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Abstract

The human small intestine is a key site for interactions between the intestinal

microbiota and the mucosal immune system. Here we investigated the

immunomodulatory properties of representative species of commonly dominant

small-intestinal microbial communities, including six streptococcal strains (four

Streptococcus salivarius, one S. equinus, one S. parasanguinis) one Veillonella

parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum

WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The

different streptococci induced varying levels of the cytokines IL-8, TNF-a, and IL-

12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E.

gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As

Streptococcus and Veillonella can potentially interact metabolically and frequently

co-occur in ecosystems, immunomodulation by pair-wise combinations of strains

were also tested for their combined immunomodulatory properties. Strain

combinations induced cytokine responses in dendritic cells that differed from what

might be expected on the basis of the results obtained with the individual strains. A

combination of (some) streptococci with Veillonella appeared to negate IL-12p70

production, while augmenting IL-8, IL-6, IL-10, and TNF-a responses. This

suggests that immunomodulation data obtained in vitro with individual strains are

unlikely to adequately represent immune responses to mixtures of gut microbiota

communities in vivo. Nevertheless, analysing the immune responses of strains

representing the dominant species in the intestine may help to identify

immunomodulatory mechanisms that influence immune homeostasis.
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Introduction

The human intestine is home to a myriad of different microbial organisms, most

of which are bacteria [1] and collectively known as microbiota. The intestinal

microbiota is of particular interest because it plays an essential role in the

maturation and development of the mucosal immune system in early life [2, 3]

and the preferential tolerance induction to harmless antigens at mucosal sites

[4, 5]. The contribution of individual microbes to the mechanisms that maintain

immune homeostasis are just beginning to be understood [1, 6, 7], but their

importance is highlighted by the disturbances in microbiota composition

associated with several intestinal-related diseases including obesity, multiple

sclerosis, inflammatory bowel diseases, and type 1 diabetes [3, 8, 9, 10, 11, 12, 13].

Research on this topic has been biased towards the analysis of fecal samples that

only provide information about the microbiota at the end of gastrointestinal (GI)

tract [13, 14, 15, 16], meaning that, the immune-influences driven by microbial

communities in the upper intestinal tract have been largely neglected [17]. This is

mainly attributable to the limited accessibility of the small intestine. Nevertheless,

the Peyer’s patches (PP) of the small intestine are major sites for sampling of

luminal antigens, including bacteria, and the induction of adaptive immune

responses. Antigen sampling by the follicle–associated epithelium (FAE) over-

laying the lymphoid follicles of the PP is facilitated by the lack of mucin secreting

goblet cells and the presence of specialized Microfold cells (M cells) [2, 18, 19].

Bacteria sampled by M cells in the FAE are transported intact to the sub-epithelial

dome of PP where dendritic cells (DCs) play a key role in bacterial handling and

the induction of subsequent immune responses (see [20] for a review). Recently,

PP dendritic cells were shown to sample bacteria and antigens through M cell-

specific transcellular pores [21, 22]. Additionally, CX3CR1+ cells in the epithelium

expressing DC or macrophage markers have been shown to sample luminal

bacteria (and other luminal constituents) directly in the lumen by passing

protrusions through the paracellular space of the epithelium without disrupting

epithelial integrity [23, 24, 25].

While both the human small and large intestinal microbiota encompasses

anaerobes belonging to the Clostridium clusters, the marked difference between

these intestinal niches is a microbial composition predominated by facultative

anaerobes, including the streptococci and Veillonella bacteria in the small intestine

[17, 26, 27] (Leimena and Van den Bogert, et al., Unpublished data). The co-

occurrence of these genera may in part depend on their potential for metabolic

interaction as shown in the oral cavity [28] and previously postulated for the small

intestine [17]. Support for this notion comes from the high expression of genes

involved in primary carbohydrate transport systems by the small intestinal

streptococci [17], indicating a role for the Streptococcus populations as primary

fermenters of diet-derived simple sugars in the human small intestine.

Characterization of small-intestinal bacterial streptococci revealed that the small

intestine is inhabited by a variety of Streptococcus lineages that belong to S.

parasanguinis, S. equinus, and S. salivarius species. These lineages displayed
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considerable phenotype variability in terms of carbohydrate utilization capacities

[29, 30], which was in excellent agreement with their capacities predicted on basis

of their genome sequences [30]. With the exception of streptococci, the lactic acid

bacteria are generally present at low abundance in the small intestine microbiota

[26, 30, 31] (Leimena and Van den Bogert, et al., Unpublished data), but

nevertheless display a substantial level of phylogenetic richness in individuals, as

was also concluded for members of the genus Enterococcus [29]. The enterococci

are common colonizers of the GI tract, but have a less attractive reputation

because of the pathogenic potential of specific members of this genus [32].

