber,

J. A., Hainline, A. E., Anderson, A. W., Woodward, N. D., & Landman,

B. A. (2019). Improved gray matter surface based spatial statistics in

neuroimaging studies.Magnetic Resonance Imaging, 61, 285–295.
Qian, H., Qin, D., Qi, S., Teng, Y., Li, C., Yao, Y., &Wu, J. (2020). Less is better:

Single-digit brain functional connections predict T2DM and T2DM-

induced cognitive impairment. Frontiers in Neuroscience, 14, 588684.
Sato, N., & Morishita, R. (2014). Brain alterations and clinical symptoms of

dementia in diabetes: aβ/tau-dependent and independent mechanisms.

Frontiers in Endocrinology, 5.
Scherfler, C., Frauscher, B., Schocke, M., Iranzo, A., Gschliesser, V., Seppi,

K., Santamaria, J., Tolosa, E., Hogl, B., & Poewe, W. (2011). White and

graymatter abnormalities in idiopathic rapid eyemovement sleepbehav-

ior disorder: A diffusion-tensor imaging and voxel-based morphometry

study. Annals of Neurology, 69, 400–407.
Tripathi, B. K., & Srivastava, A. K. (2006). Diabetes mellitus: Complications

and therapeutics.Medical ScienceMonitor, 12, 18.

Vogt, N. M., Hunt, J. F., Adluru, N., Dean, D. C., Johnson, S. C., Asthana, S.,

Yu, J. -. P. J., Alexander, A. L., & Bendlin, B. B. (2020). Cortical microstruc-

tural alterations in mild cognitive impairment and Alzheimer’s disease

dementia. Cerebral Cortex, 30, 2948–2960.
Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & Leemans, A. (2012).

The influence of complex white matter architecture on the mean dif-

fusivity in diffusion tensor MRI of the human brain. Neuroimage, 59,
2208–2216.

Xiong, Y., Zhang, S., Shi, J., Fan, Y., Zhang,Q., & Zhu,W. (2019). Application of

neurite orientation dispersion and density imaging to characterize brain

microstructural abnormalities in type-2 diabetics with mild cognitive

impairment. Journal of Magnetic Resonance Imaging, 50, 889–898.
Yadav, S. K., Gupta, R. K., Hashem, S., Nisar, S., Azeem, T., Bhat, A. A., Syed,N.,

Garg, R. K., Venkatesh, V., Kamal,M., Fakhro, K., Frenneaux,M. P., &Haris,

M. (2020). Brain microstructural changes support cognitive deficits in

HIV uninfected children born to HIV infected mothers. Brain, Behavior,
& Immunity—Health, 2, 100039.

Yassin,W., Nakatani, H., Zhu, Y., Kojima,M., Owada, K., Kuwabara, H., Gonoi,

W., Aoki, Y., Takao, H., Natsubori, T., Iwashiro, N., Kasai, K., Kano, Y.,

Abe, O., Yamasue, H., & Koike, S. (2020). Machine-learning classifica-

tionusingneuroimagingdata in schizophrenia, autism, ultra-high risk and

first-episode psychosis. Translational Psychiatry, 10, 278.
Zhang,H., Schneider, T.,Wheeler-Kingshott, C. A., &Alexander, D. C. (2012).

NODDI: Practical in vivo neurite orientation dispersion and density

imaging of the human brain.Neuroimage, 61, 1000–1016.
Zhang, Y., Qu, M., Yi, X., Zhuo, P., Tang, J., Chen, X., Zhou, G., Hu, P., Qiu,

T., Xing, W. u., Mao, Y., Chen, B. T., Wu, J., Zhang, Y., & Liao, W. (2020).

Sensorimotor and pain-related alterations of the gray matter and white

matter in type 2 diabetic patients with peripheral neuropathy. Human
Brain Mapping, 41, 710–725.

Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiol-

ogy of type 2 diabetes mellitus and its complications. Nature Reviews
Endocrinology, 14, 88–98.

How to cite this article: Huang, H., Ma, X., Yue, X., Kang, S.,

Rao, Y., Long,W., Liang, Y., Li, Y., Chen, Y., Lyu,W.,Wu, J., Tan, X.,

&Qiu, S. (2022). Cortical GrayMatterMicrostructural

Alterations in Patients with Type 2DiabetesMellitus. Brain and

Behavior, 12, e2746. https://doi.org/10.1002/brb3.2746

https://doi.org/10.1002/brb3.2746

	Cortical gray matter microstructural alterations in patients with type 2 diabetes mellitus
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Participants
	2.2 | Magnetic resonance image acquisition and preprocessing
	2.3 | Surface-based analysis
	2.4 | GBSS
	2.5 | Statistical analysis

	3 | RESULTS
	3.1 | Participants’ characteristics
	3.2 | Cortical thickness and area
	3.3 | Microstructural aberrants in the GM
	3.4 | Classification of T2DM versus HCs with cortical ICVF

	4 | DISCUSSION
	5 | CONCLUSIONS
	ACKNOWLEDGMENTS
	CONSENT TO PARTICIPATE
	AUTHOR CONTRIBUTIONS
	COMPETING INTERESTS
	DATA AND MATERIALS AVAILABILITY
	PEER REVIEW

	ORCID
	REFERENCES