Considering the prominent role of DCs in modulation of the small-intestinal

immune system the aim of the current study was to investigate the

immunomodulatory properties of different small-intestinal Enterococcus,

Streptococcus, and Veillonella isolates [29], with a special focus on the latter two

genera because of their predominance in the small-intestinal ecosystem.

Materials and Methods

Bacterial strains

Six Streptococcus strains (with known genome sequences; [29, 30]), an Enterococcus

gallinarum HSIEG1 strain [33], and a Veillonella parvula HSIVP1 strain [29, 34],

as well as the reference strain Lactobacillus plantarum WCFS1 [35] were used in

the immunoassays (Table 1). The streptococcal strains were representative isolates

of 6 distinct phylogenetic lineages, as determined by DNA fingerprinting,

belonging to: S. parasanguinis (1 strain; HSISM1), S. equinus (1 strain; HSISB1),

and S. salivarius (4 strains; HSISS1-4; Table 1) [29, 30]. The streptococcal and

Enterococcus strains were grown in Mitis-Salivarius (MS) medium [29], while

Veillonella was grown in medium described in the DSMZ catalogue (Medium 136)

under anoxic N2 atmosphere. Lactobacillus plantarum WCFS1 was grown in

Mann-Rogosa Sharpe (MRS) medium (Becton Dickinson, Breda, The

Netherlands). Fresh culture media did not induce any cytokine responses (data

not shown). All strains were twice subcultured overnight successively, after

which the streptococci and the Enterococcus strains had an average OD600 of

1.3 (¡ standard deviation of 0.2), while the V. parvula strain and WCFS1 had

OD600 of approximately 0.5 and 2.5, respectively. The bacteria suspsensions were

diluted in PBS (GIBCO) to a final OD600 of 1.

Differentiation and maturation of dendritic cells

The study was approved by the Wageningen University Ethical Committee and

was performed according to the principles of the Declaration of Helsinki. Buffy

coats were obtained from the Sanquin Blood bank Nijmegen, the Netherlands. A

written informed consent was obtained before sample collection. Human

monocytes were isolated from blood using a combination of Ficoll density

centrifugation and cell separation using CD14-specific antibody coated magnetic
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microbeads (Miltenyi Biotec, Leiden, the Netherlands). The purity of isolated

CD14+ cell fraction was greater than 90% and cell-viability was above 95% in all

experiments. To generate immature DC (iDCs), the purified CD14+ cells were

cultured for 6 days in RPMI 1640 medium (Invitrogen, Breda, the Netherlands),

supplemented with 100 units/ml penicillin G (Invitrogen), 100 mg/ml strepto-

mycin (Invitrogen), 50 ng/ml IL-4 (R&D systems, Abingdon, United Kingdom)

and 50 ng/ml granulocyte-macrophage colony-stimulating-factor (GM-CSF)

(R&D systems). GM-CSF and IL-4 were added to differentiate the monocytes into

myeloid DCs. On day 6 approximately 16106 iDCs were stimulated with LPS

(1 mg/ml) or the different bacteria at a cell to bacteria ratio of approximately 1:1

and 1:10 for 24 hours. As anticipated and as a consequence of the

supplementation of the cell-media with antibiotics, no bacterial growth was

observed during this period. Non-stimulated iDCs were used as a negative

control.

Analyses of cell surface markers and measurement of cell death

by flow cytometry

On days 3, 6, and 8 the percentage of viable cells was measured by flow cytometry

(FACSCanto II, BD, San Diego, USA). Live, apoptotic and necrotic cells were

discriminated by staining with Annexin V and propidium iodide (PI) according to

the manufacturer’s protocol. The cells were analysed using flow cytometry

(FACSCanto II, BD, San Diego, USA) and the BD FACSDiva software. Cells that

are negative for both Annexin V and PI are not apoptotic or necrotic as

translocation of the membrane phospholipid phosphatidylserine has not occurred

and the plasma membrane is still intact. Therefore, Annexin V and PI double

negative cells were considered as viable cells, whereas both single and double

positive cells were regarded as non-viable [36]. On days 3 to 8 the viability of the

cells was between 60 and 95%. There were no significant differences in cell death

Table 1. Strains used in this study.

Species Strain identifier

Streptococcus parasanguinis HSISM1*

Streptococcus equinus HSISB1*

Streptococcus salivarius HSISS1*

Streptococcus salivarius HSISS2*

Streptococcus salivarius HSISS3*

Streptococcus salivarius HSISS4*

Veillonella parvula HSIVP1*

Enterococcus gallinarum HSIEG1*

Lactobacillus plantarum WCFS1**

*: Strain was cultivated from ileostoma effluent [29, 30].
**: Strain was cultivated from human saliva [35].

doi:10.1371/journal.pone.0114277.t001
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between the bacteria-stimulated cells and the non-stimulated (negative control) or

LPS-stimulated (positive control) cells.

On day 8, cells were also stained with fluorescence-conjugated monoclonal

antibodies specific for CD83, CD86 or their isotype-matched controls (BD

biosciences, San Diego, USA) and analysed by flow cytometry (FACSCanto II, BD,

San Diego, USA) to check the maturation and activation status of the cells. CD83

and CD86 are highly expressed on DCs after stimulation with known maturation

factors (e.g. LPS) compared to non-stimulated immature dendritic cells. The

expression of CD83 and CD86 from different human donors can vary

considerably after stimulation with different stimuli so for comparison the data

was normalized to the values (100%) obtained using a standard amount of LPS

added to cells from each donor.

Cytokine assays

Supernatants from the DC stimulation assays were collected after stimulation for

24 hours, and analysed for the presence of cytokines (IL-1b, IL-6, IL-8, IL-10, IL-

12p70 and TNF-a) using a cytometric bead-based BD Human inflammation kit

that enables multiplex measurements of soluble cytokines in the same sample

[37], according to the manufacturer’s protocol (BD biosciences, Breda, the

Netherlands). The sensitivity-limits of detection were as follows: IL-1b 7.2 pg/ml,

IL-6 2.5 pg/ml, IL-8 3.6 pg/ml, IL-10 3.3 pg/ml, IL-12p70 1.9 pg/ml and TNF-a
0.7 pg/ml. The flow cytometry data were analysed using the BD FCAP software

(Figure S1). Unless stated otherwise, cytokine secretion in the remainder of the

paper are based on stimulation of iDCs with a DC to bacteria ratio of

approximately 1:10.

Disruption of bacterial cells and spent medium collection

To determine whether the S. equinus strain might possess an immunomodulatory

component, which suppresses cytokine secretion, the S. equinus as well as S.

salivarius strain 4 were disrupted using a cell disruptor (LaBiosystems, Constant

systems, Waalwijk, The Netherlands). The latter strain was chosen as a control

strain because of its capacity to induce considerable cytokine production levels in

dendritic cells. In addition spent medium was collected, by centrifugation of an

overnight culture of S. equinus or S. salivarius strain 4.

TLR2/6 assay

TLR2/6 signalling capacities of the bacterial strains were determined using a

reporter assay with Human Embryonic Kidney (HEK) 293 (Invivogen, Toulouse,

France) cells expressing human TLR2 and TLR6 heterodimers that recognize

lipoteichoic acid (LTA) and lipoprotein lipid anchors of Gram-positive bacteria

[38]. The TLR2/6 signalling assay was performed essentially as previously

described [39]. Briefly, HEK293 cells were transformed with human TLR2/6 and

pNIFTY, a NF-kB luciferase reporter construct (Invivogen, Toulouse, France).
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HEK293 cells transformed with only the pNIFTY did not respond to Pam2CSK

(20 ng/ml) (synthetic agonist of TLR2/6) demonstrating the dependency of NF-

kB activation on co-expression of hTLR2/6 receptor [39]. The cells were plated at

a concentration of 66104 cells per well in DMEM medium (Invitrogen). Cells

were then stimulated with the different bacterial strains, or Pam2CSK (20 ng/ml)

as a positive control or with medium alone (negative control) followed by

incubation at 37 C̊ for 6 hours under a 5% CO2 atmosphere. Thereafter, the

medium was replaced with Bright glow (Promega, Leiden, the Netherlands), and

the plates shaken for 5 minutes before measuring the luminescence in a

Spectramax M5 (Molecular Devices, Sunnyvale, United States). HEK293 cells not

expressing TLR receptors that harbour pNIFTY were used as the negative control

in the NF-kB assays.

Statistical analysis

Mixed general linear model using restricted maximum likelihood (REML) was

used to determine the statistical differences within donors between cytokine

produced by DCs stimulated with the different bacterial strains. A two-sided p-

value of 0.05 or lower was considered to be significant. The statistical analysis for

the cytokine secretion by dendritic cells after mono-stimulation with bacterial

strains, disrupted strains, and spent medium a One-Way ANOVA test was used to

compare the cytokine secretion between bacteria stimulated cells, as the group size

(n52) was not sufficient using REML. The statistical analysis (REML) was

performed by using SAS software (version 9.1, SAS Institute Inc., Cary, NC, USA)

and the One-Way ANOVA test Graphpad Prism5.

Results

Small-intestinal bacteria differentially affect DC maturation and

activation

S. parasanguinis HSISM1, S. equinus HSISB1, 4 different S. salivarius strains

(HSISS1-4), E. gallinarum HSIEG1, and V. parvula HSIVP1 strains obtained from

the human small intestine were investigated for their capacity to induce

maturation and activation of immature monocyte-derived DCs from donors. The

DCs were stimulated for 24 hours with different strains at DC to bacteria ratios of

1 and 10. The expression of the surface marker CD83 (maturation marker) and

CD86 (maturation marker and co-stimulatory molecule) were measured to

determine maturation and activation status of the DCs. The mean fluorescence

intensity (MFI) of dendritic cells was normalized to LPS stimulation (Figure 1).

Stimulation of the DCs by all strains with the high dose (1 to 10) resulted in

higher maturation and activation marker expression compared to the medium

control, except for CD83 induced by S. equinus (Table S1). Furthermore,

significant differences (p,0.05) were observed between the different ratios for S.

parasanguinis, and S. salivarius 1, 2, and 4. The induction of the expression of the
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surface markers CD83 differed markedly among the different species used as DC

stimulants. S. salivarius strain 1, 3, and 4 and E. gallinarum induced highest

expression (Figure 1). Moreover, while V. parvula induced moderate levels of

CD83 expression, whereas it was one of the strongest inducers CD86 expression

among the tested strains.

DC cytokine responses to bacterial isolates from the small

intestine

The small-intestinal Streptococcus, Veillonella and Enterococcus strains were further

investigated for their capacity to induce cytokine secretion by monocyte-derived

iDCs. In addition, L. plantarum WCFS1 was employed as a benchmark strain that

was analysed several times before [40, 41, 42, 43]. The IL-10 and TNF-a levels

induced by L. plantarum WCFS1 were comparable to a previous study [41].

Noteworthy, L. plantarum WCFS1 induced considerably higher amounts of IL-8,

IL-6, and IL-10, higher than the streptococci, albeit that this was based on DCs

derived from 2 donors (Table S2).

Although cytokine responses upon stimulation with the different bacterial

strains varied between the different donors, the induced immune profiles were

consistent (Figure 2). The V. parvula strain elicited a moderate induction of the

production of the cytokines IL-8, IL-1b, IL-10, and TNF-a. In contrast to the

Streptococcus strains, V. parvula stimulated hardly any IL-12p70 secretion in DCs,

whereas its capacity to induce IL-6 was substantially higher, albeit that this was

not significant (Figure 2; Table S2, S3, S4, and S5).

Figure 1. MFI of stained cell surface markers CD83 (A) and CD86 (B) by monocyte derived dendritic cells. Immature DCs were used as the negative
control and LPS as the positive control. Dendritic cells were derived from monocytes of 5 different human donors.

doi:10.1371/journal.pone.0114277.g001
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Although, the cytokine response between donors for the E. gallinarum strain

varied, the averaged induced cytokine amounts by E. gallinarum strain

consistently were the highest among the tested strains (Figure 2; Table S2),

indicating that the immune system response is more pronounced if triggered with

this strain compared to the streptococci.

Although the IL-1b (16–41 pg/ml) and IL-10 (7–78 pg/ml) levels induced by

the streptococci varied (Table S2), the levels were relatively low. In agreement with

what has previously been described for members of the S. bovis species group [44],

the S. equinus strain tested here consistently induced low levels of cytokines

(Figure 2). This was especially clear for the significantly lower IL-8, IL-6, IL-10,

Figure 2. Cytokine secretion by dendritic cells after stimulation with bacterial strains. Dendritic cells
were derived from monocytes of 5 human different donors. Cytokine levels are expressed as relative values of
the highest inducing strain (100% cytokine levels (pg/ml): IL-8: 17598; IL-1b: 41; IL-6: 4775; IL-10: 206; TNF-
a: 5151; IL-12p70: 2397; Table S2). Lines represents the average secreted cytokine amounts and faded
colours represent the interval between the upper and the lower SEM. SEM values higher than 100% are not
visualized. *: Cytokine responses determined using DCs derived from 2 different human donors (Figure 5,
Table S2).

doi:10.1371/journal.pone.0114277.g002
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and TNF-a levels induced by S. equinus compared to those by the S. salivarius

strains (p,0.05; Table S2, S3, S4, and S5).

The Streptococcus strains showed substantial differences in their ability to

induce the production of the chemokine IL-8 (5231–17147 pg/ml) and the pro-

inflammatory cytokines IL-6 (161–2221 pg/ml), TNF-a (86–4933 pg/ml), and IL-

12p70 (81–1416 pg/ml; Figure 2; Table S2, S3, S4, and S5). This illustrates that

the strains tested here elicited distinct cytokine profiles, which is in agreement

with earlier observations that revealed distinct DC responses to closely related

species and strains [43, 45]. The immune response profiles elicited by the S.

salivarius strains 1 and 4 were not significantly different (Table S3, S4, and S5),

except for IL-1b that was induced at a low (but significantly different) level by

both strains (see also above). This corroborates earlier observations on the close

relatedness of these two S. salivarius strains that were based on genetic

fingerprinting and physiological evaluations [29, 30].

S. equinus is not immunosuppressive

As the S. equinus strain elicited a low immune response compared to the other

strains tested (Figure 2), we hypothesized that this strain might possess an

immunomodulatory component that suppresses cytokine secretion. Therefore, we

co-stimulated DCs with LPS (10 ng/ml) and S. equinus or S. salivarius strain 4. A

lower LPS dose was used (10 ng/mL) compared to the previous immune assay

(mono-stimulations) to be able to modulate the cytokines response. S. salivarius

strain 4 was chosen as a control strain because it induced considerable cytokine

production in dendritic cells. Moreover, the genomic lineage that this strain

belongs to was highly predominant in ileostoma effluent and appears to be among

the genomic lineage that is ubiquitously found in the human small intestine,

supporting the relevance of selecting this strain for comparative reasons [29, 30].

The S. equinus strain did not significantly modulate the cytokine levels induced by

LPS stimulation. Nevertheless, the amount of IL-6 produced by DCs stimulated

with S. equinus and LPS together, was higher than the sum of the levels induced by

the two separate stimuli, suggesting that these stimuli may synergistically induce

the secretion of this cytokine by DCs rather than the hypothesized immunosup-

pressive effect of S. equinus. A qualitatively similar and quantitatively significant

synergistic effect on IL-6 production was also observed when DCs were co-

stimulated with S. salivarius and LPS (Figure 3). Co-stimulation of DCs with LPS

and spent culture supernatant from either of the two bacterial strains also

consistently elevated production of most cytokines (except for TNF-a) as

compared to LPS alone (Figure 3), although this effect was not significant and

appeared to be smaller as compared to the co-stimulation by the bacterial cells.

Taken together these results establish that S. equinus displays no detectable

immunosuppressive effect on dendritic cell cytokine production levels, but

appears to be able to moderately enhance cytokine production in response to LPS.
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Involvement of TLR2 and TLR6 in innate immune signalling by

small-intestinal Streptococcus and Veillonella strains

TLR2/6- mediated activation of NF-kB is potentially one of the major pathways

for DC activation via LTA or lipoproteins derived from the cell envelope of

bacteria. Therefore, we tested the TLR2/6 signalling capacities of the Streptococcus

and Veillonella strains in a reporter assay using HEK293 cells expressing human

TLR2 and TLR6 heterodimers that recognize lipoteichoic acid (LTA) and

lipoprotein lipid anchors of Gram-positive bacteria [38]. The results demon-

strated that most strains are capable of triggering NF-kB activation via TLR2/6

dependent signalling. A notable exception is the S. equinus strain that did not

significantly induce TLR2/6 signalling in this reporter assay (Figure 4), which is

analogous to its failure to induce high levels of cytokine production in DCs (see

above). Similarly, the strong DC-response elicited by E. gallinarum stimulation

was reflected in its TLR2/6 signalling capacity, where this strain classified as one of

the strongest TLR2/6 stimulators among the strains tested. These results suggest a

certain degree of congruency between the capacity of individual strains to elicit

TLR2/6 signalling in HEK293 NF-kB reporter cells, and their capacity to stimulate

high levels of cytokine production in iDCs.

Co-stimulation of dendritic cells with streptococci and Veillonella

Based on the frequent co-occurrence of the Streptococcus and Veillonella spp. in

various habitats associated with the human body [17, 28], we evaluated the

cytokine responses that were elicited in iDCs that were co-stimulated with one of

the small intestinal Streptococcus strains in combination with the V. parvula strain.

Though cytokine production levels differed for DCs derived from different

donors, the overall response profiles induced by a combination of the two species

differed from the levels anticipated on basis of mono-stimulation with the

individual strains (Figure 5).

As an example of the specific co-stimulatory effects, the amounts of TNF-a
secreted upon co-stimulation of iDCs with V. parvula and the S. parasanguinis, S.

equinus, and S. salivarius strain 2 were considerably increased in comparison to

those observed with mono-stimulations with either one of the streptococci or the

V. parvula strain alone. Notably, this effect was not observed for co-stimulation of

V. parvula together with S. salivarius strain 1, which actually led to decreased

TNF-a production as compared to the cognate mono-stimulations. The DC

response to co-stimulation with V. parvula and S. salivarius strain 3 and 4,

appeared to vary between multiple donors. Finally, while mono-stimulation with

the Streptococcus strains induced variable amounts of IL-8 and generally low

amounts of IL-6 and IL-10 production in DCs, co-stimulation of DCs commonly

led to higher amounts of secreted IL-8, IL-10, and IL-6 (Figure 5; Table S6). The

Figure 3. Cytokine secretion by dendritic cells after mono-stimulation with bacterial strains, disrupted strains, and spent medium. Dendritic cells
were derived from monocytes from 2 human donors. Spent medium was tested with or without LPS.

doi:10.1371/journal.pone.0114277.g003

Immunomodulation by Small-Intestinal Strains

PLOS ONE | DOI:10.1371/journal.pone.0114277 December 5, 2014 11 / 20



latter observation was especially obvious for co-stimulation with V. parvula and

the S. equinus or S. salivarius strains 1, 3, and 4, which by themselves induced

among the lowest amounts of IL-8 and IL-6 of all tested bacteria (Table S6), but in

combination with V. parvula induced high amounts of these cytokines in iDCs

(Figure 5; Table S6).

Interestingly, the postulated synergy between V. parvula and the streptococci

with respect to stimulation of production of IL-8, IL-6, IL-10, and TNF-a might

be relatively specific for these combinations of bacteria, as co-stimulation of iDCs

with V. parvula and L. plantarum WCFS1 suppressed production of these

cytokines, leading to the lowest IL-8, IL-6, IL-10, and TNF-a amounts observed in

these co-stimulation analyses (Figure 5; Table S6). These observations suggest that

immune cell stimulation with combinations of some streptococci and V. parvula

may elicit responses that are specific for the combined bacterial stimuli, leading to

immune-synergistic effects that could not be predicted from respective mono-

stimulations with either of the bacteria.

Extrapolation of these in vitro immune (co-)stimulation profiles to the in vivo

situation that encompasses the exposure of the immune system to bacterial

communities rather than single strains is far from trivial. Nonetheless, certain

trends could be seen in our in vitro results of streptococcal and V. parvula co-

stimulation, suggesting at least a partial consistency in the co-stimulatory

capacities of two species. This notion is further illustrated by the high similarity of

the immune profiles elicited by co-stimulation with V. parvula and S. salivarius

strain 1 or 4 (Figure 5), which is in good agreement with the close relatedness of

these streptococcal strains ([29, 30]; see also above).

Figure 4. TLR2/6 signalling capacities of bacterial strains. HEK293 cells were incubated with the small-
intestinal strains at a cell to bacteria ratio of 1:10, PAM2CSK as a positive control and medium as a negative
control (n53). This figure is representative out of two hTLR2/6 assays.

doi:10.1371/journal.pone.0114277.g004
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Discussion

Individual GI commensals (e.g. Faecalibacterium prauznitsii [46] and Bacteroides

fragilis [47, 48]) affect the host immune system in specific ways (see [49] for a

recent review). Given that the human small intestine is an important region to

study host-microbe interactions, we evaluated the immunomodulatory properties

of Streptococcus, Veillonella, and Enterococcus strains isolated from the small

intestine. The strains used (especially valid for the streptococci [29]) can be

regarded as representatives of distinct phylogenetic lineages that were identified

among a large panel of isolates obtained from the human small intestine

ecosystem. The Streptococcus strains tested here, have previously been subjected to

in depth analysis, including physiological studies focussing on their carbohydrate

utilizing capacities [29] and the determination of their complete genome

sequences [30]. The current study revealed that these Streptococcus strains differ

significantly in their ability to elicit cytokine production responses in iDCs as well

as their capacity to activate NF-kB responses via TLR2/6. These findings are in

agreement with previous reports that conclude that significantly different

Figure 5. Cytokine secretion by dendritic cells after mono-stimulation with tested strains and co-stimulation with V. parvula. Dendritic cells were
derived from 2 human donors. Mono-stimulations (Mono)_ and co-stimulations (Co) were both performed at a cell to bacteria, or a cell to a combination of
two strains, ratio of approximately 1:10. See table S6 for cytokine values.

doi:10.1371/journal.pone.0114277.g005
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immunomodulatory properties can be observed in the comparison of closely

related species [45] and strains [43]. However, stimulation of iDCs with S.

salivarius strain 1 and 4 induced similar amounts of different cytokines, which is

in agreement with their highly conserved genetic content and physiological

characteristics [29, 30]. Among the strains tested, S. salivarius strain 2 was the least

effective in activating and maturating responses in iDCs, but at the same time was

identified as one of the strongest inducers of TLR2/6 signalling, which is likely due

to the difference in phagocytosis capacity between dendritic cells and HEK293

cells or that bacterial components are shielding certain microbe-associated

molecular patterns (MAMPs) The cytokine responses of the small intestinal

streptococci were quite similar to other Streptococcus strains, including pathogenic

S. suis strains although these elicited higher IL-12 (up to 6948 pg/ml) in DCs [50].

However, the small intestinal Streptococcus strains tested here are not known to be

virulent, although remnants of streptococcal virulence genes were identified in

their genomes [30]. Similarly, remnants of virulence related genes were also

encountered in the genomes of strains of the yoghurt-associated species S.

thermophilus [51], suggesting that benign streptococci may share functions with

related pathogens.

Compared to the streptococci, the small intestinal E. gallinarum strain appeared

to be consistently more potent in inducing cytokine production in iDC and was

one of the strongest inducers of TLR2/6 signalling, which is in agreement with

earlier studies that report on the highly immune-stimulating capacities of

enterococci [52, 53].

In contrast to the other streptococci tested in this study, DCs were relatively

unresponsive to the S. equinus strain, which also induced negligible TLR2/6-

mediated signalling. Interestingly, the amounts of cytokines produced by DCs co-

stimulated with S. equinus and LPS were higher compared to stimulation with LPS

alone, indicating a synergistic immunostimulatory effect. The low immune

response to S. equinus may therefore be due to the modification of conserved

MAMPs reducing their capacity to signal through TLRs and NLRs or shielding

effects (e.g. due to capsule polysaccharide). Close relatives of the S. equinus strain

(e.g. S. gallolyticus subsp gallolyticus UCN34 [54]) have a less attractive reputation

and are known to evade the host immune system and have been associated with

GI tract malignancies [44]. Notably, genome mining of the S. equinus strain [30]

revealed gene repertoires similar to the capsular operon encoded by S. gallolyticus

subsp gallolyticus UCN34 [54] (data not shown), which was postulated to shield

the bacterial cell from the host immune system [44]. Further comparative analyses

could elucidate the genetic relatedness (e.g. coding capacities for virulence factors)

between the S. equinus strain tested here and potentially pathogenic close relatives.

As Streptococcus and Veillonella spp. have been found to co-occur in various

microbial ecosystems associated with humans and are proposed to have metabolic

interactions [17, 28], the small-intestinal isolates from both genera were tested in

co-stimulation experiments. Although the numbers of donors is relatively low in

these experiments, the results suggested that combinations of streptococcal and

Veillonella strains elicited an immune response profile that was distinct from the
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profile that was predicted on basis of the corresponding mono-stimulations. Some

streptococci when combined with Veillonella substantially augmented IL-8, IL-6,

IL-10, and TNF-a responses. Determining the exact mechanism underlying these

co-stimulation effects is not trivial.

Our results imply that integrated responses to multiple bacteria or bacterial

fragments could result in cytokine responses that are distinct from those

anticipated on basis of the sum of single strain immune stimulation profiles.

These observations may be particularly relevant for the mucosal-associated

lymphoid tissue (e.g., Peyer’s Patches’ isolated lymphoid follicles), where multiple

bacteria could be sampled by M-cells and transported to underlying dendritic

cells. Cytokines induced by these DCs are predicted to influence activation of

antigen-specific T cell responses after migration to the T cell areas of the PP or

lymph nodes. Additionally, interaction bacteria or fragments of bacteria with

CXCR1+ cells in the epithelium may influence local cytokine production and

immunity. Our current knowledge and understanding of these interactions within

the microbiota community as well as their interaction with the host (immune)

system is an area of intense investigation but further mechanistic studies are

needed to decipher the contribution of different bacteria and complex

communities of bacteria to immunity and homeostasis. Immunomodulation

analyses with a variety of well characterized bacterial isolates from the microbiota,

would be a good starting point to identify potential immunomodulatory effects

(including immunosuppression) for members of the microbiota. Deciphering of

the underlying molecular mechanisms and identification of the bacterial effector

molecules is a necessary subsequent step to unravel the molecular basis for

individual bacteria-immune interactions. Insights in these individual molecular

mechanisms of interaction for various bacterial species and strains could

accelerate the deciphering of the complex and multifactorial interplay between the

microbiota and the host immune system in vivo. In addition, high resolution in

vivo measurements of the molecular responses to specific microbes can

complement mechanistic in vitro studies by providing the necessary in vivo

support for the molecular mechanisms unravelled with the help of in vitro

systems. Mono-association (or simplified community colonization) studies in

gnotobiotic animal models could provide an attractive reductionist model to

extrapolate in vitro findings to an in vivo situation [55, 56, 57, 58, 59, 60].

Subsequent mono-association studies with derivatives of the same bacterial

species or strains that lack one or more of their (immune) effector molecules

could enable the in vivo establishment of the molecular interaction mechanisms

proposed on basis of in vitro observations. As an example, approaches like this

have elucidated how B. fragilis and its zwitterionic polysaccharide PSA are able to

shape the host immune system (see [47, 48] for recent reviews). These reductionist

in vivo and in vitro models offer a unique set-up to take the essential initial steps

towards understanding the complexity of the interplay between the microbiota

and the host in the intestine and its possible consequences for the overall

physiology of the host organism, including its immune system status.

Alternatively, the molecular responses elicited in the human intestine mucosa by
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specific bacteria can in some cases directly be determined in vivo, which is

exemplified by the in depth analysis of transcriptional responses in the duodenal

mucosa of healthy human volunteers upon the consumption of dietary lactobacilli

[40, 45]. Such measurements may serve to guide in vitro studies that aim to

decipher the underlying molecular mechanisms. The latter approach has the

considerable advantage that the starting point for the in vitro mechanistic work is

based on relevant in vivo observations in humans, and may therefore suffer less

from the risk that responses in animal models cannot be translated to humans. In

this context, it would be of interest to determine the in vivo (or ex vivo) small

intestine mucosal responses to the typical small intestinal microbiota represen-

tatives that were studied here [17, 26], to generate reference datasets to guide in

vitro mechanistic studies aimed to unravel the immunomodulatory capacities of

these microbes.

Supporting Information

Figure S1. Histograms of the cytometry results.

doi:10.1371/journal.pone.0114277.s001 (EPS)

Table S1. Statistical analysis of the MFI of stained cell surface markers CD83

(upper right panel) and CD86 (lower left panel) by monocyte derived dendritic

cells stimulated at a cell to bacteria ratio of approximately 1:1 and 1:10.

doi:10.1371/journal.pone.0114277.s002 (DOCX)

Table S2. Average and SEM cytokine response values from monocyte derived

iDCs* stimulated with bacterial strains.

doi:10.1371/journal.pone.0114277.s003 (DOCX)

Table S3. Statistical analysis of the cytokine responses (IL-8, upper right panel;

IL-1b, lower left panel) by monocyte derived dendritic cells after stimulation

with bacterial strains.

doi:10.1371/journal.pone.0114277.s004 (DOCX)

Table S4. Statistical analysis of the cytokine responses (IL-6, upper right panel;

IL-10, lower left panel) by monocyte derived dendritic cells after stimulation

with bacterial strains.

doi:10.1371/journal.pone.0114277.s005 (DOCX)

Table S5. Statistical analysis of the cytokine responses (TNF-a, upper right

panel; IL-12p70, lower left panel) by monocyte derived dendritic cells after

stimulation with bacterial strains.

doi:10.1371/journal.pone.0114277.s006 (DOCX)

Table S6. Average and SEM cytokine response values from monocyte derived

iDCs* stimulated with bacterial strains with and without V. parvula co-

stimulation.

doi:10.1371/journal.pone.0114277.s007 (DOCX)
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